Appendix A
Useful Mathematical Identities

A.1 3-Vector Cross-Product Identities

The following useful cross-product identities hold for arbitrary 3-vectors \(\mathbf{p}, \mathbf{q}, \) and \(\mathbf{r} \):

\[
\begin{align*}
\mathbf{\hat{p}}\mathbf{\hat{p}} &= 0 \\
\mathbf{\hat{p}}^* &= -\mathbf{\hat{p}} \\
\mathbf{\hat{p}}\mathbf{\hat{q}} &= -\mathbf{\hat{q}}\mathbf{\hat{p}} \\
(\mathbf{\hat{p}}\mathbf{\hat{q}}) &= \mathbf{\hat{p}}\mathbf{\hat{q}} - \mathbf{\hat{q}}\mathbf{\hat{p}} \\
\mathbf{\hat{p}}\mathbf{\hat{q}} &= \mathbf{\hat{q}}^* - \mathbf{\hat{p}}^* \mathbf{I} \\
\mathbf{\hat{p}}\mathbf{\hat{r}} + \mathbf{\hat{r}}\mathbf{\hat{p}} + \mathbf{\hat{q}}\mathbf{\hat{r}} &= 0 \\
\mathbf{\hat{p}}\mathbf{\hat{q}}\mathbf{\hat{r}} &= -\mathbf{\hat{q}}\mathbf{\hat{r}}\mathbf{\hat{p}} \\
\mathbf{\hat{p}}^*\mathbf{\hat{r}} &= \mathbf{\hat{r}}^*\mathbf{\hat{p}} \\
\mathbf{\hat{p}}\mathbf{\hat{r}} &= \mathbf{\hat{r}}\mathbf{\hat{p}}
\end{align*}
\] (A.1)

\(\mathbb{R} \) denotes a rotation matrix.

A.2 Matrix and Vector Norms

The sup norm (or 2-norm) of a matrix \(\mathbf{A} \) is defined as

\[
\|\mathbf{A}\| \triangleq \sup_{\mathbf{x}} \|\mathbf{Ax}\|/\|\mathbf{x}\| \quad (A.2)
\]

where the norm of a vector \(\mathbf{x} \) is defined as \(\|\mathbf{x}\| \triangleq \sqrt{\mathbf{x}^*\mathbf{x}} \).

Exercise A.1 **Norm of \(\mathbf{\hat{s}} \).**

Show that \(\|\mathbf{\hat{s}}\| = \|\mathbf{s}\| \).

A.3 Schur Complement and Matrix Inverse Identities

Assume that we have a block-partitioned matrix, \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \), with square A and D sub-matrices. When D is invertible, the **Schur complement** of the matrix is defined as \(A - BD^{-1}C \). The following describe factorizations and solutions of equations involving such block partitioned matrices.

1. If D is invertible, then

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I & BD^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I & 0 \\ D^{-1}C & I \end{pmatrix} \tag{A.3}
\]

Hence,

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} I & 0 \\ -D^{-1}C & I \end{pmatrix} \begin{pmatrix} (A - BD^{-1}C)^{-1} & 0 \\ 0 & D^{-1} \end{pmatrix} \begin{pmatrix} I & -BD^{-1} \\ 0 & I \end{pmatrix} \tag{A.4}
\]

Using this factorization, the solution to the following matrix equation

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \tag{A.5}
\]

is given by

\[
\begin{align*}
\begin{bmatrix} y \\ x_1 \end{bmatrix} &= D^{-1}b_2 \\
x_1 &= (A - BD^{-1}C)^{-1} \left(b_1 - By \right) \\
x_2 &= y - D^{-1}Cx_1
\end{align*} \tag{A.6}
\]

2. If A is invertible, then,

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I & 0 \\ CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix} \tag{A.7}
\]

Hence,

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} I & -A^{-1}B \\ 0 & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & (D - CA^{-1}B)^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -CA^{-1} & I \end{pmatrix} \tag{A.8}
\]

Using this factorization, the solution to the following matrix equation

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \tag{A.9}
\]
is given by
\[
y = A^{-1}b_1 \\
x_2 = (D - CA^{-1}B)^{-1}(b_2 - Cy) \\
x_1 = y - A^{-1}Bx_2
\] (A.10)

3. If \(A, B \) and \(C \) are invertible, and \(D = 0 \), then (A.8) simplifies to:
\[
\begin{pmatrix}
A & B \\
C & 0
\end{pmatrix}^{-1} = \begin{pmatrix}
0 & C^{-1} \\
B^{-1} & -B^{-1}AC^{-1}
\end{pmatrix}
\] (A.11)

4. Now let us assume that \(D \) is invertible, and further that there are constraints \(Qb_2 = 0 \) and \(x_2 = Q^*\lambda \) for some full-rank matrix \(Q \) and vector \(\lambda \). Then (A.9) can be re-expressed as:
\[
\begin{pmatrix}
I & 0 \\
mQ & Q
\end{pmatrix}\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}\begin{pmatrix}
I & 0 \\
mQ & Q^*
\end{pmatrix}\begin{pmatrix}
x_1 \\
\lambda
\end{pmatrix} = \begin{pmatrix}
b_1 \\
0
\end{pmatrix}
\] (A.12)

That is,
\[
\begin{pmatrix}
A & BQ^* \\
QC & QDQ^*
\end{pmatrix}\begin{pmatrix}
x_1 \\
\lambda
\end{pmatrix} = \begin{pmatrix}
b_1 \\
0
\end{pmatrix}
\implies (A - BQ^*(QDQ^*)^{-1}Q) x_1 = A_6 b_1
\] (A.13)

\(QDQ^* \) is invertible because \(D \) is invertible and \(Q \) is full-rank.

5. Let us assume the same conditions as in (4), except that the original block-matrix has an additional \([c_1, c_2]^*\) term to take the form:
\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} + \begin{pmatrix}
c_1 \\
c_2
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2
\end{pmatrix}
\] (A.14)

In this case, (A.13) generalizes to:
\[
\begin{pmatrix}
A & BQ^* \\
QC & QDQ^*
\end{pmatrix}\begin{pmatrix}
x_1 \\
\lambda
\end{pmatrix} = \begin{pmatrix}
b_1 - c_1 \\
-Qc_2
\end{pmatrix}
\implies (A - ZC)x_1 + (c_1 - Zc_2) = A_6 b_1 \text{ where } Z \triangleq BQ^*(QDQ^*)^{-1}Q \\
\quad \text{with } \lambda = -(QDQ^*)^{-1}Q(c_2 + Cx_1) \quad \text{and} \quad x_2 = Q^*\lambda
\] (A.15)

6. Let us assume the same conditions as in (5), except that now the constraint has the form \(x_2 = Q^*\lambda + \gamma \). In this case, (A.13) generalizes to:
\[
\begin{pmatrix}
A & BQ^* \\
QC & QDQ^*
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\lambda
\end{pmatrix} =
\begin{pmatrix}
b_1 - (c_1 + B\gamma) \\
-Q(c_2 + D\gamma)
\end{pmatrix}
(A.16)
\]

\[
\Rightarrow (A - ZC)x_1 + (c_1 + B\gamma - Z(c_2 + D\gamma)) = b_1
\]

where \(Z \triangleq BQ^*(QDQ^*)^{-1}Q \)

with \(\lambda = -(QDQ^*)^{-1}Q(c_2 + D\gamma + Cx_1) \) and \(x_2 = Q^*\lambda + \gamma \)

A.4 Matrix Inversion Identities

1. For any matrix \(A \) such that \((I - A) \) is invertible, the following matrix identity holds:
\[
A(I - A)^{-1} = (I - A)^{-1}A = (I - A)^{-1} - I
\]

(A.17)

2. For a pair of matrices \(A \) and \(B \) such that \((I + AB) \) is invertible, we have
\[
(I + AB)^{-1} = I - A(I + BA)^{-1}B
\]

(A.18)

3. For matrices \(A, X, R \) and \(Y \), such that \(A, R \) and \([A + XRY^*] \) are invertible, we have
\[
[A + XRY^*]^{-1} = A^{-1} - A^{-1}X[R^{-1} + Y^*A^{-1}X]^{-1}Y^*A^{-1}
\]

(A.19)

Lemma A.1 The 1-resolvent of a nilpotent matrix.

If \(U \) is a nilpotent matrix, such that \(U^n = 0 \), then its 1-resolvent, \(W \triangleq (I - U)^{-1} \), is given by
\[
W = I + U + U^2 + \cdots + U^{n-1}
\]

(A.20)

Proof: For \(W \) as defined in (A.20)
\[
UW = WU = U + U^2 + \cdots + U^n = U + U^2 + \cdots + U^{n-1} = W - I
\]

Rearranging terms, we have
\[
I = W - UW \implies (I - U)W \implies (I - U)^{-1} = W
\]

A.5 Matrix Trace Identities

For a square matrix \(A \)
\[
\text{Trace}\{A\} = -\text{Trace}\{-A\}
\]

(A.21)
For matrices A and B such that AB is square, we have

$$\text{Trace}\{AB\} = \text{Trace}\{BA\} \quad (A.22)$$

A.6 Derivative and Gradient Identities

A.6.1 Function Derivatives

The following identities hold for function derivatives of a smooth function $g(\theta, \dot{\theta})$:

$$\frac{\partial g}{\partial \ddot{\theta}} = \frac{\partial g}{\partial \theta} \quad (A.23)$$

A.6.2 Vector Gradients

We now define the notation for gradients and derivatives of vector functions with respect to a vector. Let $f(\theta) \in \mathbb{R}^m$ be a smooth function of a vector, $\theta \in \mathbb{R}^n$. Then the gradient, $\nabla_\theta f(\theta)$, is an $m \times n$ matrix defined as follows:

$$\nabla_\theta f(\theta) \triangleq \begin{pmatrix}
\frac{\partial f_1}{\partial \theta_1} & \cdots & \frac{\partial f_1}{\partial \theta_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial \theta_1} & \cdots & \frac{\partial f_m}{\partial \theta_n}
\end{pmatrix} \in \mathbb{R}^{m \times n} \quad (A.24)$$

Exercise A.2 Product gradient and chain rules.

1. Given a vector $x \in \mathbb{R}^p$, a smooth, vector-valued function $f(x) \in \mathbb{R}^m$, and a smooth, scalar valued function $g(x)$, show that the following product rule holds:

$$\nabla_x [f(x)g(x)] = \nabla_x f(x) \cdot g(x) + f(x) \cdot \nabla_x g(x) \quad (A.25)$$

2. Given a smooth vector-valued function $f(y) \in \mathbb{R}^m$ of another vector-valued function $y(x) \in \mathbb{R}^n$, which in turn is a smooth function of a vector $x \in \mathbb{R}^p$, show that the following chain rule holds:

$$\nabla_x f(x) = \nabla_y f(y) \cdot \nabla_x y(x) \quad (A.26)$$
At times, we need to differentiate a row-vector valued functions $f(\theta)$ with respect to the variables vector $\theta \in \mathbb{R}^m$. We use the following notation for this purpose:

$$\frac{df(\theta)}{d\theta} \triangleq \left[\nabla_{\theta}(f^*) \right]^* = \begin{bmatrix} \frac{\partial f}{\partial \theta_1} \\ \vdots \\ \frac{\partial f}{\partial \theta_m} \end{bmatrix}$$ (A.27)

The notational convention in (A.27) also applies to partial derivatives such as $\frac{\partial f}{\partial \theta}$.

A.6.3 Matrix Derivatives

Let $A(t)$ be a differentiable and invertible matrix. We derive an expression for the time derivative of the inverse of $A(t)$ in terms of the time derivative of $A(t)$. Since $A(t)A^{-1}(t) = I$, differentiating both sides with respect to t yields

$$\frac{dA(t)}{dt}A^{-1}(t) + A(t)\frac{dA^{-1}(t)}{dt} = 0$$

Rearranging terms, we obtain

$$\frac{dA^{-1}(t)}{dt} = -A^{-1}(t)\frac{dA(t)}{dt}A^{-1}(t)$$ (A.28)

Moreover, we have the following identity from Graham [61]:

$$\frac{d\log \{ \det \{ A(t) \} \}}{dt} = \text{Trace} \left\{ A^{-1} \frac{dA(t)}{dt} \right\}$$ (A.29)
Appendix B
Attitude Representations

This appendix summarizes some attitude representation schemes that are alternatives to the direction-cosine matrix attitude representation scheme. References [43, 165] contains a detailed discussion on this topic. Since different conventions exist, a key to working with attitude representations is a clear definition of how they compose with each other, and how they transform vector representations. The \(I^B \) direction-cosine matrix representations for attitude is the least ambiguous, because its composition operation is simply the normal matrix/vector multiplication operation, i.e.,

\[
\hat{p} = I^B \hat{B} \hat{p}
\]

for a 3-vector \(p \). We refer to direction-cosine matrices as rotation matrices.

Exercise B.1 Time derivative of a rotation matrix.

Let \(R(t) \) denote a rotation matrix that is a smooth function of time. Show that

\[
\frac{dI^B}{dt} = \tilde{w} I^B
\]

for some 3-vector \(w \). As discussed in (1.8) on page 5, \(w = I^I \omega(I, B) \), the angular velocity of the \(B \) frame with respect to the \(I \) frame expressed in the \(I \) frame.

In this appendix, we work exclusively with the \(I \) and \(B \) pair of frames while studying the properties of attitude representations. With this in mind, we use the more compact \(\omega \) notation for \(\omega(I, B) \) to simplify the expressions.

B.1 Euler Angles

Euler angles, \(\theta = (\psi, \gamma, \phi) \) are an example of a minimal, 3-parameter attitude representation. This representation is based on expressing rotations as consisting of a sequence of three principal axis rotations. There are several possible options for Euler
angle representations based on the specific choice of the principal axes [43, 69]. For instance, the ZXZ Euler angles representation is defined as a sequence of principal axis rotations about the z axis, the x axis, and, once again, the z axis. The expression for $^B\mathcal{R}_B$ for the ZXZ Euler angle representation is as follows:

$$^B\mathcal{R}_B(\theta) = \begin{pmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\gamma} & -s_{\gamma} \\ 0 & s_{\gamma} & c_{\gamma} \end{pmatrix} \begin{pmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(B.1)

The orientation of frame B is obtained through a sequence of rotations. We begin with B aligned with frame I. Then, we rotate B about its z axis through the angle ψ. Next, we rotate it about its x axis by the angle γ, and, finally, about its z axis by the angle ϕ, to obtain the final orientation of frame B.

For the ZXZ Euler angle representation, the $B\omega$ angular velocity is related to the time derivatives of the Euler angles, $\dot{\theta}$, as follows:

$$B\omega = \begin{pmatrix} s_{\gamma} c_{\phi} & c_{\phi} & 0 \\ s_{\gamma} c_{\phi} & -s_{\phi} & 0 \\ c_{\gamma} & 0 & 1 \end{pmatrix} \dot{\theta}$$

(B.2)

When $\sin(\gamma) \neq 0$, the matrix in (B.2) is invertible, and the inverse relationship is given by

$$\dot{\theta} = \frac{1}{s_{\gamma}} \begin{pmatrix} s_{\phi} & c_{\phi} & 0 \\ s_{\gamma} c_{\phi} & -s_{\gamma} s_{\phi} & 0 \\ -c_{\gamma} s_{\phi} & -c_{\gamma} c_{\phi} & s_{\gamma} \end{pmatrix} B\omega$$

(B.3)

The relationship in (B.3) is undefined when $\sin(\gamma) = 0$. All 3-parameter attitude representations have such singularities. A representation of size 4 or more is required to avoid singularities.

B.2 Angle/Axis Parameters

Euler’s theorem states that every rotation is equivalent to a rotation about a fixed vector. With \mathbf{n} denoting the axis of rotation unit vector, and θ the angle of rotation, the following exponential formula defines the expression for the rotation matrix:

$$^B\mathcal{R}_B(\mathbf{n}, \theta) = \exp[\mathbf{n}\theta]$$

(B.4)
Thus, the four parameters, \(\rho_B \triangleq (n, \theta) \), can be used to represent the relative attitude of the two frames. This representation is known as the angle/axis representation of attitude.

Exercise B.2 Derivation of the Euler–Rodrigues formula.

1. Verify that the characteristic polynomial\(^1\) of a \(3 \times 3 \) skew-symmetric matrix \(\tilde{s} \) is

\[
\lambda^3 + \sigma^2 \lambda \quad (B.5)
\]

where \(\sigma \triangleq \|s\| \) is the vector norm of \(s \).

2. Use this to derive the following Euler–Rodrigues formula for a rotation matrix in terms of its angle/axis representation coordinates:

\[
^B I R_B (^B \rho_B) = \cos(\theta) I_3 + [1 - \cos(\theta)] \tilde{n} \tilde{n}^* + \sin(\theta) \tilde{n} \quad (B.6)
\]

Exercise B.3 Trace and characteristic polynomial of a rotation matrix.

Let \(\mathcal{R}(n, \theta) \) denote a rotation matrix.

1. Show that

\[
\gamma \triangleq \text{Trace}\{\mathcal{R}(n, \theta)\} = 1 + 2 \cos(\theta) \quad (B.7)
\]

2. Show that the characteristic polynomial of \(\mathcal{R}(n, \theta) \) is

\[
\lambda^3 - \gamma \lambda^2 + \gamma \lambda - 1 \quad (B.8)
\]

3. Verify that \(n \) is the eigen-vector of \(\mathcal{R}(n, \theta) \) with eigen-value of 1.

4. Show that when \(\sin(\theta) \neq 0 \), \(n \) can be obtained from the \(\mathcal{R}(n, \theta) \) rotation matrix using the following relationship:

\[
\tilde{n} = (\mathcal{R} - \mathcal{R}^*) / (2 \sin(\theta)) \quad (B.9)
\]

Remark B.1 Eigen-values of a rotation matrix.

The axis of rotation \(n \) for a rotation matrix \(^B I R_B \) is its eigen-vector corresponding to the eigenvalue 1. The angle of rotation, \(\theta \), appears in the other complex eigenvalues of the matrix, which, using (B.8) can be shown to be of the form \(\exp[j \theta] \) and

\(^1\) The characteristic polynomial of a matrix, \(A \), is defined as the polynomial of \(\lambda \), defined by the matrix determinant, \(\det(\lambda I - A) \).
exp[−jθ]. Given a rotation matrix \mathcal{R} instead of these relationships, it is simpler to obtain θ by using the (B.7) expression for the trace of a \mathcal{R} and n from the expression in (B.9).

Exercise B.4 Angular velocity from the angle/axis rates.

Derive the following expression for the $^B\omega$ angular velocity in terms of \dot{n} and $\dot{\theta}$ angle/axis rates:

$$
^B\omega = \dot{n} - (1 - \cos \theta) \ddot{n} + \sin(\theta) \dot{n}
$$

$$
= \left[\sin(\theta) - (1 - \cos \theta) \dot{n}, \quad n \right] \left[\begin{array}{c} \dot{n} \\ \dot{\theta} \end{array} \right]
$$

(B.10)

Exercise B.5 Angle/axis rates from the angular velocity.

Show that the expression for the \dot{n} and $\dot{\theta}$ time derivatives in terms of the $^B\omega$ angular velocity is:

$$
\left[\begin{array}{c} \dot{n} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} \frac{1}{2} \left[\ddot{n} - \cot(\theta/2) \ddot{n} \right] \\ n^* \end{array} \right] ^B\omega
$$

(B.11)

B.3 Unit Quaternions/Euler Parameters

Unit quaternions (also known as Euler parameters) are closely related to the angle/axis parameters and also consist of four scalar parameters. Given an angle/axis representation of the attitude $^p\rho_B = (n, \theta)$, the corresponding quaternion representation, denoted $^q_B = (q, q_0)$, is defined as:

$$
q_0 \triangleq \cos(\theta/2); \quad q \triangleq \left[\begin{array}{c} q_1 \\ q_2 \\ q_3 \end{array} \right] = \sin(\theta/2) n
$$

(B.12)

It is easy to verify that quaternions have unit magnitude, that is,

$$
q^* q = q_0^2 + q^* q = 1
$$

(B.13)

A description of quaternions and their transformations can be found in [30, 43, 69].

Exercise B.6 Quaternion expression for a rotation matrix.

Show that the $^i\mathcal{R}_B$ rotation matrix can be obtained from the corresponding $^i\mathcal{q}_B = (q, q_0)$ quaternion representation by any of the following expressions:
\[\mathcal{R}_B \left(\mathcal{I} \mathbf{q}_B \right) = (q_0^2 - q^* q) \mathbf{I}_3 + 2qq^* + 2q_0 \bar{q} \]
\[= (2q_0^2 - 1) \mathbf{I}_3 + 2qq^* + 2q_0 \bar{q} \]
\[= \mathbf{I}_3 + 2(\bar{q}_0 \mathbf{I}_3 + \bar{q}) \bar{q} \]
\[= (q_0 \mathbf{I}_3 + \bar{q})^2 + qq^* \]
\[= \begin{pmatrix}
2[q_0^2 + q_1^2] - 1 & 2[q_1 q_2 - q_0 q_3] & 2[q_1 q_3 + q_0 q_2] \\
2[q_1 q_2 + q_0 q_3] & 2[q_0^2 + q_2^2] - 1 & 2[q_2 q_3 - q_0 q_1] \\
2[q_1 q_3 - q_0 q_2] & 2[q_2 q_3 + q_0 q_1] & 2[q_0^2 + q_3^2] - 1
\end{pmatrix} \tag{B.14} \]

Observe that, in contrast to (B.6), the (B.14) expression for \(\mathcal{R}_B \left(\mathcal{I} \mathbf{q}_B \right) \) does not involve trigonometric quantities. Indeed, one of the key advantages of quaternions is that quaternion transformations typically involve algebraic expressions instead of the computationally expensive trigonometric functions typically encountered for other types of attitude representations.

Exercise B.7 Basic properties of unit quaternions.

Let \(\mathbf{q} = (q, q_0) \) denote a unit quaternion:

1. Show that the orthogonality of the matrix \(\mathcal{R}(\mathbf{q}) \) in (B.14) follows from the unit magnitude of \(\mathbf{q} \).
2. Verify that the unit quaternions \(\mathbf{q} \) and \(-\mathbf{q} \) are equivalent, in the sense that they both map to the same rotation matrix, i.e., \(\mathcal{R}(\mathbf{q}) = \mathcal{R}(-\mathbf{q}) \).
3. Show that the inverse of a quaternion \(\mathbf{q} \), denoted \(\mathbf{q}^{-1} \), is the unit quaternion given by
 \[\mathbf{q}^{-1} = \begin{bmatrix}
-q \\
q_0
\end{bmatrix} \tag{B.15} \]

An equivalent representation for \(\mathbf{q}^{-1} \) is \((q, -q_0) \).
4. Show that the trace of the \(\mathcal{R}(\mathbf{q}) \) rotation matrix is given by
 \[\text{Trace} \left\{ \mathcal{R}(\mathbf{q}) \right\} = 4q_0^2 - 1 \tag{B.16} \]
5. Show that \(\mathbf{q} \) is the eigen-vector of \(\mathcal{R}(\mathbf{q}) \) with eigenvalue of 1, i.e.,
 \[\mathcal{R}\mathbf{q} = \mathbf{q} \tag{B.17} \]
6. Show that when \(q_0 \neq 0 \), \(\mathbf{q} \) can be obtained from the \(\mathcal{R} \) rotation matrix using the following relationship:
 \[\tilde{\mathbf{q}} = (\mathcal{R} - \mathcal{R}^*)/(4q_0) \tag{B.18} \]
B.3.1 The $E_+(q)$ and $E_-(q)$ Matrices

For a unit quaternion $q = (q, q_0)$, define the 4×4 matrices, $E_+(q)$ and $E_-(q)$, as

$$
E_+(q) \triangleq \begin{pmatrix}
q_0 I_3 + \tilde{q} & q \\
-q^* & q_0
\end{pmatrix}
$$

and

$$
E_-(q) \triangleq \begin{pmatrix}
q_0 I_3 - \tilde{q} & q \\
-q^* & q_0
\end{pmatrix}
$$

(B.19)

Exercise B.8 Properties of E_- and E_+ matrices.

Let $q = (q, q_0)$ denote a unit quaternion:

1. Show that $E_+(q)$ and $E_-(q)$ are orthogonal matrices, i.e.,

$$
E_+^*(q)E_-(q) = E_-(q)E_+^*(q) = I
$$

$$
E_+^*(q)E_+(q) = E_+(q)E_+^*(q) = I
$$

(B.20)

2. Show that

$$
E_-(q)E_+(q) = E_+(q)E_-(q) = \begin{pmatrix}
\mathcal{R}(q) & 0 \\
0 & 1
\end{pmatrix} \triangleq T(q)
$$

$$
E_+^*(q)E_-(q) = E_-(q)E_+^*(q) = \begin{pmatrix}
\mathcal{R}^*(q) & 0 \\
0 & 1
\end{pmatrix} = T(q^{-1})
$$

(B.21)

The $T(.)$ homogeneous transforms defined above have zero translation vectors and only rotational components.

3. Verify that

$$
E_+(q^{-1}) = E_+^*(q) \quad \text{and} \quad E_-(q^{-1}) = E_-^*(q)
$$

(B.22)

4. With p denoting another unit quaternion, show that

$$
E_+(p)q = E_-(q)p
$$

(B.23)

5. With p denoting another unit quaternion, show that each of the $E_-(q)$ and $E_-^*(q)$ pair of matrices commutes with each of the $E_+(p)$ and $E_+^*(p)$ matrix pair, i.e.,

$$
E_+(q)E_+(p) = E_+(p)E_-(q)
$$

(B.24a)

$$
E_-(q)E_+^*(p) = E_+^*(p)E_-(q)
$$

(B.24b)

$$
E_+^*(q)E_+(p) = E_+(p)E_+^*(q)
$$

(B.24c)

$$
E_-^*(q)E_+^*(p) = E_+^*(p)E_-^*(q)
$$

(B.24d)
6. Show that \mathbf{q} is an eigen-vector of $T(\mathbf{q})$ with eigenvalue 1, i.e.,

$$T(\mathbf{q})\mathbf{q} = \mathbf{q} \tag{B.25}$$

B.3.2 Quaternion Transformations

We denote the composition operation between two quaternions by the symbol “\otimes”. The composition of two quaternions \mathbf{p} and \mathbf{q} is defined as

$$\mathbf{p} \otimes \mathbf{q} \triangleq E_+ (\mathbf{p}) \mathbf{q} \quad \text{and} \quad E_- (\mathbf{q}) \mathbf{p} \tag{B.26}$$

Exercise B.9 Composition of unit quaternions.

Let $\mathbf{q} = (q, q_0)$ and $\mathbf{p} = (p, p_0)$ denote unit quaternions:

1. Verify that,

$$\mathbf{p} \otimes \mathbf{q} = \begin{bmatrix} p_0 q_0 + p q_0 + \bar{p} q \\ p_0 q_0 - p^* \mathbf{q} \end{bmatrix} \tag{B.27}$$

Verify that $\mathbf{p} \otimes \mathbf{q}$ is of unit norm and is hence also a unit quaternion. Thus, the composition of two quaternions yields another quaternion.

2. For quaternion composition to be consistent with the composition of rotation matrices, we must have

$$R(\mathbf{p} \otimes \mathbf{q}) = R(\mathbf{p}) R(\mathbf{q}) \tag{B.28}$$

Show that this identity holds.

3. Show that the composition of quaternions is an associative operation. That is, with \mathbf{r} denoting another quaternion, we have,

$$\mathbf{p} \otimes (\mathbf{q} \otimes \mathbf{r}) = (\mathbf{p} \otimes \mathbf{q}) \otimes \mathbf{r} \tag{B.29}$$

4. Show that

$$\mathbf{p}^{-1} \otimes \mathbf{q} = E_+^* (\mathbf{p}) \mathbf{q} \quad \text{and} \quad \mathbf{p} \otimes \mathbf{q}^{-1} = E_-^* (\mathbf{q}) \mathbf{p} \tag{B.30}$$

Exercise B.10 The quaternion identity element.

Show that the $\mathbf{e}_q = (0,0,0,1)^*$ unit quaternion is the identity element for unit quaternions by establishing the following identities for an arbitrary quaternion \mathbf{q}:

$$\mathbf{q} \otimes \mathbf{e}_q = \mathbf{q} \quad \text{and} \quad \mathbf{q} \otimes \mathbf{q}^{-1} = \mathbf{e}_q \tag{B.31}$$
Exercise B.11 Unit quaternion products and inverses.

For a pair of quaternions \mathbf{p} and \mathbf{q}, show that:

1. $(\mathbf{p} \otimes \mathbf{q})^{-1} = \mathbf{q}^{-1} \otimes \mathbf{p}^{-1}$
2. With $\mathbf{r} \triangleq \mathbf{p} \otimes \mathbf{q}$, show that,

$$\mathbf{q} = \mathbf{p}^{-1} \otimes \mathbf{r} \quad \text{and} \quad \mathbf{p} = \mathbf{r} \otimes \mathbf{q}^{-1} \quad \text{(B.32)}$$

Exercise B.12 Transforming vectors with unit quaternions.

Given a vector $\mathbf{x} \in \mathbb{R}^3$, and a quaternion $\mathbf{q} = \mathbb{I} \mathbf{q}_B$ defining the attitude of frame \mathbb{B} with respect to frame \mathbb{I}, show that

$$\left[\begin{array}{c} \mathbb{I} \mathbf{x} \\ 0 \end{array} \right] = \mathbf{q} \otimes \left[\begin{array}{c} \mathbb{B} \mathbf{x} \\ 0 \end{array} \right] \otimes \mathbf{q}^{-1} \quad \text{(B.33)}$$

B.3.3 Quaternion Differential Kinematics

Exercise B.13 Quaternion rates from the angular velocity.

With $\mathbb{I} \mathbf{q}_B = \mathbf{q} = (\mathbf{q}, \mathbf{q}_0)$, Show that the time derivative of the quaternion is related to the $\mathbb{B} \omega$ angular velocity as follows:

$$\frac{\dot{\mathbb{I} \mathbf{q}}_B}{\mathbb{I} \mathbf{q}_B} = \frac{1}{2} \left[(\mathbf{q}_0 \mathbf{I}_3 + \overline{\mathbf{q}}) \mathbb{B} \omega \right] = \frac{1}{2} \left(\begin{array}{c} -\mathbb{B} \bar{\omega} \mathbb{B} \omega \\ \mathbf{q} \end{array} \right) \mathbf{q}$$

$$= \frac{1}{2} \mathcal{E}_+(\mathbf{q}) \left[\begin{array}{c} \mathbb{B} \omega \\ 0 \end{array} \right] = \frac{1}{2} \mathbf{q} \otimes \left[\begin{array}{c} \mathbb{B} \omega \\ 0 \end{array} \right] \quad \text{(B.34)}$$

Exercise B.14 Constant unit quaternion norms.

1. Show that the solution to the (B.34) ordinary differential equation has unit norm for all time t.
2. Show that when $\mathbf{q}_0 \neq 0$,

$$\dot{\mathbf{q}}_0 = -\mathbf{q}^* \dot{\mathbf{q}} / \mathbf{q}_0 \quad \text{(B.35)}$$
Exercise B.15 Unit quaternion rate to angular velocity.

Let \(\mathbf{q}_B = \mathbf{q} = (q, q_0) \) denote a unit quaternion:

1. Show that the mapping from quaternion rates to the \(\mathbf{B} \omega \) angular velocity representation is given by the following expression:

\[
\begin{bmatrix}
\mathbf{B} \omega \\
0
\end{bmatrix} = 2 \mathbf{E}^*(q) \mathbf{q} = 2q^{-1} \otimes \mathbf{q}
\]

(B.36)

Alternatively,

\[
\mathbf{B} \omega = 2 [q_0 \mathbf{I}_3 - \tilde{q}] \mathbf{q} - q \dot{q}_0
\]

(B.37)

When \(q_0 \neq 0 \),

\[
\mathbf{B} \omega = 2 [q_0 \mathbf{I}_3 - \tilde{q} + qq^*/q_0] \mathbf{q}
\]

(B.38)

2. Show that the mapping from quaternion rates to the \(\mathbf{I} \omega \) angular velocity representation is as follows:

\[
\begin{bmatrix}
\mathbf{I} \omega \\
0
\end{bmatrix} = 2 \mathbf{E}^*(q) \mathbf{q} = 2 \dot{q} \otimes q^{-1}
\]

(B.39)

Alternatively,

\[
\mathbf{I} \omega = 2 [q_0 \mathbf{I}_3 + \tilde{q}] \mathbf{q} - q \dot{q}_0
\]

(B.40)

When \(q_0 \neq 0 \),

\[
\mathbf{I} \omega = 2 [q_0 \mathbf{I}_3 + \tilde{q} + qq^*/q_0] \mathbf{q}
\]

(B.41)

Exercise B.16 Quaternion double time derivatives.

Let \(\mathbf{q}_B = \mathbf{q} = (q, q_0) \) denote a unit quaternion. Show that

\[
\ddot{\mathbf{q}} = \frac{1}{2} \mathbf{q} \otimes \begin{bmatrix}
\mathbf{B} \omega \\
0
\end{bmatrix} + \frac{1}{4} \| \mathbf{B} \omega \|^2 \mathbf{q}
\]

(B.42)

Establish the converse relationship

\[
\begin{bmatrix}
\mathbf{B} \omega \\
0
\end{bmatrix} = 2q^{-1} \otimes \ddot{\mathbf{q}} - \frac{1}{2} \| \mathbf{B} \omega \|^2 e_{\mathbf{q}}
\]

(B.43)
B.4 Gibbs Vector Attitude Representations

Now we use the connection between rotation matrices and skew-symmetric matrices to define the Gibbs vector attitude representation [172].

Exercise B.17 Gibbs vector attitude representation.

Let s denote a 3-vector with magnitude σ:

1. Use the characteristic polynomial for skew-symmetric matrices in Exercise B.2 to show that

$$[I - \tilde{s}]^{-1} = I + (\tilde{s}^2 + \tilde{s})/(1 + \sigma^2)$$

$= I + \tilde{s}(I + \tilde{s})/(1 + \sigma^2)$ \hspace{1cm} (B.44)

2. Use this identity to show that

$$[I - \tilde{s}]^{-1}[I + \tilde{s}] = I + 2(\tilde{s}^2 + \tilde{s})/(1 + \sigma^2)$$ \hspace{1cm} (B.45)

Verify that $\mathcal{R}(s) \triangleq [I - \tilde{s}]^{-1}[I + \tilde{s}]$ is a rotation matrix. Such a representation of attitude matrices using a 3-vector, s, is also known as the Rodrigues or Gibbs vector representation for attitude matrices.

3. Establish the converse relationship

$$\tilde{s} = -[I - \mathcal{R}(s)] [I + \mathcal{R}(s)]^{-1}$$

$= -[\gamma I - (1 + \gamma)\mathcal{R}(s) + \mathcal{R}^2(s)]/(1 + \gamma)$ \hspace{1cm} (B.46)

where $\gamma \triangleq \text{Trace(}\mathcal{R}(s))$.

4. Show that the Gibb’s vector, s, is the axis of rotation for the $\mathcal{R}(s)$ rotation matrix.

5. Show that the Gibb’s vector, s, for a quaternion $q = (q, q_0)$, with $q_0 \neq 0$, is given by

$$s = q/q_0 = \tan(\theta/2)n$$ \hspace{1cm} (B.47)

so that $\mathcal{R}(s) = \mathcal{R}(q) = \mathcal{R}(n, \theta)$.

We now look at the problem of finding the family of rotation matrices that will transform one vector into another [15]. Let a and b denote two vectors of identical norm, i.e., $\|a\| = \|b\|$. The goal is to find a parametrization of all rotation matrices \mathcal{R} such that $\mathcal{R}a = b$.

Exercise B.18 Rotation of vectors.

For a pair of 3-vectors a and b of the same norm, let s denote a Gibb’s vector attitude representation such that $\mathcal{R}(s)a = b$:

1. Show that s must satisfy the following relationship:

$$(a + b)s = (a - b)$$ \hspace{1cm} (B.48)
2. Now show that the general solution for \(s \) satisfying \(\mathfrak{R}(s) a = b \) is given by

\[
 s = \lambda \left(\widehat{a - b} \right) (a + b) + \alpha (a + b)
\]

(B.49)

where \(\lambda = 1/\| (a + b) \|^2 \), and \(\alpha \) is an arbitrary constant.

This exercise shows how to compute a rotation matrix that transforms a given vector, \(a \), into another given vector, \(b \). This rotation matrix is not unique, as reflected by the arbitrary parameter \(\alpha \) in (B.49). After being rotated to coincide with \(b \), any additional rotation of \(a \) about the axis \(b \) leaves the vector unchanged, leading to the non-uniqueness of the rotation. A similar circumstance holds if vector \(a \) is rotated about itself prior to rotating it to coincide with \(b \).
Solutions for Chapter 1

Solution 1.1 (pp. 8): Position and velocity vector derivatives

1. \[\frac{d_B \omega(B)}{dt} \overset{1.12}{=} \alpha(B) + \tilde{\omega}(B) \omega(B) = \alpha(B) \]

This proves the first part of (1.17). The second expression follows since the angular velocity of \(I \) with respect to \(B \) is \(-\omega(B)\) in (1.12).

2. Equation (1.18) follows by differentiating (1.15) with respect to the inertial frame and using (1.12) for the inertial derivative of \(l(x, y) \).

3. Equation (1.19a) follows from noting that \(\delta_v = \frac{d_B l(y, P)}{dt} \) and thus,

\[v(P) = v(y) + \frac{d_B l(y, P)}{dt} \overset{1.12}{=} v(y) + \delta_v + \tilde{\omega}(B) l(y, P) \quad (C.1) \]

The last term in (1.19a) vanishes because \(l(y, P) \) is instantaneously zero. Equation (1.19b) follows by differentiating (C.1) with respect to the inertial frame.

Solution 1.2 (pp. 9): Spatial vector cross-product identities

The identities can be established by direct verification using the 3-vector components of the \(A \) and \(B \) spatial vectors.

Solution 1.3 (pp. 10): Relationship between the \(\hat{\omega} \), \(\tilde{\omega} \) and \(\hat{\omega} \) operators

These (1.27) equations can be established by direct verification for arbitrary spatial vectors \(A \), \(B \) and \(C \).
Solution 1.4 (pp. 10): Time derivative relationship for spatial vectors

With $X = \begin{bmatrix} x \\ y \end{bmatrix}$, we have

$$\frac{dF}{dt} = \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} \frac{dF_x}{dt} + \tilde{\omega}x \\ \frac{dF_y}{dt} + \tilde{\omega}y \end{bmatrix} = \frac{dG}{dt} + \tilde{\nu}^\omega (F, G) X$$

Solution 1.5 (pp. 12): Identities involving $\tilde{\cdot}(\cdot), \hat{\cdot}(\cdot)$ and $\phi(\cdot, \cdot)$

The first two identities can be established by direct verification using arbitrary 3-vectors $l(x, y)$ and X. The last one is a simple rearrangement of the second identity.

Solution 1.6 (pp. 12): Rigid body transformation of $\tilde{V}(x)$

From (1.33) on page 12 we know that $V(y) = \phi^*(x, y)V(x)$. Thus,

$$\tilde{V}(y) \overset{1.34}{=} \phi^*(x, y) \tilde{V}(x) \phi^{-*}(x, y)$$

and the first equation follows. The latter equation is merely a transposed version of the first equation, followed by the use of (1.26).

Solution 1.7 (pp. 13): Relationships involving X^ω and X^ν

The first pair of identities can be verified directly by expanding out X and Y into their component 3-vectors and evaluating them.

Equation (1.36b) follows directly from (1.36a).
Equation (1.36c) follows by direct verification.
Equation (1.36d) follows from (1.36c).
Equation (1.36e) can be verified directly by additionally using $\phi(x, y)$ for an arbitrary $l(x, y)$ 3-vector.

Solution 1.8 (pp. 13): The inertial frame derivative of $\phi(x, y)$

For the inertial frame derivative, we use the inertial frame representation of $\phi(x, y)$ from (1.30). Now,

$$\frac{dI}{dt} = \nu(y) - \nu(x)$$

Hence,

$$\frac{dI}{dt} \phi(x, y) = \begin{bmatrix} 0 & \tilde{v}(y) - \tilde{v}(x) \\ 0 & 0 \end{bmatrix} \overset{1.25, 1.21}{=} \tilde{V}^\nu(y) - \tilde{V}^\nu(x)$$
Solution 1.9 (pp. 14): Local time derivative of $\phi^*(x,y)$

1. We have

$$\nu_F(F, G) \overset{1.11}{=} \nu_G(F, G) + \tilde{\omega}(F, G)I(F, G)$$ \hspace{1cm} (C.2)

Equation (1.39) follows from using the above in (1.40).

2. The latter equality in (1.42) is a direct application of the last identity in (1.34) to (1.39).

For the first equality, differentiate (1.41) and use the chain rule to get

$$\frac{d\phi^*(F, G)}{dt} \overset{1.41,1.12}{=} \begin{pmatrix} \tilde{\omega}(G,F) & 0_3 \\ 0_3 & \tilde{\omega}(G,F) \end{pmatrix} \phi^*(F, G) + \begin{pmatrix} G \mathcal{R}_F & 0_3 \\ 0_3 & G \mathcal{R}_F \end{pmatrix} \begin{pmatrix} 0_3 \\ -\tilde{\nu}_F(F, G) \end{pmatrix} \begin{pmatrix} 0_3 \\ 0_3 \end{pmatrix} \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix}$$

$$\overset{1.41}{=} \begin{pmatrix} \tilde{\omega}(G,F) & 0_3 \\ 0_3 & \tilde{\omega}(G,F) \end{pmatrix} \phi^*(F, G) + \begin{pmatrix} 0_3 \\ -\tilde{\nu}_F(F, G) \end{pmatrix} \begin{pmatrix} 0_3 \\ 0_3 \end{pmatrix} \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix}$$

$$\overset{1.41}{=} \begin{pmatrix} \tilde{\omega}(G,F) \\ \tilde{\nu}_F(F, G) \end{pmatrix} \begin{pmatrix} 0_3 \\ \tilde{\omega}(G,F) \end{pmatrix} \phi^*(F, G)$$

$$= \phi^*(G,F) \tilde{V}_F(G,F) \phi^*(F, G)$$

3. We have

$$\phi^*(G,F) \frac{d\phi^*(F, G)}{dt} \phi^*(G,F) \overset{1.42}{=} \phi^*(G,F) \tilde{V}_F(G,F) \phi^*(F, G) \phi^*(G,F)$$

$$= \phi^*(G,F) \tilde{V}_F(G,F) = -\phi^*(G,F) \tilde{V}_F(F,G)$$

This expression agrees with the one in (1.43) and establishes the result.
4. We have that
\[
\frac{d\phi^*(G, H)}{dt} \phi^*(F, G) + \phi^*(G, H) \frac{d\phi^*(F, G)}{dt} = 1.42 \tilde{V}_G(H, G) \phi^*(F, G) + \phi^*(G, H) \phi^*(F, G) \tilde{V}_G(G, F)
\]
\[
= \tilde{V}_G(H, G) \phi^*(F, H) + \phi^*(F, H) \tilde{V}_G(G, F)
\]
\[
= \left(\begin{array}{c}
\bar{\omega}(H, F) \\
\tilde{\nu}_G(H, G) - \bar{\omega}(H, G) \tilde{l}(F, H) + \tilde{\nu}_G(G, F) - \tilde{l}(F, H) \bar{\omega}(G, F)
\end{array} \right)
\]
\[
= \left(\begin{array}{c}
\bar{\omega}(H, F) \\
\tilde{\nu}_G(H, F) - \bar{\omega}(H, G) \tilde{l}(F, H) - \tilde{\nu}_G(G, F) - \tilde{l}(F, H) \bar{\omega}(G, F)
\end{array} \right)
\]
Using (C.2) in the lower left expression, for \(v_G(H, F) \) and simplifying we obtain
\[
\frac{d\phi^*(G, H)}{dt} \phi^*(F, G) + \phi^*(G, H) \frac{d\phi^*(F, G)}{dt} = \left(\begin{array}{c}
\bar{\omega}(H, F) \\
\tilde{\nu}_G(H, F) - \bar{\omega}(H, G) \tilde{l}(F, H) - \tilde{\nu}_G(G, F) - \tilde{l}(F, H) \bar{\omega}(G, F)
\end{array} \right) 1.42 \frac{d\phi^*(F, H)}{dt}
\]
establishing the result.

Solutions for Chapter 2

Solution 2.1 (pp. 19): Rigid body center of mass

We have \(l(x, a) = l(x, y) + l(y, a) \). Therefore,
\[
p(x) = \frac{1}{m} \int_{\Omega} l(x, a) \rho(a) d\theta(a)
\]
\[
= \frac{1}{m} \int_{\Omega} l(x, y) \rho(a) d\theta(a) + \frac{1}{m} \int_{\Omega} l(y, a) \rho(a) d\theta(a) = l(x, y) + p(y)
\]
Solution 2.2 (pp. 19): Parallel-axis theorem for rotational inertias

1. We have

\[J(x) = -\int_{\Omega} \tilde{I}(x, a) \tilde{l}(x, a) \rho(a) d\theta(a) \]

\[= -\int_{\Omega} \tilde{I}(x, C) \tilde{l}(x, C) \rho(a) d\theta(a) - \int_{\Omega} \tilde{I}(C, a) \tilde{l}(C, a) \rho(a) d\theta(a) \]

\[= \frac{2.8}{2} J(C) - m \tilde{p}(x) \tilde{p}(x) - m \tilde{l}(x, C) \tilde{p}(C) - m \tilde{p}(C) \tilde{l}(x, C) \]

The last step used the fact that \(p(C) = 0 \).

2. The symmetry of \(J(x) \) is easy to verify from its definition. Its positive semi-definiteness follows from the positive semi-definiteness of the integrand

\[-m \tilde{p}(x) \tilde{p}(x) = m [\tilde{p}(x)]^* \tilde{p}(x) \]

is always positive semi-definite implies that \(J(x) \geq J(C) \) for all points \(x \).

3. For \(J(x) \) to fail to be positive definite, there must exist a non-zero vector \(y \) such that \(y^* J(x) y = 0 \). That is,

\[0 = y^* J(x) y = -\int_{\Omega} y^* \tilde{l}(x, a) \tilde{l}(x, a) y \rho(a) d\theta(a) \]

\[= \int_{\Omega} z^*(a) z(a) \rho(a) d\theta(a) \text{ where } z(a) \triangleq \tilde{l}(x, a) y \]

The above integral can vanish in the following cases:

Point mass: Here \(\rho(a) = 0 \) for all \(l(x, a) \neq 0 \) and \(J(x) \equiv 0 \).

Infinitely thin rod along y: Here \(\rho(a) = 0 \) for all \(l(x, a) \neq ky \) for some scalar \(k \neq 0 \).

Solution 2.3 (pp. 20): Positive semi-definiteness of spatial inertias

\(J(C) \) being positive definite or positive semi-definite implies the same property for \(M(C) \). The same property also applies to \(M(x) = \phi(x, C) M(C) \phi^*(x, C) \) in (2.12) since \(\phi(x, y) \) is always non-singular.
Solution 2.4 (pp. 21): Invariance of the kinetic energy
From (2.12), we have
\[K_e = \frac{1}{2} V^*(x) M(x) V(x) \]
\[= \frac{1}{2} V^*(x) \phi(x, y) M(y) \phi^*(x, y) V(y) \]
\[= \frac{1}{2} V^*(y) M(y) V(y) \]

Since the points \(x \) and \(y \) are arbitrary, this establishes the invariance of the kinetic energy.

Solution 2.5 (pp. 22): Relationship of spatial momenta about points \(x \) and \(y \)
\[\mathfrak{h}(x) \]
\[= M(x) V(x) \]
\[= \phi(x, y) M(y) \phi^*(x, y) V(x) \]
\[= \phi(x, y) M(y) V(y) \]

Solution 2.6 (pp. 25): Time derivative of rigid body spatial inertia
We have
\[\dot{I} M(z) = \begin{pmatrix} \mathfrak{R}^B & 0 \\ 0 & \mathfrak{R}^B \end{pmatrix} B M(z) \begin{pmatrix} B \mathfrak{R} & 0 \\ 0 & B \mathfrak{R} \end{pmatrix} \]
Differentiating this equation while noting that \(B M \) is constant leads to:
\[\dot{M}(z) = \begin{pmatrix} \ddot{\omega} & 0 \\ 0 & \ddot{\omega} \end{pmatrix} B M(z) - M(z) \begin{pmatrix} \ddot{\omega} & 0 \\ 0 & \ddot{\omega} \end{pmatrix} \]
\[= \ddot{\omega} M(z) - M(z) \ddot{\omega} \]

Solution 2.7 (pp. 26): \(b_{\dot{z}}(C) \) gyroscopic spatial force does no work
We can verify that \(b_{\dot{z}}(z) \) does no work by taking its dot product with the spatial velocity vector to obtain:
\[V^*(C) b_{\dot{z}}(C) \]
\[= \begin{pmatrix} \omega^* \left(\ddot{\omega} \mathcal{J}(C) \omega \right) \\ 0 \end{pmatrix} = 0 \]
Solution 2.8 (pp. 27): Inertial generalized accelerations at two points

\[
\dot{\beta}_j(y) \triangleq \frac{d}{dt} \dot{\mathcal{V}}(y) = \frac{d}{dt} \left[\phi^*(x, y) \mathcal{V}(x) \right] = \phi^*(x, y) \dot{\beta}_j(x) + \frac{d}{dt} \left[\phi^*(x, y) \right] \beta_j(x)
\]

\[
\overset{1.37}{=} \phi^*(x, y) \dot{\beta}_j(x) + \left[-\ddot{\mathcal{V}}(y) + \ddot{\mathcal{V}}(x) \right] \mathcal{V}(x) = \phi^*(x, y) \dot{\beta}_j(x) + \left[\begin{array}{c} 0 \\ \tilde{\omega} [\mathcal{V}(y) - \mathcal{V}(x)] \end{array} \right]
\]

\[
\overset{1.15}{=} \phi^*(x, y) \dot{\beta}_j(x) + \left[\begin{array}{c} 0 \\ \tilde{\omega} \tilde{\omega} [\mathcal{V}(x)] \end{array} \right]
\]

Solution 2.9 (pp. 28): \(b_j(z) \) gyroscopic spatial force does work

We can verify that \(b_j(z) \) does work by taking its dot product with the spatial velocity vector as follows:

\[
\mathcal{V}^*(z) b_j(z) \overset{2.26}{=} \mathcal{V}^*(z) \dddot{\gamma}^\omega(z) M(z) \mathcal{V}^\omega(z)
\]

This expression is non-zero in general and hence, the gyroscopic force does work. Assuming that the spatial force is zero, i.e., \(f(z) \equiv 0 \), the time derivative of the kinetic energy of the body is:

\[
\frac{d\mathcal{K}_e}{dt} \overset{2.26, 2.22}{=} \frac{1}{2} \beta_j^*(z) M(z) \dot{\beta}_j(z) + \frac{1}{2} \beta_j^*(z) M(z) \beta_j(z) = \beta_j^*(z) M(z) \dot{\beta}_j(z) + \frac{1}{2} \beta_j^*(z) M(z) \beta_j(z)
\]

\[
\overset{2.26}{=} -m \mathcal{V}^*(z) \tilde{\omega} \tilde{\omega} \mathcal{V}(z) - m \mathcal{V}^* \tilde{\omega} \mathcal{V}(z) = 0
\]

This proves that the kinetic energy is conserved in the absence of external forces.

Solution 2.10 (pp. 28): Non-conservation of spatial momentum

For any point \(x \) on the rigid body, from (2.17), \(\mathcal{h}(x) = \phi(x, C) \mathcal{h}(C) \). Differentiating this equation with respect to time in the inertial frame leads to

\[
\frac{d}{dt} \mathcal{h}(x) = \frac{d}{dt} \phi(x, C) \mathcal{h}(C) + \phi(x, C) \frac{d}{dt} \mathcal{h}(C) \overset{2.21}{=} \frac{d}{dt} \phi(x, C) \mathcal{h}(C) + \phi(x, C) f(C)
\]

\[
\overset{1.15, 1.37}{=} \left[\begin{array}{c} m [\ddot{\mathcal{V}}(C) - \ddot{\mathcal{V}}(x)] \mathcal{V}(C) \\ 0 \end{array} \right] + f(x) = \left[\begin{array}{c} m \dddot{\mathcal{V}}(C) \mathcal{V}(x) \\ 0 \end{array} \right] + f(x)
\]

\[
= -\dddot{\mathcal{V}}(x) \mathcal{h}(C) + f(x)
\]

(C.3)
The $\nabla^V(x)\hat{h}(C)$ quantity vanishes if and only if either: (a) the point x coincides with C; (b) $v(C)$ or $v(x)$ is zero, i.e., the body is spinning about the $l(x,C)$ vector. This establishes (2.27).

Solution 2.11 (pp. 30): Equations of motion using spatial momentum

We have

$$\frac{d}{dt}\hat{h}(x) \overset{1.28}{=} \nabla^\omega(x)\hat{h}(x) + \frac{d}{dt}M(x)\hat{\beta}_{B}(x) = \nabla^\omega(x)\hat{h}(x) + \frac{d}{dt}M(x)\hat{\beta}_{B}(x)$$

Combining this with (C.3) leads to

$$J(x) = M(x)\dot{\hat{\beta}}_{B}(x) + \left[\nabla^\omega(x) + \nabla^V(x)\right]h(x) \overset{1.22}{=} M(x)\dot{\hat{\beta}}_{B}(x) + J(x)h(x)$$

This agrees with (2.28) and establishes the result.

Solution 2.12 (pp. 32): Invariance of V_I to velocity reference point

Now

$$\phi^*(x,\bar{\pi})V(x) \overset{1.33}{=} \phi^*(x,\bar{\pi})\phi^*(\bar{\pi},C)V(C) \overset{1.32}{=} \phi^*(\bar{\pi},C)V(C) \overset{2.30}{=} V_I$$

establishing (2.31).

Solution 2.13 (pp. 32): Time derivative of M_I

Differentiating (2.32) we have

$$\frac{d}{dt}M_I \overset{2.32}{=} \phi(\bar{\pi},C)\frac{d}{dt}M(C)\phi^*(\bar{\pi},C) + \frac{d}{dt}\phi(\bar{\pi},C)M(C)\phi^*(\bar{\pi},C)$$

$$+ \phi(\bar{\pi},C)M_I \frac{d}{dt}\phi^*(\bar{\pi},C) \overset{2.22,1.37}{=} \phi(\bar{\pi},C)\left[\nabla^\omega M(C) - M(C)\nabla^\omega\right]\phi^*(\bar{\pi},C)$$

$$+ \nabla^V(C)M(C)\phi^*(\bar{\pi},C) - \phi(\bar{\pi},C)M(C)\nabla^V(C)$$

However, from (1.36) we have

$$\nabla^V(C) = \phi(\bar{\pi},C)\nabla^V(C)$$
and obtain
\[
\frac{d_I M_{II}}{dt} = C^4 \phi(I, C) \left[\nabla^V(C) + \nabla^\omega(C) \right] M(C) \phi^*(I, C)
- \phi(I, C) M(C) \left[\nabla^V(C) + \nabla^\omega(C) \right] \phi^*(I, C)
\]
\[
\overset{1.25}{=} \phi(I, C) \nabla(C) M(C) \phi^*(I, C) - \phi(I, C) M(C) \tilde{V}(C) \phi^*(I, C)
\]
\[
\overset{1.35, 2.30}{=} \nabla_I \phi(I, C) M(C) \phi^*(I, C) - \phi(I, C) M(C) \phi^*(I, C) \tilde{V}_I
\]
\[
\overset{2.32}{=} \nabla_I M_{II} - M_{II} \tilde{V}_I
\]

Solution 2.14 (pp. 33): Equations of motion about a fixed velocity reference point

1. We have
\[
\frac{d_I h_{II}}{dt} = 2.34 \frac{d_I \phi(I, C)}{dt} h(C) + \phi(I, C) \frac{d_I h(C)}{dt}
\]
\[
\overset{2.21, 1.37}{=} \nabla^V(C) h(C) + \phi(I, C) f(C) \overset{2.35}{=} 0 + f_I = f_I
\]

The last equality above used the \(\nabla^V(C) h(C) = 0 \) identity.

2. From (2.36) we have
\[
f_I = 2.36 \frac{d_I h_{II}}{dt} = 2.34 \frac{d_I h_{II}}{dt} + \frac{d_I M_{II}}{dt} V_{II} \overset{2.33}{=} M_{II} \dot{\beta}_{II} - \nabla_I M_{II} V_{II}
\]

3. We can verify that \(b_I \) is non-working by taking its dot product with \(V_{II} \) and noting that \(V_{II} \nabla_I = 0 \). Recognizing that the kinetic energy can also be written as \(\frac{1}{2} \beta_{II}^T M_{II} \beta_{II} \) and differentiating it with respect to time leads to the conclusion that it is conserved in the absence of external forces.

Solutions for Chapter 3

Solution 3.1 (pp. 41): Hinge map matrix for a universal joint

The orientation of the second axis in a universal joint depends on the general coordinate of the first axis. The hinge map matrix for the universal joint is
\[
H^* = \begin{pmatrix}
1 & 0 \\
0 & \cos \theta_1 \\
0 & \sin \theta_1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\]
Solution 3.2 (pp. 41): Hinge map matrix for a sphere rolling on a surface

Let Δv denote the spatial velocity of the frame fixed to the center of the sphere. Also, let l denote the vector from the center of the sphere to the instantaneous point of contact. The orientation of this vector is constant in the inertial frame but is changing in the body frame. The zero linear velocity of the contact point translates to the following constraint expression:

$$\Delta v + \Delta \omega l = 0 \quad \Rightarrow \quad [-\tilde{l}, \ I_3] \Delta v = 0,$$

where $\Delta \omega$ and Δv are the angular and linear velocity components of Δv at the center of the sphere. This implicit 3-dimensional constraint implies that Δv must be of the following form:

$$\Delta v = [I_3 \tilde{l}] \beta$$

where $\beta \in \mathbb{R}^3$ is the vector of generalized velocities for this contact hinge. Thus, with $\beta = \Delta \omega$ as the generalized velocity coordinates, the hinge map matrix for the rolling contact is given by

$$H^* = [I_3 \tilde{l}] \in \mathbb{R}^{6 \times 3}$$

Solution 3.3 (pp. 46): Velocity recursion with $B_k \neq O_k$

In this context, the recursion in (3.19b) can be more precisely expressed as:

$$V(O_k) = \phi^*(O_{k+1}, O_k) V(O_{k+1}) + H^*(k) \dot{\theta}(k)$$

Now use the following versions of (3.20) and (3.23) in the equation above to establish the result:

$$V(k) \triangleq V(B_k) = \phi^*(O_k, B_k) V(O_k)$$

and

$$V(k+1) \triangleq V(B_{k+1}) = \phi^*(O_{k+1}, B_{k+1}) V(O_{k+1})$$

Solution 3.4 (pp. 47): Velocity recursion with inertially fixed reference point

We have

$$V[I](k) \overset{3.24}{=} \phi^*[O_k, I] V(O_k)$$

$$\overset{3.19b}{=} \phi^*[O_k, I] \{ \phi^*[O_{k+1}, O_k] V(O_{k+1}) + H^*(k) \beta(k) \}$$
C Solutions 425

\[\begin{align*}
\phi^*(\mathbb{O}_k,\mathbb{I})\{\phi^*(\mathbb{O}_{k+1},\mathbb{O}_k)\phi^*(\mathbb{O}_{k+1},\mathbb{I})\mathcal{V}_I((k+1)) + H^*(k)\beta(k)\} \\
\mathcal{V}_I(k+1) + H^*_I(k)\beta(k) \equiv \mathcal{V}_I(k+1) + \Delta^I_V(k)\beta(k)
\end{align*} \]

establishing (3.26).

Solution 3.5 (pp. 50): Internal structure of the \(\phi \) operator

Since \((I - E_\phi)\) is lower-triangular, and has identity matrices along the diagonal, the same holds true for its inverse, \(\phi \), as well establishing (3.37). Now, let us examine the lower-triangular component elements of the matrices on both sides of the operator identity:

\[\phi - E_\phi \phi = I \]

This identity implies that for \(i > j \),

\[\phi(i,j) - \phi(i,i-1)\phi(i-1,j) = 0 \Rightarrow \phi(i,j) = \phi(i,i-1)\phi(i-1,j) \]

Applying this next to \(\phi(i-1,j) \), and continuing on in this vein, leads to the first half of (3.38). Since the product of a sequence of rigid body transformation matrices is also a rigid body transformation matrix, the latter equality in (3.38) follows as well.

Solution 3.6 (pp. 51): The \(\tilde{\phi} \) spatial operator

1. For a matrix \(A \) such that \((I - A)\) is invertible, (A.17) on page 400 states that:

\[A(I - A)^{-1} = (I - A)^{-1}A = (I - A)^{-1} - I \]

(3.41) is a consequence of this identity with \(A = E_\phi \) and \(\phi = (I - E_\phi)^{-1} \).

2. From (3.15) it follows that

\[\mathcal{V}^+ \equiv E_\phi \mathcal{V} \equiv E_\phi^* \phi^* H^* \dot{\theta} \equiv \tilde{\phi}^* H^* \dot{\theta} \]

Solution 3.7 (pp. 53): Recursive evaluation of \(\tilde{\phi}x \) and \(\tilde{\phi}^*x \)

With \(y = \phi x \), we have \(\tilde{y} \triangleq \tilde{\phi}x = E_\phi y \). This implies that \(\tilde{y}(k) = \phi(k,k-1)y(k) \). Thus, the computational algorithm for \(\tilde{y} \) is the one in (3.43) except that the computational step in the loop is now given by

\[\tilde{y}(k) = \phi(k,k-1)[\tilde{y}(k-1) + x(k-1)] \]

with initial condition \(\tilde{y}(0) = 0 \).

Similarly, with \(y = \phi^*x \), we have \(\tilde{y} \triangleq \tilde{\phi}^*x = E_\phi^* y \). Thus,

\[\tilde{y}(k) = \phi^*(k+1,k)y(k+1) \]
Thus, the computational algorithm for \(\bar{y} \) is the same as in (3.45) except that the computational step within the loop has the form:

\[
\bar{y}(k) = \phi^*(k+1,k)[\bar{y}(k+1) + x(k+1)]
\]

with initial condition \(\bar{y}(n+1) = 0 \).

Solutions for Chapter 4

Solution 4.1 (pp. 63): System center of mass

1. The overall spatial inertia of the system referenced to the base-body frame is obtained by using the parallel axis theorem for spatial inertias to reference all the link spatial inertias to \(B_n \) and summing them up. That is,

\[
M_S = \sum_{k=1}^{n} \phi(n,k)M(k)\phi^*(n,k) = [\phi(n,1), \cdots \phi(n,n)]M \begin{bmatrix} \phi^*(n,1) \\ \vdots \\ \phi^*(n,n) \end{bmatrix}
\]

establishing the result. We have used the following facts in the above derivation:

\[E\phi^{3.37} = [\phi(n,1), \cdots \phi(n,n)] \quad \text{and} \quad \tilde{\phi}RE^* = 0 \quad (C.5) \]

2. The base-body frame referenced spatial momentum of the system is obtained by referencing the spatial momentum for each of the bodies to the \(B_n \) frame and summing them up. This leads to:

\[
\mathbf{h}_S \overset{2.17}{=} \sum_{k=1}^{n} \phi(n,k)\mathbf{h}(k) \overset{2.16}{=} \sum_{k=1}^{n} \phi(n,k)M(k)\mathbf{V}(k) \overset{C.5}{=} E\phi M\mathbf{V}
\]

\[
\overset{3.39}{=} E\phi M\phi^*H^*\dot{\theta} \overset{4.10}{=} E[R + \tilde{\phi}R + R\tilde{\phi}^*]H^*\dot{\theta} \overset{C.5}{=} E\phi RH^*\dot{\theta}
\]

For a free flying system, \(H^*(n) = I \) and \(\dot{\theta}(n) = \mathbf{V}(n) \), and hence \(\mathbf{h}_S \) can be re-expressed as

\[
\mathbf{h}_S = R(n)\mathbf{V}(n) + \sum_{k=1}^{n-1} \phi(n,k)R(k)H^*(k)\dot{\theta}(k)
\]

3. The system level spatial momentum \(\mathbf{h}_S \), the system level spatial inertia \(M_S \) and the center of mass velocity \(\mathbf{V}_C \) (referenced about \(B_n \)) are related together by
\[h_S = M_S V_C \overset{4.13}{=} R(n)V_C \]
(C.6)

4. For a free-flying system, we have,

\[V_C = R^{-1}(n) \left[R(n)V(n) + \sum_{k=1}^{n-1} \phi(n,k)R(k)H^*(k)\dot{\theta}(k) \right] \]

\[= V(n) + R^{-1}(n) \sum_{k=1}^{n-1} \phi(n,k)R(k)H^*(k)\dot{\theta}(k) \]

establishing (4.18).

From (4.16) it follows directly that adding \(\delta_V \) to the \(V(n) \) base-body spatial velocity will result in an additional \(R(n)\delta_V \) of spatial momentum system to the system. Now for the spatial momentum to be zero, we must have

\[0 = h_S + R(n)\delta_V \implies \delta_V = -R^{-1}(n)h_S \overset{C.6}{=} -V_C \]

Solution 4.2 (pp. 65): Trace of the mass matrix

From the decomposition of the mass matrix in (4.19), and noting that the trace of strictly lower- and upper-triangular matrices is zero, we have

\[\text{Trace} \{ M(\theta) \} = \text{Trace} \{ H\dot{R}H^* + H\ddot{\phi}R + HR\ddot{\phi}^*H^* \} \]

\[= \sum_{i=1}^{n} \text{Trace} \{ H(k)R(k)H^*(k) \} \]

In the above we have used the zero trace property of \(H\ddot{\phi}R \) which is a consequence of its strictly lower-triangular structure.

Solution 4.3 (pp. 68): The \(M_D(\theta, \dot{\theta}) \) matrix

1. We have

\[M_D^*\dot{\theta} = \nabla_\theta (M(\dot{\theta}))^*\dot{\theta} \overset{A.24}{=} \left[\frac{\partial M(\dot{\theta})}{\partial \theta(1)} \right]' \cdots \left[\frac{\partial M(\dot{\theta})}{\partial \theta(n)} \right]' \dot{\theta} \]

\[= \begin{bmatrix} \frac{\partial \dot{\theta}_1^* M}{\partial \theta(1)} \\ \vdots \\ \frac{\partial \dot{\theta}_n^* M}{\partial \theta(n)} \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{\partial \hat{\theta}_1^* M}{\partial \theta(1)} \\ \vdots \\ \frac{\partial \hat{\theta}_n^* M}{\partial \theta(n)} \end{bmatrix} \overset{A.27}{=} \frac{\partial}{\partial \dot{\theta}} (\dot{\theta}^* M \dot{\theta}) \]
2. \[M_D(\theta, \dot{\theta}) \dot{\theta}^{4.29} = \left[\frac{\partial M}{\partial \theta(1)} \dot{\theta}, \ldots, \frac{\partial M}{\partial \theta(n)} \dot{\theta} \right]^* \dot{\theta} = \sum_{k=1}^{N} \frac{\partial M}{\partial \theta(k)} \dot{\theta}(k) \]
\[= \left[\sum_{k=1}^{N} \frac{\partial M}{\partial \theta(k)} \dot{\theta}(k) \right] \dot{\theta} = \mathcal{N}(\theta) \dot{\theta} \]

Solution 4.4 (pp. 68): \(\mathcal{N} \dot{\theta} - 2\mathcal{C} \) is a non-working force

1. Equation (4.33) follows from combining (4.31) and (4.32).
2. The work done by a generalized force is given by its dot product with the \(\dot{\theta} \) generalized velocities vector. Thus, the work done by \(\mathcal{N} \dot{\theta} - 2\mathcal{C} \) is given by
\[\dot{\theta}^* \left[\mathcal{N} \dot{\theta} - 2\mathcal{C} \right]^{4.33} \dot{\theta}^* (M_D^* - M_D) \dot{\theta} = 0 \]

The last equality follows since \((M_D^* - M_D)\) is skew-symmetric.
3. The work done by the \(\mathcal{C} \) Coriolis generalized forces vector is given by
\[\dot{\theta}^* \mathcal{C}(\theta, \dot{\theta})^{4.32} \dot{\theta}^* \left[M_D - \frac{1}{2} M_D \right] \dot{\theta} = \frac{1}{2} \dot{\theta}^* M_D \dot{\theta} \]

Since \(M_D \) is not skew-symmetric, the work done by \(\mathcal{C} \) is non-zero in general.

Solution 4.5 (pp. 68): Rate of change of the kinetic energy

\[\frac{d\mathcal{K}_e}{dt}^{4.25} = \dot{\theta}^* \mathcal{M} \dot{\theta} + \frac{1}{2} \dot{\theta}^* \mathcal{M} \dot{\theta} \]
\[= \dot{\theta}^* \left[\mathcal{J} - (M_D - \frac{1}{2} M_D^*) \dot{\theta} + \frac{1}{2} M_D \dot{\theta} \right]^{4.32} \dot{\theta}^* \left[\mathcal{J} - \frac{1}{2} (M_D - M_D^*) \dot{\theta} \right] \dot{\theta} = \dot{\theta}^* \mathcal{J} \]

The last step follows since \((M_D - M_D^*)\) is skew-symmetric.

Solution 4.6 (pp. 69): Christoffel symbols of the first kind

1. The identities in (4.36) follow from simply comparing the definitions of \(\mathcal{C}_i(j, k) \), \(\mathcal{C}_i(k, j) \) and \(\mathcal{C}_i(i, k) \).

For (4.37),
\[\mathcal{C}_j(i,k) + \mathcal{C}_k(j,i) = 4.35 \frac{1}{2} \left[\frac{\partial M(i,j)}{\partial \theta(k)} + \frac{\partial M(j,k)}{\partial \theta(i)} - \frac{\partial M(i,k)}{\partial \theta(j)} \right] + 4.35 \frac{1}{2} \left[\frac{\partial M(k,j)}{\partial \theta(i)} + \frac{\partial M(j,k)}{\partial \theta(j)} - \frac{\partial M(k,i)}{\partial \theta(k)} \right] \]

When the mass matrix is symmetric, the above expression simplifies to \(\frac{\partial M(j,i)}{\partial \theta(i)} \).

2. For multibody systems, the mass matrix is symmetric, and also \(\frac{\partial M(i,k)}{\partial \theta(j)} = 0 \) for \(j \geq i,k \), as discussed in Remark 4.1. Using these properties in the definition of the left- and right-hand sides of the identities in (4.38) establishes the identities. Moreover, since \(\mathcal{C}_i(j,k) \) depends only upon \(M(i,j), \ M(i,k) \) and \(M(j,k) \), and these terms depend only upon \(\theta(l) \) for \(l < \max(i,j,k) \), this implies that \(\mathcal{C}_i(j,k) \) depends only upon \(\theta(l) \) for \(l < \max(i,j,k) \).

3. We have

\[\mathcal{C}(i) = 4.27 \left\{ M(\theta)\hat{\theta} - \frac{1}{2} \frac{\partial}{\partial \theta} \left[\hat{\theta}^T M(\theta) \hat{\theta} \right] \right\}(i) = \sum_{k=1}^{N} M(i,k) \hat{\theta}(k) - \frac{1}{2} \hat{\theta} \frac{\partial M}{\partial \theta(i)} \hat{\theta} \]

\[= \sum_{j,k=1}^{N} \frac{\partial M(i,k)}{\partial \theta(j)} \hat{\theta}(j) \hat{\theta}(k) - \frac{1}{2} \sum_{j,k=1}^{N} \frac{\partial M(j,k)}{\partial \theta(i)} \hat{\theta}(j) \hat{\theta}(k) \]

\[= \sum_{j,k=1}^{N} \left[\frac{\partial M(i,k)}{\partial \theta(j)} - \frac{1}{2} \frac{\partial M(j,k)}{\partial \theta(i)} \right] \hat{\theta}(j) \hat{\theta}(k) \]

\[= \sum_{j,k=1}^{N} \frac{1}{2} \left[\frac{\partial M(i,k)}{\partial \theta(j)} + \frac{\partial M(i,k)}{\partial \theta(j)} - \frac{1}{2} \frac{\partial M(j,k)}{\partial \theta(k)} \right] \hat{\theta}(j) \hat{\theta}(k) \]

\[= 4.35 \sum_{j,k=1}^{N} \mathcal{C}_i(j,k) \hat{\theta}(j) \hat{\theta}(k) = \hat{\theta}^T \mathcal{C}_i \hat{\theta} \]

4. We have

\[M_D(i,j) = 4.29 \frac{\partial [M(\hat{\theta})]}{\partial \theta(j)} = \sum_{k=1}^{N} \frac{\partial M(i,k)}{\partial \theta(j)} \hat{\theta}(k) = 4.37 \sum_{k=1}^{N} \left[\mathcal{C}_i(j,k) + \mathcal{C}_k(j,i) \right] \hat{\theta}(k) \]

Solution 4.7 (pp. 70): Hamiltonian form of the equations of motion

We have

\[\frac{\partial \mathcal{H}}{\partial p} = 4.42 \mathcal{M}^{-1} p = 4.28 \hat{\theta} \]
This establishes the first expression in (4.43). Also,

\[
\frac{\partial \mathcal{H}}{\partial \theta} = \frac{1}{2} \text{col} \left\{ p^* \frac{\partial \mathcal{M}^{-1}}{\partial \mathcal{O}(k)} p \right\}_{k=1}^N \tag{4.42.A.28} = -\frac{1}{2} \text{col} \left\{ p^* \mathcal{M}^{-1} \frac{\partial \mathcal{M}}{\partial \mathcal{O}(k)} \mathcal{M}^{-1} p \right\}_{k=1}^N
\]

\[
= -\frac{1}{2} \text{col} \left\{ \hat{\mathcal{M}} \hat{\mathcal{O}} \right\}_{k=1}^N \tag{4.28} = -\frac{1}{2} \hat{\mathcal{M}} \hat{\mathcal{O}} + \mathcal{C}
\]

This establishes the latter expression in (4.43).

Solution 4.8 (pp. 71): Lagrangian equations of motion using quasi-velocities

We have

\[
\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \overset{\text{A.27}}{=} [\nabla_{\dot{\theta}} \mathcal{L}]^* \overset{\text{A.26}}{=} [\nabla_{\beta} \dot{\mathcal{L}} \cdot \nabla_{\theta} \beta]^* = [\nabla_{\beta} \dot{\mathcal{L}} \cdot A]^* \overset{\text{A.27}}{=} A^* (\theta) \frac{\partial \dot{\mathcal{L}}}{\partial \beta} \tag{C.7}
\]

Therefore, differentiating this with respect to t we have

\[
\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \theta} \overset{\text{C.7}}{=} \dot{A}^* \left[\frac{d}{dt} \frac{\partial \dot{\mathcal{L}}}{\partial \beta} \right] + \ddot{A}^* \frac{\partial \dot{\mathcal{L}}}{\partial \beta} \tag{C.8}
\]

Similarly,

\[
\frac{\partial \mathcal{L}}{\partial \theta} \overset{\text{A.27}}{=} [\nabla_{\theta} \mathcal{L}]^* \overset{\text{A.26}}{=} [\nabla_{\beta} \dot{\mathcal{L}} \cdot \nabla_{\theta} \beta + \nabla_{\theta} \dot{\mathcal{L}}]^* \overset{\text{A.27}}{=} \frac{\partial \beta}{\partial \theta} \frac{\partial \dot{\mathcal{L}}}{\partial \beta} + \frac{\partial \dot{\mathcal{L}}}{\partial \theta} \tag{C.9}
\]

Combining (C.8) and (C.9) it follows that

\[
\tau \overset{\text{A.24}}{=} \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \theta} - \frac{\partial \mathcal{L}}{\partial \theta} = A^* \left(\frac{d}{dt} \frac{\partial \dot{\mathcal{L}}}{\partial \beta} \right) - \frac{\partial \dot{\mathcal{L}}}{\partial \theta} + \left[\ddot{A}^* - \frac{\partial \beta}{\partial \theta} \right] \frac{\partial \dot{\mathcal{L}}}{\partial \beta}
\]

\[
= A^* \left(\frac{d}{dt} \frac{\partial \dot{\mathcal{L}}}{\partial \beta} \right) - \frac{\partial \dot{\mathcal{L}}}{\partial \theta} + \gamma^* \frac{\partial \dot{\mathcal{L}}}{\partial \beta}
\]

and therefore

\[
\dot{A} (\theta) = \sum_{i=1}^{\mathcal{N}} \frac{\partial A}{\partial \mathcal{O}(k)} \dot{\mathcal{O}}(k) \quad \text{and} \quad \frac{\partial \beta}{\partial \theta} = \frac{\partial \dot{A}}{\partial \theta}
\]

establishing (4.44). Now observe that

\[
\dot{\mathcal{A}} (\theta) = \sum_{i=1}^{\mathcal{N}} \frac{\partial \dot{A}}{\partial \mathcal{O}(k)} \dot{\mathcal{O}}(k) \quad \text{and} \quad \frac{\partial \beta}{\partial \theta} = \frac{\partial \dot{A}}{\partial \theta}
\]

(C.10)
Thus,
\[\gamma(i, j) = \dot{A}(i, j) - \frac{\partial \beta(i)}{\partial \theta(j)} = \sum_{k=1}^{n} \frac{\partial A(i, j)}{\partial \theta(k)} \dot{\theta}(k) - \frac{\partial}{\partial \theta(j)} \sum_{k=1}^{n} A(i, k) \dot{\theta}(k) \]
\[= \sum_{k=1}^{n} \left(\frac{\partial A(i, j)}{\partial \theta(k)} - \frac{\partial A(i, k)}{\partial \theta(j)} \right) \dot{\theta}(k) \]
This establishes (4.46).

Solution 4.9 (pp. 72): Lagrangian equations of motion under coordinate transformations

Since \(\eta = h(\theta) \), therefore
\[\dot{\eta} = A(\theta) \dot{\theta} \]
Thus, \(A(i, j) = \frac{\partial h(i)}{\partial \theta(j)} \) and
\[\frac{\partial A(i, j)}{\partial \theta(k)} = \frac{\partial A(i, k)}{\partial \theta(j)} = \frac{\partial^2 h(i)}{\partial \theta(j) \partial \theta(k)} \]
Therefore, the (4.46) expression for the \(\gamma(i, j) \) elements are zero. Hence, \(\gamma = 0 \).

Solution 4.10 (pp. 72): Non-working \(\hat{\beta} - 2 \hat{C} \) generalized force

We have
\[\beta^* A^{-1} \frac{\partial \mathcal{L}}{\partial \theta} = \dot{\theta}^* \frac{\partial \mathcal{L}}{\partial \theta} = \frac{1}{2} \dot{\theta}^* [\nabla_\theta \beta^* \mathcal{M}(\theta) \beta] = \frac{1}{2} [\nabla_\theta \beta^* \mathcal{M}(\theta) \beta] \dot{\theta} \]
\[= \frac{1}{2} \beta^* \mathcal{M}(\theta) \beta \]
Also,
\[\gamma A^{-1} \beta = \gamma \dot{\theta}^* 4.48 = 0 \]
Therefore
\[\beta^* (\hat{\beta} - 2 \hat{C}) = 4.50 \beta^* \left(-\hat{\mathcal{M}} \beta + 2A^{-1} \frac{\partial \mathcal{L}}{\partial \theta} - 2A^{-1} \gamma^* \frac{\partial \mathcal{L}}{\partial \beta} \right) \]
\[\overset{C.11,C.12}{=} -\beta^* \hat{\mathcal{M}} \beta + \beta^* \hat{\mathcal{M}} \beta - 0 = 0 \]
Solution 4.11 (pp. 73): Nonlinear diagonalizing coordinate transformations

1. (4.49) on page 72 describes the effect of a coordinate transformation upon the Lagrangian equations of motion which in the \((\eta, \dot{\eta})\) coordinates are given by

\[
\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\eta}} - \frac{\partial \mathcal{L}}{\partial \eta} = A^{-*}J
\]

(C.13)

Since \(\mathcal{M}(\theta) = A^*(\theta)A(\theta)\), this means that

\[
\mathcal{R}_e = \mathcal{L}(\theta, \dot{\theta}) = \dot{\mathcal{L}}(\eta, \dot{\eta}) = \frac{1}{2} \eta^* \dot{\eta} \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial \eta} = 0
\]

(C.14)

Using these in (C.13) leads to

\[\dot{\eta} = A^{-*}J = \zeta\]

establishing (4.51).

2. This time

\[
\mathcal{R}_e = \dot{\mathcal{L}}(\theta, \beta) = \frac{1}{2} \beta^* \beta \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial \theta} = 0
\]

(C.15)

Since \(\beta\) are now quasi-velocities, the appropriate Lagrangian equations of motion are those in (4.44) and using (C.15) take the form:

\[\dot{\beta} = A^{-*}\gamma^* \beta = \zeta\]

and the result follows.

3. From Exercise 4.10 we have

\[0 = \beta^* (\dot{\mathcal{M}} \beta - 2 \mathcal{C}) = -2 \beta^* \mathcal{C}\]

The above uses the fact that \(\mathcal{M}\) is the constant identity matrix. This implies that the \(\mathcal{C}(\theta, \beta)\) Coriolis forces vector do no work.

Solutions for Chapter 5

Solution 5.1 (pp. 79): \(a(k)\) for helical & cylindrical hinges

The hinge map matrix for a helical hinge with axis \(h_\omega(k)\) and pitch \(p\) has the form

\[
H^*(k) = \begin{bmatrix} h_\omega(k) \\ ph_\omega(k) \end{bmatrix} \implies \Delta_V(k) = \begin{bmatrix} \Delta_\omega(k) \\ p\Delta_\omega(k) \end{bmatrix}
\]
Thus,
\[a(k) \stackrel{5.12}{=} - \begin{bmatrix} \tilde{\Delta}_\omega(k)\omega(k) \\ \Delta_\omega(k)[v(k) + p\omega(k)] \end{bmatrix} \]

For a cylindrical hinge with axis \(h_\omega(k) \), the axis of rotation and translation are the same. For this case
\[H^*(k) = \begin{pmatrix} h_\omega(k) & 0 \\ 0 & h_\omega(k) \end{pmatrix} \implies \Delta_V(k) = \begin{bmatrix} \Delta_\omega(k) \\ \Delta_V(k) \end{bmatrix} = \begin{bmatrix} h_\omega(k)\dot{\theta}_1(k) \\ h_\omega(k)\dot{\theta}_2(k) \end{bmatrix} \]

Thus,
\[a(k) \stackrel{5.15}{=} - \begin{bmatrix} \tilde{\Delta}_\omega(k)\omega(k) \\ \Delta_\omega(k)v(k) + \Delta_V(k)\omega(k) \end{bmatrix} \]

Solution 5.2 (pp. 80): \(a_B(k) \) with body frame derivatives but \(\mathbb{B}_k \neq \mathbb{O}_k \)

Since the reference for the \(k \)th body does not coincide with \(\mathbb{O}_k \), we have from (3.20) that
\[V(k) \triangleq V(\mathbb{B}_k) = \phi^*(\mathbb{O}_k, \mathbb{B}_k)V(\mathbb{O}_k) \quad (C.16) \]
and the spatial acceleration \(\alpha_B(k) \) is defined as
\[\alpha_B(k) \triangleq \frac{d_k V(\mathbb{O}_k)}{dt} \]

Differentiating (C.16) with respect to the \(k \)th body frame and noting that \(\phi^*(\mathbb{O}_k, \mathbb{B}_k) \) is constant in the \(k \)th body frame, we have
\[\alpha_B(k) \stackrel{C.16}{=} \phi^*(\mathbb{O}_k, \mathbb{B}_k)\frac{d_k V(\mathbb{O}_k)}{dt} = \phi^*(\mathbb{O}_k, \mathbb{B}_k)\alpha(k) \]
\[\stackrel{5.8}{=} \phi^*(\mathbb{O}_k, \mathbb{B}_k)\left\{ \phi^*(\mathbb{O}_{k+1}, \mathbb{O}_k)\phi^*(\mathbb{B}_{k+1}, \mathbb{O}_{k+1})\alpha_B(k+1) \\ + H^*(k)\ddot{\theta}(k) + a(k) \right\} \]
\[= \phi^*(\mathbb{B}_{k+1}, \mathbb{B}_k)\alpha_B(k+1) + \phi^*(\mathbb{O}_k, \mathbb{B}_k)H^*(k)\ddot{\theta}(k) + \phi^*(\mathbb{O}_k, \mathbb{B}_k)a(k) \quad (3.22) \]

This establishes (5.18). Note further that
\[\phi^*(\mathbb{O}_k, \mathbb{B}_k)\ddot{V}(\mathbb{O}_k)\Delta_V(k) \stackrel{1.35,C.16}{=} \ddot{V}(k)\phi^*(\mathbb{O}_k, \mathbb{B}_k)\Delta_V(k) \quad (C.17) \]
and that
\[\phi^*(\mathbb{O}_k, k)\overline{\Delta}_\omega(k)\Delta_V(k) = \phi^*(\mathbb{O}_k, k)\begin{bmatrix} 0 \\ \tilde{\Delta}_\omega(k)\Delta_V(k) \end{bmatrix} = \begin{bmatrix} 0 \\ \tilde{\Delta}_\omega(k)\Delta_V(k) \end{bmatrix} \]
\[= \begin{bmatrix} 0 \\ \tilde{\Delta}_\omega(k)\Delta_V(k) \end{bmatrix} = \overline{\Delta}_\omega(k)\Delta_V(k) \quad (C.18) \]
Thus (5.18) can be re-expressed as:

\[a_B(k) \overset{C.17,C.18,3.22}{=} \tilde{\omega}(k) \Delta_B(k) - \Delta_V(k) \Delta_V k + \phi^*(\Omega, k) \frac{d_{k+1} H^*(k)}{dt} \dot{\theta}(k) \]

This establishes (5.18).

Solution 5.3 (pp. 81): a_J(k) with inertial frame derivatives

Differentiating (5.6) with respect to the inertial frame \(I \), we obtain

\[a_J(k) \triangleq \frac{d_I \mathcal{V}(k)}{dt} \overset{1.28}{=} \alpha(k) + \tilde{\omega}(k) \mathcal{V}(k) \overset{1.36}{=} \alpha(k) + \mathcal{V}(k) \mathcal{V}(k) \tag{C.19} \]

Using (C.19) in (5.8) we have

\[a_J(k) = \phi^*(k+1, k) a_J(k+1) + H^*(k) \dot{\theta}(k) + a_J(k) \tag{C.20} \]

where the velocity dependent Coriolis acceleration term, \(a_J(k) \), is given by

\[a_J(k) \triangleq a(k) + \mathcal{V}(k) \mathcal{V}(k) - \mathcal{V}(k+1) \mathcal{V}(k+1) \]

This establishes the first equality in (5.19).

For the latter equality in (5.19), we have

\[a(k) + \mathcal{V}(k) \mathcal{V}(k) - \mathcal{V}(k+1) \mathcal{V}(k+1) \]

\[\overset{5.11}{=} \tilde{\omega}(k) \Delta_V(k) - \Delta_V(k) \Delta_V(k) + \frac{d_{k+1} H^*(k)}{dt} \dot{\theta}(k) \]

\[+ \mathcal{V}(k) \mathcal{V}(k) - \mathcal{V}(k+1) \mathcal{V}(k+1) \tag{C.21} \]

The individual terms in (C.21) can be re-expressed as follows:

\[\tilde{\omega}(k) \Delta_V(k) = \left[\tilde{\omega}(k) + \tilde{\omega}(k) \right] \Delta_V(k) \overset{1.36}{=} \tilde{\omega}(k) \Delta_V(k) + \tilde{\omega}(k) \Delta_V(k) \]

\[\overset{1.36}{=} \left[\tilde{\omega}(k) + \tilde{\omega}(k) \right] \Delta_V(k) + \tilde{\omega}(k) \Delta_V(k) \]

\[= \tilde{\omega}(k+1) \Delta_V(k) + \tilde{\omega}(k) \Delta_V(k) - \tilde{\omega}(k) \Delta_V(k) \]

\[= \tilde{\omega}(k+1) \Delta_V(k) + \tilde{\omega}(k) \Delta_V(k) \]

\[= \tilde{\omega}(k+1) \Delta_V(k) \]

\[\mathcal{V}(k) \mathcal{V}(k) = \tilde{\omega}(k+1) \mathcal{V}(k) = \left[\tilde{\omega}(k+1) + \tilde{\omega}(k) \right] \mathcal{V}(k) \]

\[\mathcal{V}(k+1) \mathcal{V}(k+1) \overset{1.36}{=} \tilde{\omega}(k+1) \mathcal{V}(k+1) \]

Substituting the above expressions into (C.21) and simplifying we obtain the latter equality in (5.19).

Equation (5.20a) is a component-level expansion of the first equality in (5.19).
The top angular half of (5.20b) is a simple carryover from \(a(k)\). For the lower linear half, observe from (5.12) and (5.20a) that

\[-\Delta_\nu (k) \nu(k+1) - \Delta_\omega (k) \nu(k) + \nu(k) - \nu(k+1) \omega(k+1) = \nu(k) - \nu(k+1) + \Delta_\nu (k)\]

Solution 5.4 (pp. 88): Inclusion of gravitational forces

1. The application of a pseudo-acceleration \(g\) at the base-body results in the following altered version of the expression for \(\alpha\) in (5.22):

\[\bar{\alpha} = \mathcal{E}_\phi \bar{\alpha} + H^* \ddot{\theta} + \alpha + E^* g\]

Using (3.36), we then obtain

\[\bar{\alpha} = \phi^* [H^* \ddot{\theta} + \alpha + E^* g]\]

Thus, the effect of the pseudo-acceleration can be handled by replacing \(a\) by \(a + E^* g\). This leads to the Coriolis forces vector expression in (5.39).

2. Adding the additional gravitational force leads to the following body level equations of motion:

\[f(k) = \phi(k, k-1) f(k-1) + M(k) \alpha(k) + b(k) + M(k) g\]

This in turn leads to the following altered expression for \(f\) in (5.22):

\[f = \mathcal{E}_\phi f + M[\alpha + E^* g] + b \Rightarrow f = \phi [M[\alpha + E^* g] + b]\]

Using this expression for \(f\) with the rest of the expressions in (5.23) leads to (5.40).

3. We have that

\[\phi^* E^* g = \text{col} \left\{ \phi^*(n, k) g \right\}_{k=1}^n\]

However, since \(g\) is a purely linear acceleration, \(\phi^*(n, k) g = g\). Hence, the above equation simplifies to \(E^* g\) and establishes (5.41).
Solution 5.5 (pp. 92): Inverse dynamics using composite body inertias

1. \[f = \phi \left[M \phi^*(H^* \dot{\theta} + a) + b \right] \]
\[= \phi \left[H^* \dot{\theta} + a \right] \]

establishing (5.44).

2. Define \[y^+ \triangleq y + R(H^* \ddot{\theta} + a) \]
\[= \phi b + \phi R(H^* \ddot{\theta} + a) + R(H^* \ddot{\theta} + a) = \phi[b + R(H^* \ddot{\theta} + a)] \]

Thus \[E \phi y^+ \overset{\text{C.22}}{=} \phi[b + R(H^* \ddot{\theta} + a)] \]
\[= y - b \Rightarrow y = E \phi y^+ + b \]

The first expression in the (5.45) recursion is a component level expression of the above. The second expression follows from the \[y^+ = y + R(H^* \ddot{\theta} + a) \] definition of \[y^+ \].

Solution 5.6 (pp. 94): Expression for \(H^*_i(k) \)

\[\frac{d_i H^*_i(k)}{dt} = \frac{d_i \phi^*(\phi^* + \phi^* \phi)}{dt} H^*(k) + \phi^*(\phi^* + \phi^* \phi) \]
\[= \phi^*(\phi^* + \phi^* \phi) \left(\tilde{\gamma}^v(k) H^*(k) + \tilde{\gamma}^\omega(k) H^*(k) + \frac{d_{k+1} H^*(k)}{dt} \right) \]
\[= \phi^*(\phi^* + \phi^* \phi) \left(\tilde{\gamma}_i(k) H^*(k) + \frac{d_{k+1} H^*(k)}{dt} \right) \]

Solutions for Chapter 6

Solution 6.1 (pp. 102): Properties of the $\tau(k)$ and $\tau^*(k)$ projection matrices

1. We have

\[\tau(k) \cdot \tau(k) \overset{6.16}{=} \mathcal{G}(k)H(k)\mathcal{G}(k) \overset{6.14}{=} \mathcal{G}(k)H(k) = \tau(k) \]

This implies that $\tau(k)$ is a projection operator. Since $\tau(k)$ is a projection operator, it follows directly that so are $\tau^*(k) = I - \tau(k)$ and their transposes.

2. These identities follow by using (6.14) and the definitions in (6.16).

Solution 6.2 (pp. 104): The $\mathcal{G}(k)$ Kalman gain and the link spatial acceleration

We have

\[\mathcal{G}^*(k)\alpha(k) \overset{6.15}{=} \mathcal{G}^*\tau^*(k)\alpha(k) + \overset{6.18}{=} 0. \]

Solution 6.3 (pp. 105): Properties of $\mathcal{P}^+(k)$

1. We have

\[\mathcal{P}^+(k) \overset{6.24}{=} \mathcal{P}(k)\tau^*(k) \overset{6.16}{=} \mathcal{P}(k)\left[I - H^*(k)\mathcal{G}^*(k)\right] \]

\[\overset{6.13}{=} \mathcal{P}(k) - \mathcal{P}(k)H^*(k)D^{-1}(k)H(k)\mathcal{P}(k) \]

\[= \left[I - \mathcal{P}(k)H^*(k)D^{-1}(k)H(k)\right]\mathcal{P}(k) \overset{6.13}{=} \mathcal{P}(k)\mathcal{P}(k) \]

That is,

\[\mathcal{P}^+(k) = \mathcal{P}(k)\tau^*(k) = \tau(k)\mathcal{P}(k) \]

(C.23)

Thus

\[\tau(k)\mathcal{P}(k)\tau^*(k) \overset{C.23}{=} \mathcal{P}(k)[\tau^*(k)]^2 = \mathcal{P}(k)\tau^*(k) \]

2. We have

\[H(k)\mathcal{P}^+(k) \overset{6.25}{=} H(k)\tau(k)\mathcal{P}(k) \overset{6.18}{=} 0. \]

The latter equality is obtained by transposing this equality and using the symmetry of $\mathcal{P}^+(k)$.
Solution 6.4 (pp. 107): Ordering of $\mathcal{R}(k)$, $\mathcal{P}(k)$ and $\mathcal{M}(k)$

We have

$$\mathcal{P}^+(k) \overset{6.28}{=} \mathcal{P}(k) - \tau(k)\mathcal{P}(k)\tau^*(k)$$

Since $\tau(k)\mathcal{P}(k)\tau^*(k) \geq 0$ this implies that $\mathcal{P}(k) \geq \mathcal{P}^+(k)$.

$\mathcal{P}(k) \geq \mathcal{M}(k)$ follows from (6.28).

For link 1, $\mathcal{R}(1) = \mathcal{P}(1) = \mathcal{M}(1)$, and hence $\mathcal{R}(1) \geq \mathcal{P}(1)$. Now we prove that if $\mathcal{R}(k) \geq \mathcal{P}(k)$ then necessarily $\mathcal{R}(k+1) \geq \mathcal{P}(k+1)$. For this, observe that $\mathcal{R}(k) \geq \mathcal{P}(k)$ implies that $\mathcal{R}(k) \geq \mathcal{P}(k+1)$. Then comparing (4.8) on page 60 with (6.28) implies that $\mathcal{R}(k+1) \geq \mathcal{P}(k+1)$.

Solution 6.5 (pp. 111): Relationship of $\nu(k)$ to $\alpha(k)$

$$\mathcal{S}^*(k)\alpha(k) \overset{6.43}{=} \mathcal{S}^*(k)[\psi^*(k+1,k)\alpha(k+1) + H^*(k)\nu(k)]$$

$$= \mathcal{S}^*(k)\overline{\pi}^*(k)\phi^*(k+1,k)\alpha(k+1) + \mathcal{S}^*(k)H^*(k)\nu(k) \overset{6.18,6.14}{=} \nu(k)$$

Solutions for Chapter 7

Solution 7.1 (pp. 121): Decomposition of $\phi\mathcal{M}\phi^*$ using \mathcal{P}

1. Equation (7.7) on page 117 states that $\mathcal{M} = \mathcal{P} - \mathcal{E}_\phi\mathcal{P}\mathcal{E}^*_\phi$. Pre and post multiplying this equation by ϕ and ψ^*, respectively leads to

$$\phi\mathcal{M}\psi^* \overset{3.41,7.8}{=} \phi\mathcal{P}\psi^* - \tilde{\phi}\tilde{\mathcal{P}}\psi^* = (\tilde{\phi} + I)\mathcal{P}(\psi^* + I) - \tilde{\phi}\tilde{\mathcal{P}}\psi^*$$

and the result follows.

2. We have

$$\phi\mathcal{M}\phi^* = (\phi\psi^{-1})\psi\mathcal{M}\phi^* \overset{7.15}{=} (\phi\psi^{-1})[\psi\mathcal{P} + \tilde{\mathcal{P}}\phi^*] \overset{7.11}{=} \phi\mathcal{P} + [I + \phi\mathcal{K}\mathcal{H}]\tilde{\mathcal{P}}\phi^* = \tilde{\mathcal{P}} + \tilde{\phi}\mathcal{P} + \tilde{\mathcal{P}}\phi^* + \phi\mathcal{K}\mathcal{H}\mathcal{E}^*_\phi\phi^*$$

$$\overset{6.13}{=} \mathcal{P} + \tilde{\phi}\mathcal{P} + \tilde{\mathcal{P}}\phi^* + \phi\mathcal{K}\mathcal{D}\mathcal{G}^*_\phi\phi^* \overset{6.36}{=} \mathcal{P} + \tilde{\mathcal{P}}\phi^* + \phi\mathcal{K}\mathcal{D}\mathcal{G}^*_\phi\phi^*$$

3. From (4.10) on page 61 it follows that \mathcal{R} forms the diagonal part of $\phi\mathcal{M}\phi^*$, while (7.16) shows that its diagonal part is given by \mathcal{P} plus the positive semi-definite diagonal part of $\phi\mathcal{K}\mathcal{D}\mathcal{G}^*_\phi\phi^*$. This establishes that $\mathcal{R} \geq \mathcal{P}$.

Solution 7.2 (pp. 125): Expression relating \(z \) and \(z^+ \)

1. We have

\[
\epsilon \overset{7.25b}{=} [I - H\psi \mathcal{K}]T - H\psi[\mathcal{P}a + b]
\]

Therefore

\[
T \overset{C.24}{=} [I - H\psi \mathcal{K}]^{-1}\{\epsilon + H\psi[\mathcal{P}a + b]\}
\]

\[
\overset{7.17,7.12}{=} [I + H\phi \mathcal{K}]\epsilon + H\phi[\mathcal{P}a + b]
\]

Therefore

\[
z \overset{7.25a}{=} \psi[\mathcal{K}T + \mathcal{P}a + b] \overset{C.25}{=} \psi\mathcal{K}[I + H\phi \mathcal{K}]\epsilon + \{\psi\mathcal{K}H\phi + \psi\}[\mathcal{P}a + b]
\]

\[
\overset{7.10,7.12}{=} \phi\mathcal{K}\epsilon + \{\phi - \psi + \psi\}[\mathcal{P}a + b]
\]

from which (7.26) follows.

2. Pre-multiplying (7.26) by \(\psi^{-1} = (I - E\phi) \) and rearranging terms, we have

\[
\bar{z} = \mathcal{E}\phi \bar{z} + [\mathcal{K}\epsilon + \mathcal{P}a + b] \overset{7.3}{=} \mathcal{E}\phi (\bar{z} + \mathcal{G}\epsilon) + \mathcal{P}a + b \overset{7.27}{=} \mathcal{E}\phi \bar{z}^+ + \mathcal{P}a + b
\]

3. Now

\[
\bar{z}^+ \overset{7.27}{=} \bar{z} + \mathcal{G}\epsilon \overset{7.26}{=} \phi[\mathcal{K}\epsilon + \mathcal{P}a + b] + \mathcal{G}\epsilon \overset{7.3}{=} \phi[\mathcal{G}\epsilon + \mathcal{P}a + b]
\]

Solution 7.3 (pp. 125): Expression for \(\alpha \) in terms of \(\nu \)

From (7.25d) we have \(\bar{\theta} = [I - H\psi \mathcal{K}]^*\nu - \mathcal{K}^*\psi^*a \). Thus, it follows that

\[
\alpha \overset{5.23}{=} \phi^*[H^*\bar{\theta} + a] \overset{7.25d}{=} \phi^*H^*[\{I - H\psi \mathcal{K}]^*\nu - \mathcal{K}^*\psi^*a\} + \phi^*a
\]

\[
\overset{7.12}{=} \psi^*H^*\nu - \phi^*H^*\mathcal{K}^*\psi^*a + \phi^*a \overset{7.10}{=} \psi^*H^*\nu + \psi^*a = \psi^*[H^*\nu + a]
\]

This establishes (7.30).

The first equality in (7.31) results from combining (7.25d) and (7.30) as follows:

\[
\bar{\theta} \overset{7.25d}{=} [I - H\psi \mathcal{K}]^*\nu - \mathcal{K}^*\psi^*a = \nu - \mathcal{K}^*\psi^*H^*\nu - \mathcal{K}^*\psi^*a \overset{7.30}{=} \nu - \mathcal{K}^*\alpha
\]

The second equality follows from the additional use of (7.3) in the first equality.
Solution 7.4 (pp. 127): Relationship between ν, α and a

The first identity in (7.33) follows from
\[
\alpha \overset{7.30}{=} \psi^*[H^*\nu + a] \overset{7.8}{=} \tilde{\psi}^*[H^*\nu + a] + [H^*\nu + a] \\
\overset{7.8}{=} \mathcal{E}_\psi \psi^*[H^*\nu + a] + [H^*\nu + a] \overset{7.254}{=} \mathcal{E}_\psi \alpha + H^*\nu + a \\
\overset{7.32e}{=} \tau^* \alpha^+ + H^*\nu + a
\]

The second identity in (7.33) follows by multiplying both sides of the first identity by \mathcal{G}^* and noting that $\mathcal{G}^* \tau^* = 0$ and $\mathcal{G}^* H^* = I$.

Solution 7.5 (pp. 128): Computing inter-link spatial force $f(k)$

We have
\[
f \overset{5.23}{=} \phi[\mathbf{M}\alpha + b] \overset{7.30}{=} \phi[\mathbf{M}\psi^* (H^*\nu + a) + b] \\
\overset{7.15}{=} [\phi^\mathcal{P} + \mathcal{P}\phi](H^*\nu + a) + \phi b \overset{7.30}{=} \phi^\mathcal{P} H^*\nu + \phi^\mathcal{P}a + \mathcal{P}\alpha + \phi b \\
\overset{7.3}{=} \phi \mathcal{K} e + \phi^\mathcal{P}a - a + \mathcal{P}\alpha + \phi b \overset{7.26}{=} \mathcal{P}[\alpha - a] + \tilde{\mathcal{J}}
\]

This establishes the first half of (7.34).

From (7.33) we have that $\alpha = \tau^* \alpha^+ + H^*\nu + a$. It thus, follows that
\[
f \overset{7.34}{=} \mathcal{P}(\alpha - a) + \tilde{\mathcal{J}} \overset{7.33}{=} \mathcal{P}[\tau^* \alpha^+ + H^*\nu + a] - \mathcal{P}a + \tilde{\mathcal{J}} \\
\overset{6.25, 7.32b}{=} \mathcal{P}^* \alpha^+ + \mathcal{P}H^*\nu + \tilde{\mathcal{J}}^+ - \mathcal{G}_e \overset{7.25e}{=} \mathcal{P}^* \alpha^+ + \mathcal{J}^+
\]

Solution 7.6 (pp. 129): Including gravitational accelerations

1. The proof here is an extension of the proof of Lemma 7.6 on page 123 to include in the additional gravitational term. The Coriolis term expression with gravity included is defined by (5.39), and consists of replacing a with a' where $a' \overset{\Delta}{=} a + E^* g$. The new version of (7.23) with the gravitational term requires a similar change to obtain
\[
[I - H\psi \mathcal{K}]H\phi(\mathbf{M}\phi^* a' + b)
\]
\[
= (H\psi \mathcal{P} + \mathcal{D}\mathcal{K}^* \phi^*)a' + H\psi b \\
= (H\psi \mathcal{P} + \mathcal{D}\mathcal{K}^* \phi^*)/1a + (H\mathcal{P} + \mathcal{D}\mathcal{K}^* \phi^*)E^* g + H\psi b \\
\overset{7.3}{=} (H\psi \mathcal{P} + \mathcal{D}\mathcal{K}^* \phi^*)a + \mathcal{D}(\mathcal{G}^* + \mathcal{K}^* \phi^*)E^* g + H\psi b \\
\overset{7.3, 3.41}{=} (H\psi \mathcal{P} + \mathcal{D}\mathcal{K}^* \phi^*)a + \mathcal{D}\mathcal{G}^* (I + \tilde{\mathcal{G}}^*)E^* g + H\psi b \\
\overset{3.40}{=} (H\psi \mathcal{P} + \mathcal{D}\mathcal{K}^* \phi^*)a + \mathcal{D}\mathcal{G}^* \mathcal{E}^* g + H\psi b \\
\overset{5.41}{=} (H\psi \mathcal{P} + \mathcal{D}\mathcal{K}^* \phi^*)a + \mathcal{D}\mathcal{G}^* \mathcal{E}^* g + H\psi b
\]

(C.26)
When compared with (7.23), (C.26) contains the additional $\mathcal{D}\mathcal{G}^*\tilde{E}^*\mathcal{g}$ gravitational term. Updating (7.24) to include this additional term results in the following altered expression:

\[
[I - H\psi\mathcal{K}]^*\mathcal{D}^{-1} [I - H\psi\mathcal{K}] H\psi(M\phi^* a + b)
= [I - H\psi\mathcal{K}]^*\mathcal{D}^{-1} [H\psi(Pa + b)] + \mathcal{K}^*\psi^* a + [I - H\psi\mathcal{K}]^* \mathcal{G}^*\tilde{E}^*\mathcal{g}
\]

The additional $[I - H\psi\mathcal{K}]^* \mathcal{G}^*\tilde{E}^*\mathcal{g}$ term also needs to be included in (7.21) resulting in the desired (7.36) expression.

2. We repeat the steps in the proof of Exercise 7.3, but this time using the expression for $\tilde{\mathcal{D}}$ from (7.36) instead of from (7.21). We obtain:

\[
\alpha \overset{5.23}{=} \phi^* [H^*\tilde{\mathcal{D}} + a] \overset{7.30,7.36}{=} \psi^* [H^*\nu + a] - \phi^* H^* [I - H\psi\mathcal{K}]^* \mathcal{G}^*\tilde{E}^*\mathcal{g} \overset{7.12}{=} \psi^* [H^*\nu + a] - \psi^* H^* \mathcal{G}^*\tilde{E}^*\mathcal{g} = \psi^* \left[H^* \left(\nu - \mathcal{G}^*\tilde{E}^*\mathcal{g} \right) + a \right] \overset{7.37}{=} \psi^* \left[H^*\tilde{\nu} + a \right]
\]

establishing (7.38a).

Equation (7.38b) is obtained by simply using (7.25c) in (7.36). For (7.38c) repeat the steps in the proof of (7.31).

3. The proof of (7.39) exactly parallels the proof of Exercise 7.4 on page 127 except for using the expression for α in (7.38a) as a starting point.

4. The proof of (7.40) is similar to that of Exercise 7.5. We have

\[
f \overset{5.23}{=} \phi \left[M(\alpha + \tilde{E}^*\mathcal{g}) + b \right] \overset{7.38a}{=} \phi \left[M \left[\psi^* (H^*\tilde{\nu} + a) + \tilde{E}^*\mathcal{g} \right] + b \right] \overset{7.15}{=} \left[\phi P + P\phi \right] (H^*\tilde{\nu} + a) + \phi b + \phi M\tilde{E}^*\mathcal{g} \overset{7.38a,7.37}{=} \phi P H^*\nu + \phi P a + P\alpha + \phi b + \left[\phi M - \phi P H^* \mathcal{G}^* \right] \tilde{E}^*\mathcal{g} \overset{5.41,7.25c}{=} \phi \mathcal{K} c + \phi P a - P\alpha + P\phi + \left[\phi M \phi^* - \phi P H^* \mathcal{G}^* \phi^* \right] E^*\mathcal{g} \overset{7.26,7.16}{=} P[\alpha - a] + \tilde{\phi} P + P\tilde{\phi} - \tilde{\phi} P H^* \mathcal{G}^* E^*\mathcal{g} \overset{5.41,7.3}{=} P \left[\alpha + \tilde{E}^*\mathcal{g} - a \right] + \tilde{\phi} P + P\tilde{\phi} \mathcal{G}^* E^*\mathcal{g} = P \left[\alpha + \tilde{E}^*\mathcal{g} - a \right] + \tilde{\phi} P \mathcal{G}^* E^*\mathcal{g}
\]

The last step follows from the $\tilde{\phi} P \mathcal{G}^* E^*\mathcal{g} = 0$ identity which is a consequence of the strictly lower-triangular nature of $\tilde{\phi}$. This establishes the first half of (7.40).

Now using (7.39) in the above we have

\[
f \overset{7.40}{=} P \left[\alpha + \tilde{E}^*\mathcal{g} - a \right] + \tilde{\phi} P \mathcal{G}^* E^*\mathcal{g} \overset{7.39}{=} P \left[\mathcal{T}^*\alpha^+ + H^* \left(\nu - \mathcal{G}^*\tilde{E}^*\mathcal{g} \right) + a + \tilde{E}^*\mathcal{g} - a \right] + \tilde{\phi} P \mathcal{G}^* E^*\mathcal{g} \overset{6.25,7.32b}{=} P^+ \left(\alpha^+ + \tilde{E}^*\mathcal{g} \right) + P H^* \nu + \tilde{\phi} P \mathcal{G}^* E^*\mathcal{g} \overset{7.25c}{=} P^+ \left(\alpha^+ + \tilde{E}^*\mathcal{g} \right) + \tilde{\phi} P \mathcal{G}^* E^*\mathcal{g}
\]

5. (7.41) follows directly from the operator expression in (7.38c) for $\tilde{\phi}$.

Solutions for Chapter 8

Solution 8.1 (pp. 147): Root/tip nodes and BW A matrices

1. The first part of (8.20) is a generalized restatement of (8.4) for BW A matrices. The latter half follows from the following:

\[A^{-1} \cdot e_r \overset{8.15}{=} (I - E_A)e_r \overset{8.20}{=} e_r \]

2. The proof here is completely analogous to that of the first part with the use of (8.5).

Solutions for Chapter 9

Solution 9.1 (pp. 165): Recursive evaluation of \(\bar{A}x \) and \(\bar{A}^*x \)

We have that \(y \triangleq \bar{A}x = \bar{A}\bar{y} - x \) where \(\bar{y} = \bar{A}x \). This implies that

\[y(k) = \bar{y}(k) - x(k) \overset{9.5}{=} \sum_{i \in \mathcal{G}(k)} A(k,i)\bar{y}(i) = \sum_{i \in \mathcal{G}(k)} A(k,i)[y(i) + x(i)] \]

Thus, the computational algorithm for \(y \) is the one in (9.5) except that the computational step in the loop is now given by the above expression with initial condition \(y(0) = 0 \).

Similarly \(y \triangleq \bar{A}^*x = \bar{y} - x \) where \(\bar{y} = \bar{A}^*x \). It thus follows that the computational algorithm for \(\bar{A}^*x \) is the same as in (9.8) except that the computational step in the loop is now given by

\[y(k) = \bar{A}^*(\varphi(k),k)[y(\varphi(k)) + x(\varphi(k))] \]

with initial condition \(y(n + 1) = 0 \).

Solution 9.2 (pp. 180): Determinant of the mass matrix

1. We have

\[I - HAJK \overset{9.37}{=} I - HA_E \bar{A}G \overset{8.19}{=} I - H\bar{A}G \]

For a canonical tree, \(\bar{A} \) is strictly lower triangular, while \(H \) and \(G \) are block-diagonal. Hence, \([I + HAJK] \) is lower triangular with identity blocks along the diagonal. Moreover, from (9.50) we know that \([I - H\psi K] \) is its inverse. From
matrix theory, we know that the inverse of a lower-triangular matrix is also lower-triangular, and that the diagonal elements are inverses of each other. It thus, follows that for a canonical tree, \([I - H\psi \mathcal{K}]\) is also lower-triangular with identity blocks along its diagonal.

2. For canonical trees, the above part established that \([I + HA\mathcal{K}]\) is a lower-triangular matrix with identity matrices along the diagonal. Since, the determinant of a lower-triangular matrix is the product of the determinants of the block elements along its diagonal, it follows that (9.52) holds for canonical trees. Since all tree can be converted into canonical trees by a simple renumbering of the bodies, there exists a permutation matrix which transforms the Newton–Euler factors for a tree into the corresponding factors for a canonical version of the tree. Since permutation matrices are orthogonal, their determinants are 1, and hence, the determinant of the canonical and non-canonical versions of the Newton–Euler factors are equal to each other and are both 1. This establishes (9.52).

3. For (9.53), we have

\[
\det\{\mathcal{M}\} \overset{9.49}{=} \det\{[I + HA\mathcal{K}] \mathcal{D} [I + HA\mathcal{K}]^*\} \\
= \det([I + HA\mathcal{K}]) \det\{\mathcal{D}\} \det\{[I + HA\mathcal{K}]^*\} \\
\overset{9.52}{=} \det\{\mathcal{D}\} = \prod_{k=1}^{n} \det\{\mathcal{D}(k)\}
\]

Solutions for Chapter 10

Solution 10.1 (pp. 197): \(\Upsilon(k)\) for a micro/macro manipulator system

From (10.16) we have the following general expression for \(\Upsilon(k)\):

\[
\Upsilon(k) = \sum_{\forall i: i \geq k} \psi^*(i,k)H^*(i)\mathcal{D}^{-1}(i)H(i)\psi(i,k)
\]

Thus,

\[
\Upsilon(1) = \sum_{\forall i: i \geq 1} \psi^*(i,1)H^*(i)\mathcal{D}^{-1}(i)H(i)\psi(i,1) \\
= \sum_{\forall i: \rho(\mathcal{S}) \succ i \geq 1} \psi^*(i,1)H^*(i)\mathcal{D}^{-1}(i)H(i)\psi(i,1) \\
+ \sum_{\forall i: i \geq \rho(\mathcal{S})} \psi^*(i,1)H^*(i)\mathcal{D}^{-1}(i)H(i)\psi(i,1)
\]

\[C.27 \Rightarrow \mathcal{Y}(1) + \psi^*(\varphi(\mathcal{G}),1) \left\{ \sum_{\forall i: i \succ \varphi(\mathcal{G})} \psi^*(i,\varphi(\mathcal{G}))H^*(i)^* \right\} D^{-1}(i)H(i)\psi(i,\varphi(\mathcal{G})) \right\} \psi^*(\varphi(\mathcal{G}),1) \]

The above steps have used the fact that \(D(i) \) does not depend on the generalized coordinates and other properties of the bodies inboard of the \(i \)th body in including \(\mathcal{Y}(1) \) in the above expressions. This establishes (10.23). (10.24) is a direct consequence of (10.23) and the positive semi-definite nature of \(\psi^*(\mathcal{P}(\varphi(\mathcal{G}),1)\mathcal{Y}(\varphi(\mathcal{G}))\psi(\mathcal{P}(\varphi(\mathcal{G}),1). \)

Solution 10.2 (pp. 199): Computation of the mass matrix inverse

1. Expanding out the factorized form of the mass matrix inverse, it follows that

\[M^{-1} \stackrel{9.51}{=} D^{-1} - \mathcal{K}^*\psi^*H^*D^{-1} - D^{-1}H\psi\mathcal{K} + \mathcal{K}^*\Omega\mathcal{K} \]

\[= D^{-1} - \mathcal{K}^*\psi^*H^*D^{-1} - D^{-1}H\psi\mathcal{K} + \mathcal{K}^*\left[\mathcal{Y} + \bar{\psi}^*\mathcal{Y} + \mathcal{Y}\bar{\psi} + \mathcal{R} \right] \mathcal{K} \]

Therefore,

\[M^{-1} \stackrel{9.51}{=} D^{-1} - \mathcal{K}^*\psi^*H^*D^{-1} - D^{-1}H\psi\mathcal{K} + \mathcal{K}^*\left[\mathcal{Y} + \bar{\psi}^*\mathcal{Y} + \mathcal{Y}\bar{\psi} + \mathcal{R} \right] \mathcal{K} \]

\[= (D^{-1} + \mathcal{G}^*\mathcal{Y}\mathcal{G}) - \mathcal{K}^*\psi^*(H^*D^{-1} - \bar{\tau}\,\bar{\mathcal{G}}) \]

\[- (D^{-1}H - \mathcal{G}^*\mathcal{Y}\tau)\psi\mathcal{K} + \mathcal{K}^*\mathcal{R}\mathcal{K} \]

\[\stackrel{10.30}{=} L - \mathcal{K}^*\psi^*U - U\psi\mathcal{K} + \mathcal{K}^*\mathcal{R}\mathcal{K} \]

The last equality used the following

\[D^{-1}H - \mathcal{G}^*\mathcal{Y}\tau = D^{-1}H - \mathcal{G}^*\mathcal{Y} + \mathcal{G}^*\mathcal{Y}\tau = D^{-1}H - \mathcal{G}^*\mathcal{Y} + \mathcal{G}^*\mathcal{Y}\mathcal{H} \]

\[= LH - \mathcal{G}^*\mathcal{Y} \stackrel{10.30}{=} U \]

This establishes the decomposition of \(M^{-1} \).

2. For a serial-chain system, \(\mathcal{R} = 0 \), and hence (10.29) reduces to (10.31). Also, for a serial-chain system \(\mathcal{E}_\varphi^*\mathcal{Y}\mathcal{E}_\varphi \) is block-diagonal, and hence, \(\mathcal{Y} = \mathcal{Y}^+ \) follows from (10.20). Since the component terms of \(L \) in (10.30) are block-diagonal, so is \(L \). Similarly, \(U \) is block-diagonal as well. The product \(\psi\mathcal{K} \) is strictly lower-triangular, establishing that (10.31) is a decomposition into block-diagonal, strictly upper-triangular and strictly lower-triangular terms.
Algorithm 10.4 is a recursive implementation of the above expressions for the elements of M^{-1}.

Solution 10.3 (pp. 207): Ground connected equations of motion

In Lemma 10.6, assume that system B is the inertial frame. Since the inertial frame is immovable, we have

$$\Delta^B = 0 \quad \text{and} \quad \bar{c}^B_{os} = 0$$

Substituting these into (10.48) and keeping just the upper part results in (10.53).

Solutions for Chapter 11

Solution 11.1 (pp. 214): Mapping between T and $\bar{\theta}$ for closed-chain systems

This result is obtained by setting combining together (11.9a)-11.9c and (11.8).

Solution 11.2 (pp. 215): Torque minimization using squeeze forces

The squeeze force has the parametric form $T_{sq} = G_c^* \lambda$ for some λ. The norm of the overall generalized force is given by

$$\|T\|^2_W = \|T_{mv} + T_{sq}\|^2_W = \|T_{mv} + G_c^* \lambda\|^2_W = (T_{mv} + G_c^* \lambda)^T W (T_{mv} + G_c^* \lambda)$$

The gradient of the above with respect to λ must be zero for the minimum norm solution. Taking the gradient and setting it to zero yields,

$$0 = G_c W (T_{mv} + G_c^* \lambda) \quad \Rightarrow \quad \lambda = -(G_c W G_c^*)^{-1} G_c W T_{mv} \quad (C.28)$$

Thus $X = G_c W$ minimizes the norm. Since the squeeze force is $T_{sq} = G_c^* \lambda$, the minimum norm T value is

$$T_{mv} + G_c^* \lambda \quad \Rightarrow \quad T_{mv} = P_{ms} T_{mv} \quad (11.15) \quad (I - P_{ms}) (I - P_{ms}) T = (I - P_{ms}) T$$

The last step used the projection matrix property of $(I - P_{ms})$.

Solution 11.3 (pp. 218): Expression for $\frac{Y}{C}$ with loop constraints

This result is obtained by combining the expressions in and (11.20) and (11.21).

Solution 11.4 (pp. 223): Explicit expression for P

The result follows by directly using the expression for P in (11.37).
Solution 11.5 (pp. 224): Transformed and partitioned augmented dynamics
Substituting $\ddot{\theta} = P\ddot{\theta}$ into (11.31) transforms it as follows:

$$
\begin{pmatrix}
M & G^*_c \\
G_c & 0
\end{pmatrix}
\begin{pmatrix}
P \ddot{\theta} \\
-\lambda
\end{pmatrix}
=
\begin{pmatrix}
\mathcal{T} - \mathcal{C} \\
\dot{\mathcal{U}}
\end{pmatrix}
$$

(C.29)

Pre-multiplying the top half of both sides of (C.29) with P^* leads to

$$
\begin{pmatrix}
M \
\end{pmatrix}
\begin{pmatrix}
G^*_c \\
0
\end{pmatrix}
\begin{pmatrix}
\ddot{\theta} \\
-\lambda
\end{pmatrix}
=
\begin{pmatrix}
P^*(\mathcal{T} - \mathcal{C}) \\
\dot{\mathcal{U}}
\end{pmatrix}
$$

(C.30)

Applying the partitioned structure in $G = [G_r, 0]$ from (11.37) to (C.30) leads to the partitioned equations in (11.42).

Solution 11.6 (pp. 224): Reduction of augmented dynamics
We begin by rearranging the blocks in the transformed equations of motion in (11.42) to obtain:

$$
\begin{pmatrix}
M_{11} & G^*_r \\
G_r & 0 \\
M_{21} & M_{22}
\end{pmatrix}
\begin{pmatrix}
\ddot{\theta}_1 \\
-\lambda \\
\ddot{\theta}_2
\end{pmatrix}
=
\begin{pmatrix}
\mathcal{T}_1 \\
\dot{\mathcal{U}}
\end{pmatrix}
$$

(C.31)

Using (A.10) to solve the above equation, we obtain

$$
\ddot{\theta}_2 = \left\{M_{22} - [M_{21}, 0] \left(\begin{pmatrix} M_{11} & G^*_r \\ G_r & 0 \end{pmatrix} \right)^{-1} \begin{pmatrix} M_{12} \\ 0 \end{pmatrix} \right\}^{-1}
$$

(C.32)

Additionally, from (A.11) we have

$$
\begin{pmatrix}
M_{11} & G^*_r \\
G_r & 0
\end{pmatrix}^{-1} =
\begin{pmatrix}
0 & G_r^{-1} \\
G_r^{-*} & -G_r^{-*} M_{11}^{-1} G_r^{-1}
\end{pmatrix}
$$

(C.33)

Substituting this into (C.32) and expanding out the matrix products we see that the equation simplifies to

$$
M_{22}^{-1} (\mathcal{T}_2 - M_{21} G_r^{-1} \dot{\mathcal{U}}) \quad \text{or} \quad M_{22} \ddot{\theta}_2 = \mathcal{T}_2 - M_{21} G_r^{-1} \dot{\mathcal{U}}
$$

(C.34)
Solution 11.7 (pp. 224): Transformed projected dynamics
Using (11.39) in (11.36) we see that
\[M_{r11.39,11.36} = X_\star c P^* M X_c \]
\[M_{r11.38} = X_\star c M X_c \]
Thus, the projected dynamics equations of motion in (11.36) becomes
\[M_{22} \theta \dddot{r} = X_\star c (T - e - M \dddot{\theta}_p) \]
\[= (T - X_\star c M P^{-1} \dddot{\theta}_p) \]
Note however, that \(\dddot{\theta}_p \) defined by
\[\dddot{\theta}_p \triangleq G_r^{-1} \hat{U} \]
satisfies the particular solution condition, (11.35), since
\[G_c \dddot{\theta}_p \triangleq G_c P \begin{bmatrix} G_r^{-1} \hat{U} \\ 0 \end{bmatrix} \in \mathcal{R}_N \]
Substituting (C.37) in (C.36) leads to
\[M_{22} \dddot{\theta}_r = \begin{bmatrix} T - X_\star c M \end{bmatrix} \begin{bmatrix} G_r^{-1} \hat{U} \\ 0 \end{bmatrix} \]
\[= (T - M_{21} G_r^{-1} \hat{U}) \]
With \(\dddot{\theta}_r \equiv \dddot{\theta}_2 \), this last expression agrees with (11.43) and establishes the result.

Solutions for Chapter 12

Solution 12.1 (pp. 238): Simplification of \(R_G(k) \)
The expression for \(R_G(k) \) in (12.18) and the recursion in (12.19) for \(R_{G1}(k) \) follows from substituting the expression for \(\Phi_G(k+1, k) \) from (12.4) into (12.14) and expanding out the partitioned products.
A similar process leads the expressions for \(X_{1}(k+1), X_{1}(j+1) \) and \(M_G(k, k) \).

Solution 12.2 (pp. 242): Structure of \(P_G(k) \) and related quantities
The partitioned structure and related recursive algorithms follow by starting with the expressions in (12.21) and (12.25) and using the partitioned structure of \(\Phi_G(k+1, k) \) to explicitly compute the products.
Solutions for Chapter 13

Solution 13.1 (pp. 269): Additional forward dynamics simplifications
From (13.69), \(\mathcal{D}_m(k) = H_{Mfl}(k) \left[A_{fl}(k) \Gamma_{fl}(k), A_{fl}^*(k) + M_{fl}(k) \right] H_{Mfl}^*(k). \) Applying the (A.19) matrix identity,
\[
[A + BCB^*]^{-1} = A^{-1} - A^{-1}B[C^{-1} + B^*A^{-1}B]^{-1}B^*A^{-1}
\]
to the expression for \(\mathcal{D}_m(k) \) with
\[
A = H_{Mfl}(k) M_{fl}(k) H_{Mfl}^*(k), \quad B = H_{Mfl}(k) A_{fl}(k), \quad C = \Gamma_{fl}(k)
\]
establishes (13.70).

Solutions for Chapter 14

Solution 14.1 (pp. 274): Non-tree path-induced sub-graphs
1. Since a directed cycle containing an edge, represents a directed path connecting the node pair for the edge, the path (and the cycle) must belong to \(\mathcal{S} \) since it is path-induced.
2. Similarly, all paths connecting a pair of nodes in \(\mathcal{S} \) must be in the sub-graph since it is path-induced, and the result follows.

Solution 14.2 (pp. 278): Mass matrix invariance of the outer sub-system
The expressions in (14.6) and (14.7) are obtained by directly evaluating \(M = H \mathcal{A} M \mathcal{A}^* H^* \) using the following component partitioned expressions from (14.4) and (14.5):
\[
H = \begin{pmatrix} H_{\mathcal{S}} & 0 \\ 0 & H_{\mathcal{P}} \end{pmatrix}, \quad \mathcal{A} = \begin{pmatrix} \mathcal{A}_{\mathcal{S}} & 0 \\ \mathcal{A}_{\mathcal{P}} E_{\mathcal{S}} \mathcal{A}_{\mathcal{S}} & \mathcal{A}_{\mathcal{P}} \end{pmatrix}, \quad M = \begin{pmatrix} M_{\mathcal{S}} & 0 \\ 0 & M_{\mathcal{P}} \end{pmatrix}
\]

Solution 14.3 (pp. 292): Mass matrix invariance with aggregation
First, we have
\[
H_{\mathcal{A}}^{14.18,14.20} = (H_{\alpha} \mathcal{J}_{\alpha}^{-1}) (\mathcal{J}_{\alpha} \mathcal{A}_{\alpha}) = H_{\alpha} \mathcal{A}_{\alpha}
\]
Using this directly establishes the \(M \) equalities in (14.24).
Moreover
\[H_A(\mathbf{M}^*a + b) \overset{C.39}{=} H_A(\mathbf{M}^*a + b) \overset{14.18}{=} H_A(\mathbf{M}^*a\mathbf{J}^*a + b) \]
\[\overset{14.21}{=} H_A(\mathbf{M}^*a + b) \]
This establishes the \(C \) equalities in (14.24).

Solutions for Chapter 15

Solution 15.1 (pp. 310): Expression for \(\dot{X}_\Theta \)

With \(Z \overset{\triangle}{=} Y_1^{-1}Y_2 \),
\[
\frac{dZ}{dt} = \frac{dY_1^{-1}}{dt}Y_2 + Y_1^{-1}\frac{dY_2}{dt} \overset{A.28}{=} -Y_1^{-1}\frac{dY_1}{dt}Y_1^{-1}Y_2 + Y_1^{-1}\frac{dY_2}{dt}
= Y_1^{-1}\left[\frac{dY_2}{dt} - \frac{dY_1}{dt}Z \right]
\]
Thus,
\[
\dot{X}_\Theta = \begin{bmatrix} \dot{Y}_1 \end{bmatrix} \begin{bmatrix} Y_1^{-1} \left[\dot{Y}_1 Z - \dot{Y}_2 \right] \end{bmatrix} = \begin{bmatrix} Y_1^{-1} \dot{Y}X_\Theta \end{bmatrix}
\]
This establishes the first half of (15.27).
Using this, we have
\[
\dot{X}_\Theta \dot{\theta}_R = \begin{bmatrix} Y_1^{-1} \dot{Y}X_\Theta \dot{\theta}_R \end{bmatrix} = \begin{bmatrix} Y_1^{-1} \dot{Y} \dot{\theta}_\Theta \end{bmatrix}
\]
This establishes the second half of (15.27).

Solutions for Chapter 16

Solution 16.1 (pp. 320): Alternate expression for \(S_{\alpha\alpha} \)

We have
\[
\phi\mathbf{M}_\perp^*\mathbf{M}_\perp\phi^* \overset{10.36}{=} \phi\mathbf{M}_\perp^*\phi^* \overset{10.39a}{=} \phi\mathbf{M}(\psi^* - \Omega\mathcal{P}) = \phi\mathbf{M}\psi^* - \phi\mathbf{M}^*\mathcal{P}
\]
\[\overset{9.41,10.38a}{=} \phi\mathcal{P} + \mathcal{P}\phi^* - (\phi - \psi + \mathcal{P}\Omega)\mathcal{P} = (\psi - \mathcal{P}\Omega)\mathcal{P} + \mathcal{P}\phi^* \]
Pre- and post-multiplying the above with \(H_\alpha \) and \(H_\alpha^* \) and comparing with the expression for \(S_{\alpha\alpha} \) in (16.11c) establishes the lemma.
Solution 16.2 (pp. 325): Expression for the generalized Jacobian

Ignoring all the velocity dependent terms, we have

\[\alpha_{nd}^{16.18} = J_{\dot{\theta}} = J_a \ddot{\theta}_a + J_p \ddot{\theta}_p \]

\[\alpha_{nd}^{16.20} = J_{\dot{\theta}} = J_a \ddot{\theta}_a + J_p J_D \ddot{\theta}_a = (J_a + J_p J_D) \ddot{\theta}_a \]

Solution 16.3 (pp. 330): The disturbance Jacobian for a free-flying system

Equation (4.18) on page 63 showed that the center of mass spatial velocity, \(V_C \) is given by the following relationship when the base-body generalized forces are zero:

\[V_C = V(n) + R^{-1}(n) \sum_{k=1}^{n-1} \phi(n, k) R(k) H^*(k) \dot{\theta}(k) \] \(\text{(C.40)} \)

For the case when the system has zero spatial momentum, \(V_C = 0 \) and so we can re-express (C.40) as:

\[V(n) = -R^{-1}(n) \sum_{k=1}^{n-1} \phi(n, k) R(k) H^*(k) \dot{\theta}(k) \]

The expression for the \(J_D \) disturbance Jacobian is obtained by converting (16.28) into a matrix form.

Solutions for Chapter 17

Solution 17.1 (pp. 333): Weight matrices for the dual model

In the dual model, the \(k \)th link is the parent of the \((k+1) \)th link. Thus the velocity recursion in (3.19b) can be re-expressed as:

\[V(k) = \phi^*(k-1, k) V(k-1) - \phi^*(k-1, k) H^*(k-1) \dot{\theta}(k-1) \]

Thus \(\phi^*(k-1, k) \) matrices are the weight matrices in the dual model.

Solution 17.2 (pp. 335): Dual articulated body inertia properties

1. Using (17.4) we have

\[S(k) H^*(k) = S^+(k) [I + H^*(k) S^*_{dl}(k)] H^*(k) \]

\[= S^+(k) [I - H^*(k) D_{dl}^{-1}(k) H(k) S^+(k)] H^*(k) = 0 \]

This establishes (17.5).
2. Again using (17.4) we have

$$\tau_{d1}(k)\overline{\sigma}(k) = \tau_{d1}(k) + \mathcal{G}_{d1}(k)\mathcal{H}(k)\mathcal{G}(k) = \tau_{d1}(k) + \mathcal{G}_{d1}(k)\mathcal{H}(k) = 0$$

This establishes the first expression in (17.6).
The latter expression has an analogous proof.

Solution 17.3 (pp. 347): Relationship between \(\phi^*_G\) and \(\phi^*_R\)

$$\tilde{\phi}^*_R(\phi^*_G)^{-1} = \tilde{\phi}^*_R(I - \mathcal{E}^*_{\phi_G}) = (\phi^*_R - \mathcal{I}) - \phi^*_R\mathcal{E}^*_{\phi_R}\mathcal{E}^*_{\phi_G}$$

Equations 17.22, 17.28a

Post-multiplying the above with \(\phi^*_G\) establishes (17.36).

Solution 17.4 (pp. 347): The inverse transformation \(\hat{J}_{GR}\)

Observe that

$$\hat{J}_{GR}\hat{\theta}_R = (\mathcal{S}_{RG}^* + \mathcal{E}^*_{\phi_R}\mathcal{H}_{RG})\hat{\theta}_R = \sum_{j=k}^{n-1} e_{Gj}\hat{\theta}_R(j+1) + e_{Gn}e_n\mathcal{V}_G$$

Equations 17.29, 17.30, 17.18

This establishes (17.38).

Now,

$$\hat{J}_{GR} \ast \hat{J}_{RG} = (\mathcal{S}_{RG}^* + \mathcal{E}^*_{\phi_R}\mathcal{H}_{RG})\mathcal{S}_{RG}^* + \mathcal{E}^*_{\phi_R}\mathcal{H}_{RG}$$

Equation 17.38

(C.41)

However,

$$\phi^*_R \mathcal{H}_{RG} = \phi^*_R(-\mathcal{E}^*_{\phi_R}\mathcal{S}_{RG}^* + e_k^*\mathcal{H}_{RG})$$

Equation 17.37a

(C.42)

Also,

$$\phi^*_R \mathcal{H}_{RG} e_k^* = \phi^*_R(-\mathcal{E}^*_{\phi_R}\mathcal{S}_{RG}^* + e_k^*\mathcal{H}_{RG}) e_k^*$$

Equation 17.37a

(C.43)
Therefore
\[J_{GR}^* J_{RG} = S_{RG}^* S_{RG} + e_{Gn}^* e_n^* (\Phi_R^* H^* + \Phi_k^* e_k^* \Phi_S^* H_S^*) \]
\[= S_{RG}^* S_{RG} + e_{Gn}^* (\Phi_R^* + \Phi_S^*) H_S^* \]
\[= S_{RG}^* S_{RG} + e_{Gn}^* \Phi_S^* H_S^* \]
\[= S_{RG}^* S_{RG} + e_{Gn}^* H_S^* \]
\[= I \]

This establishes (17.39).

Solution 17.5 (pp. 348): Transformed mass matrix

1. We have
\[\Phi_R^* H_R^* J_{RG} = \Phi_R^* (e_{C_k}^* e_k^* \Phi_S^*) H_S^* \]
\[\Rightarrow (\Phi_R^* + \Phi_S^*) H_S^* = \Phi_S^* H_S^* \]
establishing (17.43).

2. The \(\hat{\theta} = J_{RG} \hat{\theta} \) directly from the use of (17.28c) and the definition of \(\hat{\theta} \) in (17.40).
For the latter equality, we have
\[\Phi_H^* J_{RG} \]
\[\Rightarrow \begin{pmatrix} \Phi_C^* H_C^* & \Phi_C^* B_C^* \Phi_R^* H_R^* J_{RG} \\ 0 & \Phi_R^* H_R^* J_{RG} \end{pmatrix} \]
\[\Rightarrow \begin{pmatrix} \Phi_C^* H_C^* & \Phi_C^* B_C^* \Phi_S^* H_S^* \\ 0 & \Phi_S^* H_S^* \end{pmatrix} \]
\[\Rightarrow \Phi_H^* \]

This establishes (17.44).

3. We have
\[M = H \Phi M \Phi^* H^* = J_{RG}^* \Phi M \Phi^* H^* J_{RG} = J_{RG}^* M J_{RG} \]

This establishes (17.45).

4. Now,
\[\delta e = \frac{1}{2} \delta^* M \delta \]
\[= \frac{1}{2} \delta^* J_{RG}^* M J_{RG} \delta \]
\[= \frac{1}{2} \delta^* M \delta \]
establishing (17.46).

5. \(\phi \) is an SPO operator and \(H \) and \(M \) are both block-diagonal. Also, \(H \) is full rank because \(H \) and \(H_R \) are both full rank. Thus, the SKO model requirements are satisfied.
Solution 18.1 (pp. 356): Identities for \tilde{V}
At the component level,

$$\mathcal{V}^+(k) \overset{3.15}{=} \phi^*(\varphi(k), k) \mathcal{V}(\varphi(k)) \Rightarrow \tilde{\mathcal{V}}^+(k) \phi^*(\varphi(k), k) \overset{1.35}{=} \phi^*(\varphi(k), \mathcal{V}(\varphi(k)))$$

The above relationship establishes the component level equivalence of the elements of the operator expressions on the left and right of (18.9a).

Equation (18.9b) then follows from using the fact that $\mathcal{V} = \mathcal{V}^+ + \Delta \mathcal{V}$ in (18.9a).

Equation (18.9c) follows from pre- and post-multiplying (18.9b) by ϕ^* and simplifying.

Equation (18.9d) is simply a transposed version of (18.9c).

Solution 18.2 (pp. 358): Time derivative of $H\phi$

$$\frac{dH\phi}{dt} = H\phi + H\dot{\phi}^ {18.12,18.5} = -H\tilde{V}_S^\omega \phi + H \left[\phi \Delta \mathcal{V} \phi + \tilde{\mathcal{V}}^\omega \phi - \phi \tilde{\mathcal{V}}^\omega \right]$$

$$\overset{18.5}{=} H\tilde{\Delta}^\omega \phi + H\tilde{\phi} \Delta \mathcal{V} \phi - H\phi \tilde{\mathcal{V}}^\omega$$

$$= H\tilde{\Delta}^\omega \phi + H\tilde{\phi} \left[\Delta \mathcal{V}^\omega + \Delta \mathcal{V}^\nu \right] \phi - H\phi \tilde{\mathcal{V}}^\omega$$

$$= H\phi \tilde{\Delta}^\omega \phi + H\tilde{\phi} \Delta \mathcal{V}^\nu \phi - H\phi \tilde{\mathcal{V}}^\omega = H\phi \left[\tilde{\Delta}^\omega \phi + E^\nu \Delta \mathcal{V}^\nu \phi - \tilde{\mathcal{V}}^\omega \right]$$

This establishes the result.

Solution 18.3 (pp. 358): Operator expression for the a_j Coriolis acceleration

1. $\phi^* a_j ^ {8.43} \frac{d\phi^* H^*}{dt} \overset{18.13}{=} H \left[\tilde{\mathcal{V}}^\nu \phi - \phi^* \tilde{\Delta}^\nu \phi - \phi^* \tilde{\Delta}^\nu E^*_\phi \right] \phi^* H^* \dot{\theta} ^ {C.44}$

Hence,

$$a_j ^ {C.44} = \phi^* \left[\tilde{\mathcal{V}}^\nu - \phi^* \tilde{\Delta}^\nu \phi - \phi^* \tilde{\Delta}^\nu E^*_\phi \right] \mathcal{V}$$

$$= \phi^* \left[\tilde{\mathcal{V}}^\nu - \tilde{\Delta}^\nu \phi - \tilde{\Delta}^\nu E^*_\phi \right] \mathcal{V}$$

$$= -\tilde{\Delta}^\nu \mathcal{V} + \left[I - E^*_\phi \right] \tilde{\mathcal{V}}^\nu \mathcal{V} - \tilde{\Delta}^\nu \mathcal{V}$$.

(C.45)

This establishes (18.14).
2. The kth element of a_j from (C.45) is given by:

$$a_j(k) = \left[\begin{array}{c} \tilde{\omega}(g(k)) \omega(k) \\ \tilde{\omega}(g(k)) \nu(k) \end{array} \right] - \phi^*(g(k), k) \left[\begin{array}{c} 0 \\ \tilde{\omega}(g(k)) \nu(g(k)) \end{array} \right] - \left[\begin{array}{c} 0 \\ \Delta_v(k) \omega(g(k)) \end{array} \right]$$

$$= \left[\begin{array}{c} -\tilde{\omega}(k) \omega(g(k)) \\ \tilde{\omega}(g(k)) \left[\nu(k) - \nu(g(k)) + \Delta_v(k) \right] \end{array} \right]$$

$$= \left[\begin{array}{c} -\tilde{\omega}(k) \left[\omega(k) - \Delta_\omega(k) \right] \\ \tilde{\omega}(g(k)) \left[\nu(k) - \nu(g(k)) + \Delta_v(k) \right] \end{array} \right]$$

The further use of $g(k) = k + 1$ establishes the result

Solution 18.4 (pp. 359): Time derivative of $\phi(k+1,k)$ with $\mathcal{O}_k \neq \mathbb{B}_k$

1. Equation (18.17) follows from (1.37) when applied to the \mathbb{B}_k and \mathcal{O}_k frame pair on the kth rigid link.
2. Equation (18.18a) follows directly from Exercise 1.8 on page 13.
 Equation (18.18b) follows from differentiating (18.15).
 Equation (18.18c) and (18.18d) follow from further manipulation and rearrangement of the earlier expressions.

Solution 18.5 (pp. 360): Operator time derivatives with $\mathcal{O}_k \neq \mathbb{B}_k$

1. (18.21a) follows from the use of (18.17) in its operator definition in (18.20).
 For (18.21b), we have

$$\frac{d\Delta_{\mathbb{B}/\mathcal{O}}^{-1}}{dt} \stackrel{18.21a,A.28}{=} -\Delta_{\mathbb{B}/\mathcal{O}}^{-1} \frac{d\Delta_{\mathbb{B}/\mathcal{O}}^{-1}}{dt} \Delta_{\mathbb{B}/\mathcal{O}}^{-1} \stackrel{18.21a}{=} -\Delta_{\mathbb{B}/\mathcal{O}}^{-1} \mathcal{V}_{\mathbb{B}/\mathcal{O}} \Delta_{\mathbb{B}/\mathcal{O}}^{-1} \stackrel{1.36}{=} -\mathcal{V}_{\mathbb{B}/\mathcal{O}}$$

In the last equality we have used the fact that $\mathcal{V}_{\mathbb{B}/\mathcal{O}}$ only contains non-zero linear velocity values together with (1.36) in:

$$\mathcal{V}_{\mathbb{B}/\mathcal{O}} = \mathcal{V}_{\mathbb{B}/\mathcal{O}} \Delta_{\mathbb{B}/\mathcal{O}}^{-1} = \Delta_{\mathbb{B}/\mathcal{O}} \mathcal{V}_{\mathbb{B}/\mathcal{O}} \quad (C.46)$$
2. We have

\[
\frac{d\mathcal{E}_{\phi}}{dt} = \frac{d\Delta_{B/O} - \mathcal{E}_{\phi} \Delta_{B/O}}{dt} = \Delta_{B/O} \frac{d\mathcal{E}_{\phi}}{dt} \Delta_{B/O}^{-1} + \nabla_{B/O} \mathcal{E}_{\phi} \Delta_{B/O}^{-1} - \Delta_{B/O} \mathcal{E}_{\phi} \nabla_{B/O}
\]

This establishes (18.22a).

For (18.22b),

\[
\frac{d\phi_{\phi}}{dt} = \phi_{\phi} \frac{d(I - \epsilon_{\phi})}{dt} \phi_{\phi} = \phi_{\phi} \left(\Delta_{B/O} \frac{d\mathcal{E}_{\phi}}{dt} \Delta_{B/O}^{-1} + \nabla_{B/O} \mathcal{E}_{\phi} \Delta_{B/O}^{-1} - \Delta_{B/O} \mathcal{E}_{\phi} \nabla_{B/O} \right) \phi_{\phi}
\]

This establishes (18.22a).

For (18.22c), we have

\[
\frac{dH_{\phi}}{dt} = \frac{d\Delta_{B/O}}{dt} = \frac{d\Delta_{B/O}^{-1}}{dt} = \dot{H} \Delta_{B/O}^{-1} - H \nabla_{B/O}
\]

Solution 18.6 (pp. 361): Alternative derivation of \(\dot{M} \) expression

1. We have

\[
\frac{d\phi M \phi^*}{dt} = \dot{\phi} M \phi^* + \phi \dot{M} \phi^* + \phi M \phi^* = 18.12 \left[\phi \Delta_{V} \phi + \tilde{\omega} \phi - \phi \tilde{\omega} \right] M \phi^* + \phi \left[\tilde{\omega} M - M \tilde{\omega} \phi \right] \phi^*
\]

This establishes (18.24).
2. For \(\dot{M} \), we have

\[
\dot{M} = H\phi M\phi^* H^* + H \frac{d\phi M\phi^*}{dt} H^* + H\phi M\phi^* \dot{H}^*
\]

\[\overset{18.12,18.24}{=} -H \tilde{\nu}_v^\omega \phi M\phi^* H^* + H\phi M\phi^* \tilde{\nu}_v^\omega H^*
\]

\[
+ H \left\{ \left[\tilde{\phi} \Delta v + \tilde{\nu}_v^\omega \phi M\phi^* - \phi M\phi^* \left[\Delta v \phi^* + \tilde{\nu}_v^\omega \right] \right] H^* \right\}
\]

\[\overset{18.5}{=} H \left\{ \left[\tilde{\phi} \Delta v + \tilde{\Delta}^v_\omega \right] \phi M\phi^* - \phi M\phi^* \left[\Delta v \phi^* + \tilde{\Delta}^v_\omega \right] \right\} H^*
\]

\[
= H\phi \left\{ \left[\epsilon_{\phi} \Delta v + (I - \epsilon_{\phi}) \tilde{\Delta}^v_\omega \right] \phi M
\]

\[
- \left[\Delta v \epsilon_{\phi}^* \phi M\phi^* - \phi M\phi^* \left[\Delta v \epsilon_{\phi}^* + \tilde{\Delta}^v_\omega \right] \right] \right\} \phi^* H^*
\]

This establishes (18.23).

Solution 18.7 (pp. 363): Sensitivities of \(\phi(\varphi(k), k) \), \(H(k) \) and \(M(k) \)

The expressions in (18.29) follow directly from applying (18.26) and (18.28) to the time derivative expressions in (18.10), together with the expressions in (18.28).

Solution 18.8 (pp. 364): Sensitivity of \(H\phi \)

Equation (18.34) follows from applying (18.26) and (18.31) to the time derivative expressions in (18.13).

Solution 18.9 (pp. 368): Equivalence of Lagrangian and Newton–Euler equations of motion

1. From (2.2) we see that the \(b_j \) stacked vector can be expressed as

\[
b_j = [\tilde{\nu} M - M \tilde{\nu}] \nu
\]

Also, we have seen in (C.44) that

\[
\phi^* a_j = [\tilde{\nu}_v^\omega - \phi^* \tilde{\Delta}_v^\omega - \phi^* \tilde{\Delta}_v^\epsilon_{\phi}^*] \nu
\]

Using these in (18.39) leads to

\[
\epsilon(\theta, \dot{\theta}) = H\phi \left[\tilde{\nu} M - M \tilde{\nu} + M \left(\tilde{\nu}_v^\omega - \phi^* \tilde{\Delta}_v^\omega - \phi^* \tilde{\Delta}_v^\epsilon_{\phi}^* \right) \right] \nu
\]

\[\overset{1.22}{=} H\phi \left[\tilde{\nu} M - M \tilde{\nu} - M \phi^* \left(\Delta_v^\omega + \Delta_v^\epsilon_{\phi}^* \right) \right] \nu
\]
Noting that $\nabla^V V = 0$ helps simplify the above expression and leads to the expression in (18.41). This establishes the first part of this exercise.

2. We have

$$\dot{\mathcal{M}}(\theta)\dot{\theta} = \frac{1}{2} \frac{\partial [\dot{\theta}^* \mathcal{M}(\theta) \dot{\theta}]}{\partial \theta}$$

$$= \frac{\partial [\dot{\theta}^* \mathcal{M}(\theta) \dot{\theta}]}{\partial \theta}$$

$$= H\phi \left[\nabla - \left(\varepsilon_\phi \tilde{\Delta}_V^\nu + \tilde{\Delta}_V^\omega \right) \phi \right] \mathcal{M} V$$

$$+ H\phi \left[\left(\tilde{\Delta}_V^\nu + \varepsilon_\phi \tilde{\Delta}_V^\nu \right) \phi \mathcal{M} - \mathcal{M} \phi^* \left(\tilde{\Delta}_V^\nu \varepsilon_\phi^* + \tilde{\Delta}_V^\omega \right) \right] V$$

$$= H\phi \left[\nabla \mathcal{M} - \mathcal{M} \phi^* \left(\tilde{\Delta}_V^\nu \varepsilon_\phi^* + \tilde{\Delta}_V^\omega \right) \right] V$$

This is indeed the expression in (18.41) and establishes the second part of this exercise.

Solution 18.10 (pp. 373): Physical interpretation of $\tilde{\lambda}$

In general

$$\dot{\mathcal{P}}(k) = \frac{d_t \mathcal{P}(k)}{dt} = \frac{d_{\mathcal{O}_k^+} \mathcal{P}(k)}{dt} + \tilde{\nu}(\varphi(k)) \mathcal{P}(k) - \mathcal{P}(k) \tilde{\nu}(\varphi(k))$$

Comparing this expression with that of $\dot{\mathcal{P}}(k)$ in (18.50) establishes the equality for $\tilde{\lambda}(k)$ in (18.51). Also,

$$\tilde{\lambda}(k) = \frac{d_{\mathcal{O}_k^+} \mathcal{P}(k)}{dt} = \frac{d_{\mathcal{O}_k} \mathcal{P}(k)}{dt} + \tilde{\Delta}_V^\nu(k) \mathcal{P}(k) - \mathcal{P}(k) \tilde{\Delta}_V^\nu(k)$$

Comparing this expression with that for $\tilde{\lambda}(k)$ in (18.48) establishes the equality for $\dot{\mathcal{P}}(k)$ in (18.51). On a similar note,

$$\dot{\mathcal{P}}^+(k) = \frac{d_t \mathcal{P}^+(k)}{dt} = \frac{d_{\mathcal{O}_k^+} \mathcal{P}^+(k)}{dt} + \tilde{\nu}(\varphi(k)) \mathcal{P}^+(k) - \mathcal{P}^+(k) \tilde{\nu}(\varphi(k))$$

Comparing this expression with that for $\dot{\mathcal{P}}^+(k)$ in (18.50) establishes the equality for $\dot{\mathcal{P}}^+(k)$ in (18.51).

Solution 18.11 (pp. 375): Time derivative of $(I + H\phi K)$

We have

$$[I + H\phi K] = [I + H\phi \mathcal{G}] = [I - \mathcal{G} + H\phi \mathcal{G}] = H\phi \mathcal{G} \quad \text{(C.47)}$$
Thus,
\[
\frac{d[I + H\Phi K]}{dt} = \frac{dH\phi}{dt} [I + H\Phi \dot{K}] = \frac{dH\phi}{dt} [I + H\Phi \dot{K}] = H\phi \left[(\tilde{\Delta}_\omega \phi - \tilde{\nabla}_\omega + \varepsilon_\phi \tilde{A}_V \phi) \frac{\partial}{\partial \theta} + \tau \lambda H^* D^{-1} + \tilde{\nabla}_\omega \phi \right]
\]

\textbf{Solution 18.12 (pp. 376): Time derivative of } [I + H\Phi K] \textbf{D}

We have
\[
\frac{d[I + H\Phi K]}{dt} = \frac{d[I + H\Phi K]}{dt} [I + H\Phi K] \frac{dD}{dt}
\]

\textbf{Solution 18.13 (pp. 376): Time derivative of } [I - H\Psi K]

Since [I - H\Psi K]^{-1} = [I + H\Phi K] it follows from (A.28) on page 402 that
\[
\frac{d[I - H\Psi K]}{dt} = -[I + H\Phi K] \frac{d[I - H\Psi K]}{dt} [I - H\Psi K]
\]

\textbf{Solution 18.14 (pp. 376): Sensitivities of } [I + H\Phi K] \textbf{ and } [I - H\Psi K]

The expressions are obtained by starting with the time derivative expressions in (18.61) and (18.63) and using the standard process for converting them into sensitivity expressions.
Solution 18.15 (pp. 377): Sensitivity of \(\log \{ \det \{ \mathcal{M} \} \} \)

1. From (9.53) on page 180, we have

\[
\det \{ \mathcal{M} \} = \prod_{k=1}^{n} \det \{ \mathcal{D}(k) \}
\]

Hence,

\[
\log \{ \det \{ \mathcal{M} \} \} = \sum_{k=1}^{n} \log \{ \det \{ \mathcal{D}(k) \} \}
\] \hspace{1cm} \text{(C.48)}

Differentiating with respect to \(t \) we have

\[
\frac{d \log \{ \det \{ \mathcal{M} \} \}}{dt} \overset{\text{C.48}}{=} \frac{d}{dt} \sum_{k=1}^{n} \log \{ \det \{ \mathcal{D}(k) \} \} = \sum_{k=1}^{n} \frac{d \log \{ \det \{ \mathcal{D}(k) \} \}}{dt} = \sum_{k=1}^{n} \frac{d}{dt} \det \{ \mathcal{D}^{-1}(k) \} \dot{\mathcal{D}}(k)
\]

\[
= \text{Trace} \left\{ \mathcal{D}^{-1} \dot{\mathcal{D}} \right\} \overset{\text{18.43a}}{=} \text{Trace} \left\{ \mathcal{D}^{-1} \mathcal{H} \dot{\mathcal{H}}^* \right\}
\]

To establish the first expression in (18.66), differentiate both sides by \(\dot{\theta}_i \) and use (18.53). Use the component level expressions in (18.55) to establish the latter half of (18.66).

2. For (18.68), we have

\[
2 \text{Trace} \{ \mathcal{P} \Omega \mathcal{H}_i^\omega \} \overset{\text{A.22}}{=} 2 \text{Trace} \{ \mathcal{H}_i^\omega \mathcal{P} \Omega \}
\]

\[
\overset{\text{A.22}}{=} \text{Trace} \{ \mathcal{H}_i^\omega \mathcal{P} \Omega \} + \text{Trace} \{ [\mathcal{H}_i^\omega]^* \mathcal{P} \Omega \}
\]

\[
\overset{\text{A.22,A.21}}{=} \text{Trace} \{ \mathcal{H}_i^\omega \mathcal{P} \Omega \} - \text{Trace} \{ \mathcal{P} \mathcal{H}_i^\omega \}
\]

\[
= \text{Trace} \{ \mathcal{H}_i^\omega \mathcal{P} \Omega \} - \text{Trace} \{ \mathcal{P} \mathcal{H}_i^\omega \}
\]

\[
= \text{Trace} \{ [\mathcal{H}_i^\omega] [\mathcal{P} - \mathcal{P} \mathcal{H}_i^\omega] \Omega \}
\]

\[
= \text{Trace} \{ [\mathcal{H}_i^\omega] [\mathcal{P} - \mathcal{P} \mathcal{H}_i^\omega] \Omega \}
\]

\[
\overset{\text{18.54g}}{=} \text{Trace} \{ [\tilde{\lambda}_{\theta_i} - \mathcal{E}_\psi \tilde{\lambda}_{\theta_i} \mathcal{E}_\psi^* \mathcal{P} \Omega] \}
\]

\[
\overset{\text{10.12}}{=} \text{Trace} \{ [\tilde{\lambda}_{\theta_i} - \mathcal{E}_\psi \tilde{\lambda}_{\theta_i} \mathcal{E}_\psi^* \mathcal{P} \Omega] \mathcal{H}^* \mathcal{D}^{-1} \mathcal{H} \}
\]

\[
= \text{Trace} \{ [\mathcal{D}^{-1} \mathcal{H} \mathcal{E}_\psi \mathcal{D}^{-1} \mathcal{H} \mathcal{P} \Omega] \mathcal{H}^* \mathcal{D}^{-1} \mathcal{H} \}
\]

\[
= \text{Trace} \{ [\mathcal{D}^{-1} \mathcal{H} \mathcal{E}_\psi \mathcal{D}^{-1} \mathcal{H} \mathcal{P} \Omega] \mathcal{H}^* \mathcal{D}^{-1} \mathcal{H} \}
\]

The last equality above uses the zero block-diagonal elements property of \(\tilde{\psi} \). The last expression is the same as (18.66), and establishes the equivalency of (18.66) and (18.67).
3. For (18.68), we have

\[
\frac{d \log \{ \det \{ M \} \}}{dt} \overset{A.29}{=} \text{Trace} \{ M^{-1} \dot{M} \}
\]
\[
\overset{9.51,18.23}{=} \text{Trace} \left\{ [I - H\psi K]^{*} D^{-1} [I - H\psi K] H\phi \right\} \left[(\tilde{\Delta}_V^{\omega} + \mathcal{E}_\phi \tilde{\Delta}_V^{v}) \phi M - M \phi^* (\tilde{\Delta}_V^{\omega} \mathcal{E}_\phi^* + \tilde{\Delta}_V^{\omega}) \right] \phi^* H^*
\]
\[
\overset{9.45}{=} \text{Trace} \left\{ D^{-1} H\psi \left[(\tilde{\Delta}_V^{\omega} + \mathcal{E}_\phi \tilde{\Delta}_V^{v}) \phi M - M \phi^* (\tilde{\Delta}_V^{\omega} \mathcal{E}_\phi^* + \tilde{\Delta}_V^{\omega}) \right] \psi^* H^* \right\}
\]
\[
\overset{10.12}{=} 2 \text{Trace} \left\{ \left[(\tilde{\Delta}_V^{\omega} + \mathcal{E}_\phi \tilde{\Delta}_V^{v}) \phi M - M \phi^* (\tilde{\Delta}_V^{\omega} \mathcal{E}_\phi^* + \tilde{\Delta}_V^{\omega}) \right] \Omega \right\}
\]
\[
\overset{10.38a}{=} 2 \text{Trace} \left\{ \tilde{\Delta}_V^{\omega} \phi M \Omega \right\} + 2 \text{Trace} \left\{ \mathcal{E}_\phi \tilde{\Delta}_V^{v} \phi M \Omega \right\}
\]
\[
\overset{10.38a}{=} 2 \text{Trace} \left\{ \tilde{\Delta}_V^{\omega} \mathcal{P} \Omega \right\} + 2 \text{Trace} \left\{ \mathcal{E}_\phi \tilde{\Delta}_V^{v} \phi M \Omega \right\}
\]

The last equality uses the zero diagonal elements property of \(\phi - \psi \).

Solutions for Chapter 19

Solution 19.1 (pp. 387): Time derivative of \(D^{\frac{1}{2}} \)

We have

\[
D = \frac{d D^{\frac{1}{2}} \cdot D^{\frac{1}{2}}}{dt} = \frac{d D^{\frac{1}{2}}}{dt} D^{\frac{1}{2}} + D^{\frac{1}{2}} \frac{d D^{\frac{1}{2}}}{dt}
\]

For a system with 1 degree of freedom joints, the diagonal block elements of \(D^{\frac{1}{2}} \) are in fact scalar values, so that \(D^{1/2} \) and \(\frac{d D^{1/2}}{dt} \) commute. Thus, the above can be transformed into

\[
\frac{d D^{\frac{1}{2}}}{dt} = \frac{1}{2} D^{-\frac{1}{2}} D^{\frac{1}{2}} \overset{18.43a}{=} \frac{1}{2} D^{-\frac{1}{2}} H\lambda H^*
\]

Solution 19.2 (pp. 391): Non-working \(C(\theta, \eta) \) Coriolis Vector

\[
\eta^* C(\theta, \eta) \overset{19.29}{=} \eta^* D^{-\frac{1}{2}} H\psi \left[\tilde{\Delta}_V^{\omega} H - \frac{1}{2} \left(\tilde{\Delta}_V^{\omega} \mathcal{P} + \mathcal{P} \tilde{\Delta}_V^{\omega} \right) \right] \mathcal{E}_\phi^* + \mathcal{E}_\phi \tilde{\lambda} \tilde{\lambda} \mathcal{E}_\psi^* + \mathcal{E}_\psi \tilde{\lambda} \mathcal{E}_\phi^* \right] \n\]
Observe that
\[
\eta^* \mathcal{D}^{-\frac{1}{2}} \mathbf{H} \psi 19.23 = \hat{\theta}^* \mathbf{H} [I + \mathbf{H} \phi] \mathbf{H} \psi 9.45 = \hat{\theta}^* \mathbf{H} \phi
\]

Thus,
\[
\eta^* \mathcal{C}(\theta, \eta) = \hat{\theta}^* \mathbf{H} \phi \left[\nabla \mathbf{M} - \frac{1}{2} \left(\tilde{\Delta}_V^\omega \mathcal{P} + \mathcal{P} \tilde{\Delta}_V^\omega \right) + \varepsilon_\phi \left\{ \tilde{\Delta}_V^\omega \mathcal{P} + \mathcal{P} \tilde{\Delta}_V^\omega \right\} \varepsilon_\phi + \varepsilon_\psi \hat{\lambda} - \hat{\lambda} \varepsilon_\phi^* \right] \psi
\]
\[
\mathcal{C}(\theta, \eta) = \hat{\theta}^* \mathbf{H} \phi \left[\nabla \mathbf{M} - \frac{1}{2} \left(\tilde{\Delta}_V^\omega \mathcal{P} + \mathcal{P} \tilde{\Delta}_V^\omega \right) + \varepsilon_\phi \left\{ \tilde{\Delta}_V^\omega \mathcal{P} + \mathcal{P} \tilde{\Delta}_V^\omega \right\} \varepsilon_\phi + \varepsilon_\psi \hat{\lambda} - \hat{\lambda} \varepsilon_\phi^* \right] \psi
\]

Since the matrix expression in the middle is skew-symmetric, the expression evaluates to zero.

Solution 19.3 (pp. 392): Expression for \(\ell \)

It follows from \(\ell^{-1} = \mathbf{m} \) and (A.28) on page 402 that
\[
\ell A.28 = -\ell \mathbf{m} \ell
\]
\[
= -\mathcal{D}^{-\frac{1}{2}} [I - \mathbf{H} \phi] \mathbf{H} \phi \left[\tilde{\Delta}_V^\omega \phi \mathbf{K} + \left(I + \bar{\tau} \right) \hat{\lambda} \mathcal{D}^{-1} \right] [I - \mathbf{H} \phi] \mathbf{K}
\]

Solution 19.4 (pp. 392): Sensitivity of Innovations factors

The expressions are obtained by starting with the time derivative expressions in (19.25) and (19.33) and using the standard process for converting them into sensitivity expressions.
Solutions for Appendix A

Solution A.1 (pp. 397): Norm of \tilde{s}

We have

$$\|\tilde{s}x\|^2 = -x^*\tilde{s}sx = -x^*[ss^* - \|s\|^2I]x = \|s\|^2\|x\|^2 - (x^*s)^2$$

Clearly the above achieves a maximum of $\|s\|^2\|x\|^2$ when $x^*s = 0$. Hence, using (A.2) it follows that $\|\tilde{s}\| = \|s\|$.

Solution A.2 (pp. 401): Product gradient and chain rules

1. The (k, j) element of $\nabla_x [f(x)g(x)]$ is

$$\nabla_x [f(x)g(x)](k, j) = \frac{\partial f_k \cdot g}{\partial x_j} = \frac{\partial f_k}{\partial x_j} \cdot g + f_k \cdot \frac{\partial g}{\partial x_j} \quad (C.49)$$

On the other hand, the (k, j) element of $\nabla_x f(x) \cdot g(x) + f(x) \cdot \nabla_x g(x)$, the right-hand side of (A.25), is given by:

$$\left[\nabla_x f(x) \cdot g(x) + f(x) \cdot \nabla_x g(x)\right](k, j) = \frac{\partial f_k}{\partial x_j} \cdot g + f_k \cdot \frac{\partial g}{\partial x_j}$$

This is identical to the expression in (C.49). Thus, the component-level values on both sides of (A.25) agree and establish (A.25).

2. The (k, j) element of $\nabla_x f(x)$ is

$$\left[\nabla_x f(x)\right](k, j) = \frac{\partial f_k}{\partial x_j} = \sum_{i=1}^{n} \frac{\partial f_k}{\partial y_i} \cdot \frac{\partial y_i}{\partial x_j} \quad (C.50)$$

On the other hand, the (k, j) element of $\nabla_y f(y) \cdot \nabla_x y(x)$, the right-hand side of (A.26), is given by:

$$\left[\nabla_y f(y) \cdot \nabla_x y(x)\right](k, j) = \sum_{i=1}^{n} \left[\nabla_y f(y)\right](k, i) \cdot \left[\nabla_x y(x)\right](i, j) = \sum_{i=1}^{n} \frac{\partial f_k}{\partial y_i} \cdot \frac{\partial y_i}{\partial x_j}$$

This is identical to the expression in (C.50). Thus, the component-level values on both sides of (A.26) agree and establish (A.26).
Solutions for Appendix B

Solution B.1 (pp. 403): Time derivative of a rotation matrix

Since rotation matrices are orthogonal, \(\dot{\mathbf{R}} \mathbf{R}^* = I \). Differentiating this with respect to time yields

\[
\dot{\mathbf{R}} \mathbf{R}^* + \mathbf{R} \dot{\mathbf{R}}^* = 0 \quad \Rightarrow \quad \dot{\mathbf{R}} \mathbf{R}^* = -[\dot{\mathbf{R}} \mathbf{R}^*]^*
\]

This implies that \(\dot{\mathbf{R}} \mathbf{R}^* \) is skew-symmetric, i.e., there exists a 3-vector \(\mathbf{w} \), such that,

\[
\dot{\mathbf{R}} \mathbf{R}^* = -\dot{\mathbf{w}}
\]

This establishes the result.

Solution B.2 (pp. 405): Derivation of the Euler–Rodrigues formula

1. While this can be established by direct verification using an arbitrary vector \(\mathbf{s} \) we use alternative derivation. Thus

\[
\tilde{\mathbf{s}}^3 \overset{\text{A.1}}{=} \tilde{\mathbf{s}} \left(s s^* - \|s\|^2 I \right) = -\sigma^2 \tilde{\mathbf{s}} \tag{C.51}
\]

We know that the characteristic polynomial of \(\tilde{\mathbf{s}} \) is a polynomial of order 3 and, that it is the unique polynomial of order 3 that \(\tilde{\mathbf{s}} \) satisfies as well. It follows therefore, from (C.51) that the characteristic polynomial of \(\tilde{\mathbf{s}} \) is \(\lambda^3 + \sigma^2 \lambda \).

2. We have that

\[
\mathbf{R}_B(\mathbf{n}, \theta) \overset{\text{B.4}}{=} \exp[\tilde{\mathbf{n}} \theta] = I + \tilde{\mathbf{n}} \theta + \frac{\tilde{\mathbf{n}}^2 \theta^2}{2!} + \frac{\tilde{\mathbf{n}}^3 \theta^3}{3!} + \ldots
\]

\[
\overset{\text{C.51}}{=} I + \sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k+1}}{(2k+1)!} \tilde{\mathbf{n}} + \sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k+2}}{(2k+2)!} \tilde{\mathbf{n}}^2
\]

\[
= I + \sin(\theta) \tilde{\mathbf{n}} + \left[1 - \cos(\theta) \right] \tilde{\mathbf{n}}^2
\]

\[
\overset{\text{A.1}}{=} \cos(\theta) I_3 + \left[1 - \cos(\theta) \right] \mathbf{n}^* + \sin(\theta) \tilde{\mathbf{n}}
\]

Solution B.3 (pp. 405): Trace and characteristic polynomial of a rotation matrix

1. The result follows by applying the trace operation to (B.6) on page 405 and noting that \(\text{Trace}\{1\} = 3, \text{Trace}\{\mathbf{n}^*\} = 1, \text{and Trace}\{\tilde{\mathbf{n}}\} = 0 \).

2. Since \(\mathbf{R} \) is a \(3 \times 3 \) matrix, its characteristic polynomial is of the form \(\lambda^3 + a\lambda^2 + b\lambda + c \) for some constants \(a, b \) and \(c \). From matrix theory we know that \(-a \) is equal to the trace \(\gamma \), and \(-c \) is the determinant \(1 \) of the matrix. That is the polynomial is of the form \(\lambda^3 - \gamma \lambda^2 + b\lambda - 1 \). Furthermore, we know that \(1 \) is an eigen-value of \(\mathbf{R} \) and hence, must satisfy the characteristic polynomial. Using this fact implies that \(b = \gamma \), establishing the result.
3. Use the second expression from (B.6) to verify that

\[\mathcal{R} n = n \]

This establishes that \(n \) is an eigen-vector with eigen-value 1.

4. Since \(\tilde{n}_\tilde{n} \tilde{n} \) is a symmetric matrix, from (B.6) we obtain

\[\mathcal{R} - \mathcal{R}^* = 2 \sin(\theta) \tilde{n} \]

from which (B.9) follows.

Solution B.4 (pp. 406): Angular velocity from the angle/axis rates

Differentiating \(n^* n = 1 \), we obtain \(n^* \dot{n} = 0 \). Thus

\[\tilde{n} \tilde{n} \tilde{n} = \tilde{n} [n n^* - n^* n I] = 0 \quad (C.52) \]

Also, it is easy to verify that

\[\tilde{n} \tilde{n} \tilde{n} = -\tilde{n} \quad (C.53) \]

Using these cross product identities, we have,

\[\tilde{\omega} = \mathcal{B} \mathcal{R}_I \mathcal{R}_{I_b} = [I_3 + (1 - \cos(\theta)) \tilde{n} \tilde{n} - \sin(\theta) \tilde{n}] \times \]

\[\left[(\sin(\theta) \tilde{n} \tilde{n} + \cos(\theta) \tilde{n}) \dot{\theta} + (\sin(\theta) + (1 - \cos(\theta)) \tilde{n}) \tilde{n} \right. \]

\[+ (1 - \cos(\theta)) \tilde{n} \tilde{n} \]

\[= \left[\sin(\theta) \tilde{n} \tilde{n} + \cos(\theta) \tilde{n} - \sin^2(\theta) \tilde{n} \tilde{n} \tilde{n} - \sin(\theta) \cos(\theta) \tilde{n} \tilde{n} \right. \]

\[+ \sin(\theta)(1 - \cos(\theta)) \tilde{n} \tilde{n} \tilde{n} + \cos(\theta)(1 - \cos(\theta)) \tilde{n} \tilde{n} \tilde{n} \]

\[+ \sin(\theta)(1 - \cos(\theta)) \tilde{n} \tilde{n} \tilde{n} + (1 - \cos(\theta))^2 \tilde{n} \tilde{n} \tilde{n} \tilde{n} + (1 - \cos(\theta))^2 \tilde{n} \tilde{n} \tilde{n} \]

\[= \tilde{n} \dot{\theta} + \sin(\theta) \tilde{n} + (1 - \cos(\theta)) \tilde{n} \tilde{n} - \sin^2(\theta) \tilde{n} \tilde{n} \]

\[- (1 - \cos(\theta))^2 \tilde{n} \tilde{n} + (1 - \cos(\theta))^2 \tilde{n} \tilde{n} \]

\[= \tilde{n} \dot{\theta} + \sin(\theta) \tilde{n} - (1 - \cos(\theta)) \tilde{n} \tilde{n} \]

\[= \tilde{n} \dot{\theta} + \sin(\theta) \tilde{n} - (1 - \cos(\theta)) \tilde{n} \tilde{n} \quad (C.54) \]

Hence

\[\tilde{\omega} = n \dot{\theta} + \sin(\theta) \tilde{n} - (1 - \cos(\theta)) \tilde{n} \tilde{n} \]

This establishes (B.10).
Solution B.5 (pp. 406): Angle/axis rates from the angular velocity
We have

\[
\sin(\theta) - (1 - \cos \theta) \tilde{n}, \quad n \left[\frac{1}{2} [\tilde{n} - \cot(\theta/2) \tilde{n} \tilde{n}] \right] n^* \]

\[
= \frac{1}{2} \left[- (1 - \cos \theta) \tilde{n} \tilde{n} + (1 - \cos \theta) \cot(\theta/2) \tilde{n} \tilde{n} + \sin(\theta) \tilde{n} - \sin(\theta) \cot(\theta/2) \tilde{n} \tilde{n} \right] + nn^*
\]

(C.55)

However,

\[
\tilde{n} \tilde{n} = nn^* - I, \quad \tilde{n} \tilde{n} \tilde{n} = -\tilde{n}
\]

\[
\sin(\theta) \cot(\theta/2) = 2 \cos^2(\theta/2), \quad (1 - \cos \theta) \cot(\theta/2) = \sin(\theta/2)
\]

Using these in (C.55) leads to

\[
\sin(\theta) - (1 - \cos \theta) \tilde{n}, \quad n \left[\frac{1}{2} [\tilde{n} - \cot(\theta/2) \tilde{n} \tilde{n}] \right] n^* \]

\[
= \frac{1}{2} \left[- (1 - \cos \theta) \tilde{n} \tilde{n} - \sin \theta) \tilde{n} + \sin(\theta) \tilde{n} - (1 + \cos(\theta/2)) \tilde{n} \tilde{n} \right] + nn^*
\]

\[
= -\tilde{n} \tilde{n} + nn^* = I
\]

This implies that expressions in (B.11) and (B.10) are indeed inverses of each other, establishing the result.

Solution B.6 (pp. 407): Quaternion expression for a rotation matrix
Using \(\cos(\theta) = 2 \cos^2(\theta/2) - 1 = 1 - 2 \sin^2(\theta/2) \), \(\sin(\theta) = 2 \sin(\theta/2) \cos(\theta/2) \), and (B.12) in (B.6), we obtain

\[
\mathcal{I}_B(n, \theta) = \cos(\theta) I_3 + [1 - \cos(\theta)] nn^* + \sin(\theta) \tilde{n} \]

\[
\overset{\text{B.12}}{=} (2q_0^2 - 1)I_3 - qq^* + 2q_0 \tilde{q} \quad \overset{\text{B.12}}{=} (q_0^2 - q^* q)I_3 - qq^* + 2q_0 \tilde{q}
\]

This establishes the first equality in (B.14). The remaining equalities follow from using, and manipulating, 3-vector cross-product identities.
Solution B.7 (pp. 407): Basic properties of unit quaternions

1. We have

\[\mathcal{R}(\tilde{q})\mathcal{R}^*(\tilde{q}) = \begin{bmatrix} I + 2\tilde{q}^2 & 0 \\ 0 & I \end{bmatrix} - 4\tilde{q}_0 \tilde{q}^2 \]

= \[I + 4\tilde{q}^2 + 4\tilde{q}^4 - 4\tilde{q}_0^2 \tilde{q}^2 \]

= \[I + 4\tilde{q}^2(I + \tilde{q}^2 - \tilde{q}_0^2 I) \]

\[\stackrel{A.1}{=} I + 4\tilde{q}^2(q^* q I + q q^* - q^* q I) = I \]

2. It is easy to verify using (B.14) that \(\mathcal{R}(\tilde{q}) = \mathcal{R}(-\tilde{q}) \).

3. Once again it is easy to check from (B.14) that \(\mathcal{R}(q_0, -\tilde{q}) = \mathcal{R}^*(q_0, q) \). Since the inverse of a rotation matrix is its transpose, the result follows.

4. We have

\[\text{Trace}\{\mathcal{R}(\tilde{q})\} = 1 + 2\cos(\theta) = 1 + 4\cos^2(\theta/2) - 2 \stackrel{B.12}{=} 4\tilde{q}_0^2 - 1 \]

establishing (B.16).

5. Exercise B.3 established that \(\mathbf{n} \) is an eigen-vector of \(\mathcal{R} \) with eigen-value 1. Since \(q = \sin(\theta/2)\mathbf{n}, q \) is also an eigen-vector of \(\mathcal{R} \) with eigen-value 1.

6. From (B.9) we obtain

\[\tilde{q} \stackrel{B.12}{=} \sin(\theta/2)(\mathcal{R} - \mathcal{R}^*)/(2\sin(\theta)) = (\mathcal{R} - \mathcal{R}^*)/(4\cos(\theta/2)) \]

\[\stackrel{B.12}{=} (\mathcal{R} - \mathcal{R}^*)/(4\tilde{q}_0) \]

This establishes (B.18).

Solution B.8 (pp. 409): Properties of \(\mathbf{E}_- \) and \(\mathbf{E}_+ \) matrices

1. The identities in (B.20) are established by evaluating and simplifying the various products.

2. Similarly, the identities in (B.21) are established by evaluating and simplifying the various products.

3. These identities are easily established by examining (B.19).

4. We have

\[\mathbf{E}_+(p)q = \begin{bmatrix} p_0 q + pq_0 + \tilde{p}q \\ p_0 q_0 - p^* q \end{bmatrix} = \begin{bmatrix} q_0 I - \tilde{q} \\ -q^* \end{bmatrix} \begin{bmatrix} p \\ p_0 \end{bmatrix} = \mathbf{E}_-(q)p \]

establishing (B.23).
5. We have

\[E_-(q)E_+(p) = \begin{pmatrix} q_0I_3 - \tilde{q} & q \\ -q^* & q_0 \end{pmatrix} \begin{pmatrix} p_0I_3 + \tilde{p} \\ -p^* \\ p_0 \end{pmatrix} \]

\[= \begin{pmatrix} (q_0I_3 - \tilde{q})(p_0I_3 + \tilde{p}) - qp^* \\ -q^*(p_0I_3 + \tilde{p}) + q_0p^* \\ q_0p_0I_3 - \tilde{q}p_0 + q_0\tilde{p} - \tilde{q}p - qp^* \\ -q^*p_0 - q^*\tilde{p} - q_0p^* \end{pmatrix} \begin{pmatrix} (q_0I_3 - \tilde{q})p + q_0p_0 \\ -q^*p + q_0p_0 \end{pmatrix} \]

Similarly,

\[E_+(p)E_-(q) = \begin{pmatrix} p_0I_3 + \tilde{p} \\ -p^* \\ p_0 \end{pmatrix} \begin{pmatrix} q_0I_3 - \tilde{q} \\ -q^* \\ q_0 \end{pmatrix} \]

\[= \begin{pmatrix} q_0p_0I_3 - \tilde{q}p_0 + q_0\tilde{p} - \tilde{q}p - qp^* \\ -q^*p_0 + p^*\tilde{q} - q_0p^* \\ -q^*p + q_0p_0 \end{pmatrix} \begin{pmatrix} q_0p - \tilde{q}p + q_0p_0 \end{pmatrix} \]

Comparing the matrix terms in this expression with those in (C.56) shows that they are the same. This establishes (B.24a).

A similar explicit evaluation process establishes (B.24b). (B.24c) is simply the transpose of (B.24b), while (B.24d) is the transpose of (B.24a).

6. Since \(q \) is an eigen-vector of \(\mathfrak{R}(q, q_0) \) from (B.17), (B.25) follows directly from the expression for \(\mathbb{T}(q) \) in (B.20).

Solution B.9 (pp. 409): Composition of unit quaternions

1. The (B.27) follows from direct evaluation of the product in (B.26).

The unit norm property of \(r = p \otimes q \) follows from

\[\|r\|^2 = r^*r = q^*E^*_+(p)E_+(p)q = B.20 = q^*q = 1 \]

2. Define \(r \triangleq p \otimes q = (r, r_0) \). The (B.28) identity can be established by the brute force use of (B.14) on both sides of the equation and a series of algebraic manipulations. We however, use a simpler approach, and show that \(r \) defined by (B.27) is an eigen-vector of \(\mathbb{T}(p)\mathbb{T}(q) \) with eigenvalue 1 as required by (B.25).
\[T(p)T(q) = \begin{pmatrix} R(p)R(q) & 0 \\ 0 & 1 \end{pmatrix} B.21 = E_+(p)E_-(p)E_+(q)E_-(q) \]

Thus,

\[T(p)T(q)r B.26 = E + (p)E(r)q - (p)E + (q)E(r)q - (q)E(r)q \]

This establishes that \(r \) is an eigen-vector corresponding to the eigen-value of 1, and hence it is the quaternion corresponding to the \(T(p)T(q) \) rotational transformation and verifies \((B.28) \).

3. Now

\[p \otimes (q \otimes r) B.26 = E_+(p)E_-(r)q B.24a = E_-(r)E_+(p)q \]

\[= E_-(r)(p \otimes q) B.26 = (p \otimes q) \otimes r \]

4. We have

\[p^{-1} \otimes q B.26 = E_+(p^{-1})q B.22 = E^+(p)q \]

establishing the first half of \((B.30) \). For the latter half,

\[p \otimes q^{-1} B.26 = E_-(q^{-1})p B.22 = E^-(q)p \]

Solution B.10 (pp. 409): The quaternion identity element

It is easy to verify that \(E_+(e_q) = E_-(e_q) = I_4 \). Thus

\[q \otimes e_q B.26 = E_-(e_q)q = q \]

The latter identity in \((B.31) \) can be established by explicitly evaluating \(E_+(q)q^{-1} \) and verifying that it is simply \(e_q \).

Solution B.11 (pp. 410): Unit quaternion products and inverses

1. Now

\[(p \otimes q) \otimes (q^{-1} \otimes p^{-1}) B.29 = p \otimes (q \otimes q^{-1}) \otimes p^{-1} B.31 = p \otimes p^{-1} = e_q \]

This establishes that \((q^{-1} \otimes p^{-1}) \) is the inverse of \(p \otimes q \).
2. Now \(\mathbf{r} \overset{\text{B.26}}{=} E_+ (\mathbf{p}) \mathbf{q} \). Thus

\[
\mathbf{q} \overset{\text{B.20}}{=} E_+^* (\mathbf{p}) \mathbf{r} \overset{\text{B.22}}{=} E_+ (\mathbf{p}^{-1}) \mathbf{r} \overset{\text{B.26}}{=} \mathbf{p}^{-1} \otimes \mathbf{r}
\]

A similar derivation leads to \(\mathbf{p} = \mathbf{r} \otimes \mathbf{q}^{-1} \).

Solution B.12 (pp. 410): Transforming vectors with unit quaternions
We have

\[
\begin{bmatrix}
^I \mathbf{x} \\
0
\end{bmatrix} = \begin{bmatrix}
^I \mathbf{R}_B (\mathbf{q}) & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
^B \mathbf{x} \\
0
\end{bmatrix} \overset{\text{B.21}}{=} E_+ (\mathbf{q}) E_+^* (\mathbf{q}) \begin{bmatrix}
^B \mathbf{x} \\
0
\end{bmatrix} \overset{\text{B.22}}{=} E_+ (\mathbf{q}) E_- (\mathbf{q}^{-1}) \begin{bmatrix}
^B \mathbf{x} \\
0
\end{bmatrix} \overset{\text{B.26}}{=} \mathbf{q} \otimes \begin{bmatrix}
^B \mathbf{x} \\
0
\end{bmatrix} \otimes \mathbf{q}^{-1}
\]

Solution B.13 (pp. 410): Quaternion rates from the angular velocity
With \(q_0 = \cos (\theta / 2) \),

\[
\dot{q}_0 = -\frac{1}{2} \sin (\theta / 2) \dot{\theta} \overset{\text{B.11}}{=} -\frac{1}{2} \sin (\theta / 2) \mathbf{n}^* \mathbf{B} \omega = -\frac{1}{2} q^* \mathbf{B} \omega
\]

This establishes the lower half of the first equality in (B.34).

Also, with \(q = \sin (\theta / 2) \mathbf{n} \),

\[
\dot{q} = -\frac{1}{2} \cos (\theta / 2) \dot{\theta} \mathbf{n} + \sin (\theta / 2) \dot{\mathbf{n}}
\]

\[
\overset{\text{B.11}}{=} \frac{1}{2} q_0 \mathbf{n} \mathbf{n}^* \mathbf{B} \omega + \frac{\sin (\theta / 2)}{2} \left[\mathbf{n} - \cot (\theta / 2) \mathbf{n} \mathbf{n}^* \mathbf{B} \mathbf{B} \right] \mathbf{B} \omega
\]

\[
= \frac{1}{2} [q_0 \mathbf{n} \mathbf{n}^* + \mathbf{n} \mathbf{n} - \cos (\theta / 2) \mathbf{n} \mathbf{n}^* \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B} \omega
\]

\[
= \frac{1}{2} [q_0 \mathbf{n} \mathbf{n}^* + \mathbf{n} \mathbf{n} - q_0 \mathbf{n} \mathbf{n}^* \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B} \omega
\]

\[
= \frac{1}{2} [q_0 (\mathbf{n} \mathbf{n}^* - \mathbf{n} \mathbf{n}^*) + \mathbf{n} \mathbf{n}^* \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B} \omega
\]

This establishes the upper half of the first equality in (B.34).

The second equality in (B.34) is a rearrangement of the first one.

The third equality follows by using the definition of \(E_+ (\mathbf{q}) \) from (B.19).

The last equality follows from (B.26).
Solution B.14 (pp. 410): Constant unit quaternion norms

1. The rate of change of the norm of $q(t)$ is given by

$$\frac{d}{dt} \|q(t)\|^2 = \frac{1}{2} \frac{dq^*q}{dt} = \frac{1}{2} q^* \dot{q} \overset{B.34}{=} \frac{1}{2} q^* E_+ (q) \begin{bmatrix} B \omega \\ 0 \end{bmatrix} \overset{B.22,B.26}{=} \frac{1}{2} e^*_q \begin{bmatrix} B \omega \\ 0 \end{bmatrix} = 0$$

2. From the above we have that

$$0 = q^* \dot{q} = q^* \ddot{q} + q_0 \dot{q}_0$$

from which (B.35) follows.

Solution B.15 (pp. 411): Unit quaternion rate to angular velocity

1. (B.36) follows by using (B.32) in (B.34). From this it follows that

$$\overset{B}{\omega} \overset{B.19}{=} 2 [q_0 I_3 - \tilde{q}] \dot{q} - q \dot{q}_0 \overset{B.35}{=} 2 [q_0 I_3 - \tilde{q}] \dot{q} + q (q^* \ddot{q} / q_0)$$

from which (B.37) follows.

2. We have

$$\begin{bmatrix} \overset{\mathbb{I}}{\omega} \\ 0 \end{bmatrix} \overset{B.33}{=} q \otimes \begin{bmatrix} \overset{B}{\omega} \\ 0 \end{bmatrix} \otimes q^{-1} \overset{B.36}{=} 2 \dot{q} \otimes q^{-1} \overset{B.30}{=} 2 E^* \dot{q}$$

establishing (B.39). From this it follows that

$$\overset{\mathbb{I}}{\omega} \overset{B.19}{=} 2 [q_0 I_3 + \tilde{q}] \dot{q} - q \dot{q}_0 \overset{B.35}{=} 2 [q_0 I_3 + \tilde{q}] \dot{q} + q (q^* \ddot{q} / q_0)$$

establishing (B.41).

Solution B.16 (pp. 411): Quaternion double time derivatives

Differentiating (B.34) we have

$$\ddot{q} = \frac{1}{2} q \otimes \begin{bmatrix} \overset{B}{\omega} \\ 0 \end{bmatrix} + \frac{1}{2} \dot{q} \otimes \begin{bmatrix} \overset{B}{\omega} \\ 0 \end{bmatrix} \overset{B.34}{=} \frac{1}{2} q \otimes \begin{bmatrix} \overset{B}{\dot{\omega}} \\ 0 \end{bmatrix} + \frac{1}{2} \left\{ \frac{1}{2} q \otimes \begin{bmatrix} \overset{B}{\omega} \\ 0 \end{bmatrix} \right\} \otimes \begin{bmatrix} \overset{B}{\omega} \\ 0 \end{bmatrix}$$

$$\overset{B.27}{=} \frac{1}{2} q \otimes \begin{bmatrix} \overset{B}{\omega} \\ 0 \end{bmatrix} + \frac{1}{4} q \otimes (\| \overset{B}{\omega} \|^2 e_q)$$

establishing (B.42).

(B.43) follows by composing both sides of (B.42) with q^{-1} and rearranging terms.
Solution B.17 (pp. 412): Gibbs vector attitude representation

1. From Exercise (B.2) on page 405 it follows that

\[
\tilde{s}^3 = -\sigma^2 \tilde{s}, \quad \tilde{s}^5 = \sigma^4 \tilde{s}, \quad \ldots \quad \tilde{s}^{2k+1} = (-1)^k \sigma^{2k} \tilde{s}
\]

Thus,

\[
\tilde{s}^4 = -\sigma^2 \tilde{s}^2, \quad \tilde{s}^6 = \sigma^4 \tilde{s}^2, \quad \ldots \quad \tilde{s}^{2k+2} = (-1)^k \sigma^{2k} \tilde{s}^2
\]

Using these expressions for the powers of \(\tilde{s}\), we have

\[
[I - \tilde{s}]^{-1} = I + \tilde{s} + \tilde{s}^2 + \ldots = I + \sum_{k=0}^{\infty} (-1)^k \sigma^{2k} (\tilde{s}^2 + \tilde{s})^k
\]

\[
= I + (\tilde{s} + \tilde{s}^2) \sum_{k=0}^{\infty} (-1)^k \sigma^{2k} = I + (\tilde{s}^2 + \tilde{s})/(1 + \sigma^2)
\]

2.

\[
\mathcal{R}(s) \overset{B.44}{=} (I + \tilde{s}) + \tilde{s}(I + \tilde{s})^2/(1 + \sigma^2) = I + (\tilde{s}^3 + 2\tilde{s}^2 + (2 + \sigma^2)\tilde{s})/(1 + \sigma^2)
\]

\[
\overset{B.5}{=} I + 2(\tilde{s}^2 + \tilde{s})/(1 + \sigma^2)
\]

To establish that \(\mathcal{R}(s)\) is a rotation matrix it suffices to verify that \(\mathcal{R}(s)\mathcal{R}^*(s) = I\) and that \(\det\mathcal{R}(s) = 1\). Since

\[
I - \tilde{s}^2 = [I - \tilde{s}][I + \tilde{s}] = [I + \tilde{s}][I - \tilde{s}]
\]

it follows that

\[
\mathcal{R}(s) \overset{B.45}{=} [I - \tilde{s}]^{-1}[I + \tilde{s}] = [I + \tilde{s}][I - \tilde{s}]^{-1}
\]

and that

\[
\mathcal{R}^*(s) \overset{B.45}{=} [I + \tilde{s}]^{-1}[I - \tilde{s}]
\]

Thus,

\[
\mathcal{R}(s)\mathcal{R}^*(s) = [I - \tilde{s}]^{-1}[I + \tilde{s}][I + \tilde{s}]^{-1}[I - \tilde{s}] = I
\]

establishing the orthogonality of \(\mathcal{R}(s)\). Furthermore,

\[
d \triangleq \det[I - \tilde{s}] = \det[I - \tilde{s}]^* = \det[I + \tilde{s}]
\]

Hence, \(\det[I - \tilde{s}]^{-1} = 1/d\). Putting these together we have

\[
\det\mathcal{R}(s) = \det[I - \tilde{s}]^{-1} \det[I + \tilde{s}] = (1/d) d = 1
\]

This establishes that \(\mathcal{R}(s)\) is a rotation matrix since it is orthogonal and has determinant 1.
3. From (B.45) it follows that $\mathbf{R} - \mathbf{R} \tilde{s} = I + \tilde{s}$ from which the first half of (B.46) follows. Now let us assume that for some constants a, b and c to be determined, we have

$$-[I - \mathbf{R}][I + \mathbf{R}]^{-1} = a\mathbf{R}^2 + b\mathbf{R} + c\mathbf{I}$$

Then it follows that

$$-\mathbf{I} + \mathbf{R} = [I + \mathbf{R}][a\mathbf{R}^2 + b\mathbf{R} + c\mathbf{I}]$$

$$= a\mathbf{R}^3 + (a + b)\mathbf{R}^2 + (b + c)\mathbf{R} + c\mathbf{I}$$

$$\overset{B.8}{=} ((1 + \gamma)a + b)\mathbf{R}^2 + (-a\gamma + b + c)\mathbf{R} + (a + c)\mathbf{I}$$

For this to hold, the coefficients must satisfy the following linear equations:

$$(1 + \gamma)a + b = 0, \quad -a\gamma + b + c = 1, \quad a + c = -1$$

The solution to these equations is

$$a = -1/(1 + \gamma), \quad b = 1, \quad c = -\gamma/(1 + \gamma)$$

which establishes the result.

4. For \mathbf{s} to the axis of rotation, we need to show that it an eigen-vector of $\mathbf{R}(\mathbf{s})$ with eigen-value 1. We have

$$\mathbf{R}(\mathbf{s})\mathbf{s} \overset{B.45}{=} \left[I + 2(\tilde{s}^2 + \tilde{s})/(1 + \sigma^2)\right] = \mathbf{s}$$

This establishes the result.

5. With \mathbf{s} defined by (B.47), we have $\sigma = \tan(\theta/2)$. Thus,

$$\mathbf{R}(\mathbf{s}) \overset{B.45}{=} \mathbf{I} + 2(\sigma^2 \tilde{n}^2 + \sigma \tilde{n})/(1 + \sigma^2)$$

$$= \mathbf{I} + 2\cos^2(\theta/2)(\tan^2(\theta/2) \tilde{n}^2 + \tan(\theta/2) \tilde{n})$$

$$= \mathbf{I} + (1 - \cos(\theta))\tilde{n}^2 + \sin(\theta)\tilde{n}$$

The last expression agrees with the expression for a rotation matrix in (B.6) establishing the result.

Solution B.18 (pp. 413): Rotation of vectors

1. Since $\mathbf{R}(\mathbf{s})\mathbf{a} = \mathbf{b}$,

$$\mathbf{b} \overset{B.45}{=} \left[I - \tilde{s}\right]^{-1}[I + \tilde{s}]\mathbf{a} \implies [I - \tilde{s}]\mathbf{b} = [I + \tilde{s}]\mathbf{a}$$

from which (B.48) follows.

2. Since any vector \mathbf{s} satisfying (B.48) will generate a rotation matrix $\mathbf{R}(\mathbf{s})$ with the desired properties, we look for the general solution to the linear matrix equation
in (B.48). We now verify that $s_p \triangleq \lambda (\overline{a-b})(a+b)$ is a particular solution to the linear equations. Since a and b have the same norm, the $(a+b)$ and $(a-b)$ vectors are mutually orthogonal because
\[
(a+b)^*(a-b) = a^*a - a^*b + b^*a - b^*b = 0
\]

Now
\[
(\overline{a+b})s_p = -\lambda (\overline{a+b})(\overline{a+b})(a-b)
\]
\[
\overset{A.1}{=} -\lambda [(a+b)(a+b)^* - \|a+b\|^2 \mathbf{I}] (a-b) = (a-b)
\]

Thus, s_p is indeed a particular solution for (B.48). To determine all the remaining solutions observe that the class of homogeneous solutions for (B.48) is simply $s = \alpha (a+b)$ for an arbitrary scalar α. Combining the particular and homogeneous solution leads to the general solution in (B.49).
References

References

List of Notation

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^\omega)</td>
<td>the spatial vector with just the angular component of the spatial vector</td>
<td>9</td>
</tr>
<tr>
<td>(X^v)</td>
<td>the spatial vector with just the linear component of the spatial vector</td>
<td>9</td>
</tr>
<tr>
<td>(X_S)</td>
<td>(= \text{col}\left{X(\varphi(k))\right}_{k=1}^n) – a shifted version of a (X) stacked vector with the (k)th slot being occupied by the (X(\varphi(k))) element</td>
<td>353</td>
</tr>
<tr>
<td>([ij,k])</td>
<td>Christoffel symbols of the first kind</td>
<td>381</td>
</tr>
<tr>
<td>({k}_{ij})</td>
<td>Christoffel symbols of the second kind</td>
<td>381</td>
</tr>
<tr>
<td>(\text{col}\left{x(i)\right}_{i=m})</td>
<td>the stacked vector consisting of the (x(i)) elements for bodies (m) through (p) in the multibody system</td>
<td>48</td>
</tr>
<tr>
<td>(F_X)</td>
<td>representation of vector (x) in frame (F)</td>
<td>4</td>
</tr>
<tr>
<td>(I)</td>
<td>the identity matrix of appropriate dimension</td>
<td>12</td>
</tr>
<tr>
<td>(\mathbb{1}_{\text{set}})</td>
<td>indicator function that returns a 1 if the element belongs to the set, and 0 otherwise</td>
<td>138</td>
</tr>
<tr>
<td>(\nabla_{\theta}f(\theta))</td>
<td>the gradient of a the vector-valued function (f) with respect to the (\theta) vector</td>
<td>401</td>
</tr>
<tr>
<td>(\hat{z})</td>
<td>an operator related to the cross-product operator for spatial vectors</td>
<td>10</td>
</tr>
<tr>
<td>(\hat{l})</td>
<td>cross product operator (l \otimes [\cdot])</td>
<td>6</td>
</tr>
<tr>
<td>(\tilde{X})</td>
<td>(= \text{diag}\left{X(k)\right}_{k=1}^n) – a block-diagonal matrix with (X(k)) diagonal elements from the (X) stacked vector</td>
<td>353</td>
</tr>
<tr>
<td>({l}^{-})</td>
<td>same as (\hat{l})</td>
<td>6</td>
</tr>
<tr>
<td>(\overline{X})</td>
<td>(= \text{diag}\left{\overline{X}(k)\right}_{k=1}^n) – block-diagonal matrix with (\overline{X}(k)) diagonal elements from the (X) stacked vector</td>
<td>353</td>
</tr>
<tr>
<td>(\overline{x})</td>
<td>(= -{\overline{x}}^\ast) – cross-product related operator for spatial vectors</td>
<td>10</td>
</tr>
</tbody>
</table>
0 the zero matrix of appropriate dimension 9
i \not\in j node \(j \) is not the ancestor of node \(i \) in a digraph 136
i \prec j node \(j \) is the ancestor of node \(i \) in a digraph 136
j \not\succ i node \(j \) is not the ancestor of node \(i \) in a digraph 136
j \succ i node \(j \) is the ancestor of node \(i \) in a digraph 136

A
\(a(k) \) the Coriolis spatial acceleration for the \(k \)th link 77
\(a_B(k) \) the Coriolis acceleration for the \(k \)th body in the serial-chain equations of motion with body spatial acceleration, defined as the body frame derivative of the spatial velocity of the body frame 80
\(a_J(k) \) the Coriolis acceleration for the \(k \)th body in the serial-chain equations of motion with body spatial accelerations defined as the inertial frame derivative of the spatial velocity of the body frame 81
\(a_E \) the stacked sub-vector of Coriolis spatial acceleration vectors for the \(E \) sub-graph bodies 294
\(a_I(k) \) the Coriolis spatial acceleration for the \(k \)th body with inertially referenced spatial accelerations 94
\(\alpha^+(k) = \phi^+(k+1,k)\alpha(k+1) \in \mathcal{R}^6 \) - the rigidly propagated \(\alpha(k+1) \) (body-frame derivative) spatial acceleration from the \(O_{k+1} \) frame to the \(O_k^+ \) frame 101
\(\alpha_I(k) \in \mathcal{R}^6 \), spatial acceleration of the \(k \)th link referred to frame \(I \) 94
\(A = (I - E_A)^{-1} \) - a generic SPO operator 144
\(A_a \) the SPO operator for the aggregated tree 289
\(A_E \) the SPO operator for the \(E \) child sub-graph 276
\(A_P \) the SPO operator for the \(P \) parent sub-graph 276
\(A_E \) the SPO operator for a \(E \) sub-graph 276
\(\tilde{A} = A - I \) - a spatial operator derived from a generic \(A \) SPO operator 146

B
\(b(k) \) the gyroscopic spatial force for the \(k \)th link 76
\(b_J(z) \) the gyroscopic spatial force for the equations of motion of a rigid body using inertial frame derivatives 26
\(b_E \) the stacked sub-vector corresponding to the bodies in the \(E \) sub-graph 295
\(\beta(k) \) the vector of generalized velocity coordinates for the \(k \)th hinge 39
\(\beta_B = \bar{B} \bar{V} \) - the rigid body generalized velocity coordinates defined as the body frame representation of the body’s spatial velocity 24
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>the rigid body generalized velocity coordinates defined as the inertial frame representation of the body’s spatial velocity</td>
</tr>
<tr>
<td>β^I_V</td>
<td>the rigid body generalized velocity coordinates defined as the inertially referenced spatial velocity of the body</td>
</tr>
<tr>
<td>b_I</td>
<td>the gyroscopic spatial force associated with the equations of motion about an inertially fixed velocity reference point</td>
</tr>
<tr>
<td>\mathbb{B}</td>
<td>a body-fixed coordinate frame</td>
</tr>
<tr>
<td>\mathbb{B}_k</td>
<td>the reference frame for the kth link</td>
</tr>
<tr>
<td>$\mathcal{B} \in \mathbb{R}^{6n \times 6n}$</td>
<td>the pick-off operator for body nodes</td>
</tr>
<tr>
<td>\mathcal{B}_C</td>
<td>the connector block whose non-zero elements define the parent/child connectivity between links in the \mathcal{S} sub-graph and their children in the \mathcal{C} child sub-graph</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>the set of immediate child nodes of the kth node in a digraph</td>
</tr>
<tr>
<td>$\mathcal{C}(k)$</td>
<td>the induced sub-graph consisting of the descendant nodes of the \mathcal{S} sub-graph</td>
</tr>
<tr>
<td>$\mathcal{C}(\theta, \dot{\theta})$</td>
<td>the system-level Coriolis and gyroscopic forces vector</td>
</tr>
<tr>
<td>$\mathcal{C}_i(j, k)$</td>
<td>Christoffel symbol of the first kind</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>the location of the center of mass for a rigid body</td>
</tr>
<tr>
<td>D</td>
<td>derivative of vector $x(s)$ with respect to s in frame F</td>
</tr>
<tr>
<td>$\mathcal{D}(k)$</td>
<td>$H(k)P(k)H^*(k)$ – the articulated body hinge inertia for the kth body</td>
</tr>
<tr>
<td>$\Delta_{\mathbb{B}/\mathcal{O}} = \text{diag} \left{ \phi(\mathbb{B}_k, \mathcal{O}_k) \right}$</td>
<td>the \mathbb{B}_k body frame to the \mathcal{O}_k transformation operator</td>
</tr>
<tr>
<td>$\mathcal{V}_{\mathbb{B}/\mathcal{O}}(k)$</td>
<td>the relative spatial velocity of the \mathcal{O}_k frame with respect to the \mathbb{B}_k frame on the kth body</td>
</tr>
<tr>
<td>$\Delta_{\mathcal{V}}^\omega = \text{col} \left{ \Delta_{\mathcal{V}}^\omega(k) \right}_{k=1}^{n}$</td>
<td>the stacked vector of angular relative hinge spatial velocities for all the links</td>
</tr>
<tr>
<td>$\Delta_{\mathcal{V}}^\nu = \text{col} \left{ \Delta_{\mathcal{V}}^\nu(k) \right}_{k=1}^{n}$</td>
<td>the stacked vector of linear relative hinge spatial velocities for all the links</td>
</tr>
<tr>
<td>$\Delta_{\mathcal{V}}(k)$</td>
<td>the relative linear velocity across the kth hinge</td>
</tr>
<tr>
<td>$\Delta_{\mathcal{V}}(k)$</td>
<td>relative spatial velocity across the kth hinge</td>
</tr>
<tr>
<td>$\Delta_{\mathcal{V}}(k)$</td>
<td>the relative angular velocity across the kth hinge</td>
</tr>
<tr>
<td>$\Delta_{\mathcal{V}}^\omega(k)$</td>
<td>the hinge relative spatial velocity $\Delta_{\mathcal{V}}(k)$ referenced to the kth link body frame \mathbb{B}_k</td>
</tr>
<tr>
<td>$\Delta^i_{\mathcal{V}}(k)$</td>
<td>the spatial velocity across the kth hinge in the inertially referenced formulation of the equations of motion</td>
</tr>
</tbody>
</table>
List of Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>the articulated body inertia innovations generalized force</td>
</tr>
<tr>
<td>$\epsilon(k)$</td>
<td>$\in \mathbb{R}^{N \times m_k}$ — a n elements block-vector with all zero elements except for the kth element which is the identity matrix</td>
</tr>
<tr>
<td>\mathcal{E}_ϕ</td>
<td>the SKO operator for rigid-link multibody systems</td>
</tr>
<tr>
<td>\mathcal{E}_{ϕ_B}</td>
<td>$= \Delta_{\mathbb{B}/\mathbb{O}} \mathcal{E}{\phi} \Delta{\mathbb{B}/\mathbb{O}}^{-1}$ — the SKO operator for rigid-link multibody systems for the case when $\mathbb{B}_k \neq \mathbb{O}_k$</td>
</tr>
<tr>
<td>\mathcal{E}_{Λ_c}</td>
<td>the SKO operator for the c child sub-graph</td>
</tr>
<tr>
<td>\mathcal{E}_{Λ_p}</td>
<td>the SKO operator for the p parent sub-graph</td>
</tr>
<tr>
<td>\mathcal{E}_{Λ_S}</td>
<td>the SKO operator for the S sub-graph</td>
</tr>
<tr>
<td>\mathcal{E}_{Λ_A}</td>
<td>the SKO operator for the aggregated tree</td>
</tr>
<tr>
<td>\mathcal{E}_{Λ}</td>
<td>a generic SKO operator</td>
</tr>
<tr>
<td>\mathcal{E}_E</td>
<td>a transformed version of the E base pick-off operator</td>
</tr>
<tr>
<td>\mathcal{E}_A</td>
<td>the base pick-off operator</td>
</tr>
<tr>
<td>\mathcal{E}_S</td>
<td>the connector block whose non-zero elements define the parent/child connectivity between links in \mathcal{S} and their parents in the P sub-graph</td>
</tr>
<tr>
<td>\mathcal{E}_ψ</td>
<td>$= \mathcal{E}_\phi \overline{\mathcal{E}}$ — the articulated body SKO operator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(\mathbb{F})$</td>
<td>spatial force at the \mathbb{F} frame</td>
</tr>
<tr>
<td>$f(k)$</td>
<td>the spatial force of interaction between the $(k+1)$th and the kth links</td>
</tr>
<tr>
<td>f_c</td>
<td>the constraint spatial forces being applied at nodes on the multibody system</td>
</tr>
<tr>
<td>$f_{i_c}(k)$</td>
<td>the constraint spatial force at the ith node on the kth body</td>
</tr>
<tr>
<td>f_{ext}</td>
<td>the stacked vector of external spatial forces on the system</td>
</tr>
<tr>
<td>$f_{ext}(k)$</td>
<td>the external spatial forces on the ith node on the kth body</td>
</tr>
<tr>
<td>f_I</td>
<td>the equivalent spatial force on a rigid body associated with an inertially fixed velocity reference point</td>
</tr>
<tr>
<td>$f_{II}(k)$</td>
<td>$\in \mathbb{R}^6$ — the spatial force of interaction between the $(k+1)$th and the kth link referred to frame \mathbb{I}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>the gravity spatial acceleration vector</td>
</tr>
<tr>
<td>g_l</td>
<td>the gravity linear acceleration vector</td>
</tr>
<tr>
<td>$g(k) \mathbb{P}(k) \mathbb{H}^+(k) \mathbb{D}^{-1}(k)$</td>
<td>$= \mathcal{G}(k)$ — the articulated body Kalman gain operator for the kth body</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{\omega}(k)$</td>
<td>the angular sub-block of the joint map matrix $\mathbb{H}^+(k)$ for the kth body</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>$h_v(k)$</td>
<td>the linear sub-block of the joint map matrix $H^*(k)$ for the kth body</td>
</tr>
<tr>
<td>$H^*(k)$</td>
<td>the hinge map matrix for the kth hinge</td>
</tr>
<tr>
<td>H</td>
<td>the block-diagonal spatial operator of hinge map matrices</td>
</tr>
<tr>
<td>$H_B = H\Delta_B^{-1}$</td>
<td>the block-diagonal spatial operator of hinge map matrices when $B_k \neq 0_k$</td>
</tr>
<tr>
<td>H_I</td>
<td>the block-diagonal spatial operator of hinge map matrices for inertially referenced formulation of the equations of motion</td>
</tr>
<tr>
<td>H_C</td>
<td>the H operator for the C child sub-graph</td>
</tr>
<tr>
<td>H_P</td>
<td>the H operator for the P parent sub-graph</td>
</tr>
<tr>
<td>$H_{\mathcal{G}}$</td>
<td>the H operator for the \mathcal{G} sub-graph</td>
</tr>
<tr>
<td>H_a</td>
<td>the H operator for the aggregated tree</td>
</tr>
<tr>
<td>$\mathcal{H}_{i=i}$</td>
<td>$\text{col}\left{H^*(i) \cdot \mathbb{I}{[k=i]}\right}{k=1}^n$ - the derivative of Δ_V with respect to $\dot{\theta}_i$</td>
</tr>
<tr>
<td>$\mathcal{H}_{\omega=i}$</td>
<td>$\text{col}\left{H^\omega_{\omega}(i) \cdot \mathbb{I}{[k=i]}\right}{k=1}^n$ - the derivative of Δ_ω^V with respect to $\dot{\theta}_i$</td>
</tr>
<tr>
<td>$\mathcal{H}_{\omega<\omega(i)}$</td>
<td>$\text{col}\left{H^\omega_{\omega}(i) \cdot \mathbb{I}{[k<i]}\right}{k=1}^n$ - the derivative of $\mathcal{V}_\omega^\mathcal{G}$ with respect to $\dot{\theta}_i$</td>
</tr>
<tr>
<td>$\mathcal{H}_{\omega\omega=i}$</td>
<td>$\text{col}\left{H^\omega_{\omega}(i) \cdot \mathbb{I}{[k=i]}\right}{k=1}^n$ - the derivative of \mathcal{V}_ω^V with respect to $\dot{\theta}_i$</td>
</tr>
<tr>
<td>$h(z)$</td>
<td>spatial momentum of a rigid body</td>
</tr>
<tr>
<td>I</td>
<td>an inertially-fixed coordinate frame</td>
</tr>
<tr>
<td>J</td>
<td>$\in \mathbb{R}^{6n_d \times N}$ - the Jacobian matrix</td>
</tr>
<tr>
<td>$J(k)$</td>
<td>rotational inertia of a rigid body</td>
</tr>
<tr>
<td>K</td>
<td>$\mathcal{K} = \mathcal{E}_\phi \mathcal{J}$ - the spatial operator formed from the shifted Kalman gain elements</td>
</tr>
<tr>
<td>$\mathcal{K}(k+1,k)$</td>
<td>$= \Phi(k+1,k)\mathcal{J}(k)$ - the shifted Kalman gain operator</td>
</tr>
<tr>
<td>\mathcal{K}_{sys}</td>
<td>the system kinetic energy</td>
</tr>
<tr>
<td>L</td>
<td>$\dot{\mathcal{P}}^+ = \dot{\mathcal{P}}^+ + \Delta_\mathcal{V}^V \mathcal{P}^+ - \mathcal{P}^+ \Delta_\mathcal{V}^V$ - an operator associated with the time derivative of the articulated body inertia, $\dot{\mathcal{P}}$</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>$\dot{\lambda}$</td>
<td>the forward Lyapunov equation solution associated with the time derivative of the P articulated body inertia.</td>
</tr>
<tr>
<td>λ_{0i}</td>
<td>an intermediate spatial operator used for the computation of the sensitivity of the P articulated body inertia spatial operator</td>
</tr>
<tr>
<td>$l(F,G)$</td>
<td>vector from frame F to frame G</td>
</tr>
<tr>
<td>Λ</td>
<td>the operational space inertia matrix</td>
</tr>
<tr>
<td>Δ</td>
<td>the operational space compliance matrix</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>the Lagrangian function</td>
</tr>
<tr>
<td>M</td>
<td>mass of a rigid body</td>
</tr>
<tr>
<td>$M_D(\theta,\dot{\theta})$</td>
<td>the gradient of the generalized momentum</td>
</tr>
<tr>
<td>M</td>
<td>the mass matrix of a multibody system</td>
</tr>
<tr>
<td>$M_B = \Delta_B/\mathcal{O} M \Delta_B^*/\mathcal{O}$</td>
<td>the block-diagonal spatial operator of body spatial inertias about the body frame when $B_k \neq \mathcal{O}_k$</td>
</tr>
<tr>
<td>$M(k)$</td>
<td>the spatial inertia of the kth link</td>
</tr>
<tr>
<td>$M(x)$</td>
<td>spatial inertia of a rigid body referenced to point x</td>
</tr>
<tr>
<td>$M_I \triangleq \phi(I,C)M\phi^*(I,C) \in \mathbb{R}^{6 \times 6}$, the inertially referenced spatial inertia of a body</td>
<td></td>
</tr>
<tr>
<td>M_S</td>
<td>rigid body spatial inertia matrix for the \mathcal{S} sub-graph</td>
</tr>
<tr>
<td>N</td>
<td>the total number of velocity degrees of freedom for the system</td>
</tr>
<tr>
<td>n</td>
<td>the number of bodies in the multibody system</td>
</tr>
<tr>
<td>n_G</td>
<td>the number of bodies in the \mathcal{S} sub-graph</td>
</tr>
<tr>
<td>$n_{nd}(k)$</td>
<td>number of nodes on the kth body</td>
</tr>
<tr>
<td>n_{nd}</td>
<td>the number of nodes on the system</td>
</tr>
<tr>
<td>$\nu(k)$</td>
<td>the articulated body inertia innovations generalized acceleration</td>
</tr>
<tr>
<td>$\tilde{\nu} = \nu - \mathcal{G}^* \mathcal{E}^* g$</td>
<td>the articulated body innovations acceleration with gravity contribution included</td>
</tr>
<tr>
<td>N</td>
<td>outboard hinge reference frame for the kth link</td>
</tr>
<tr>
<td>\mathcal{O}_{k}^+</td>
<td>inboard hinge reference frame for the kth link</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>P(k)</td>
<td>the set of parent nodes of the kth node in a digraph</td>
</tr>
<tr>
<td>P</td>
<td>the induced sub-graph for the nodes not in, or descendant of, the (\mathcal{S}) sub-graph</td>
</tr>
<tr>
<td>p(k)</td>
<td>the 3-vector from the point k to the center of mass of a rigid body</td>
</tr>
<tr>
<td>(\phi)</td>
<td>((I - \mathcal{E}_\phi)^{-1}) – the SPO operator for rigid-link multibody systems</td>
</tr>
<tr>
<td>(\phi(x,y))</td>
<td>rigid body transformation matrix for the x and y frames</td>
</tr>
<tr>
<td>(\phi(\mathcal{B}))</td>
<td>(\Delta_{\mathcal{B}/\mathcal{O}}\phi\Delta_{\mathcal{B}/\mathcal{O}}^{-1}) – the SPO operator for the case when (\mathcal{B}_k \neq \mathcal{O}_k)</td>
</tr>
<tr>
<td>(\phi(k,k-1))</td>
<td>the rigid body transformation matrix from frame (\mathcal{B}k) to frame (\mathcal{B}{k-1})</td>
</tr>
<tr>
<td>(\tilde{\phi})</td>
<td>(\phi - I) – the strictly lower-triangular spatial operator derived from the (\phi) SPO operator</td>
</tr>
<tr>
<td>(\psi)</td>
<td>((I - \mathcal{E}_\psi)^{-1}) – the articulated body SPO operator</td>
</tr>
<tr>
<td>(\psi(k+1,k))</td>
<td>(\phi(k+1,k)\tilde{\tau}(k)) – the articulated body transformation matrix for the kth body</td>
</tr>
<tr>
<td>(\tilde{\psi})</td>
<td>(\psi - I) – the articulated body spatial operator derived from the (\psi) SPO operator</td>
</tr>
<tr>
<td>(\mathcal{P}(k))</td>
<td>the articulated body inertia of the kth link</td>
</tr>
<tr>
<td>(\tilde{\mathcal{P}})</td>
<td>(\mathcal{E}\phi\tilde{\mathcal{P}}^*\mathcal{E}\phi^*) – an operator associated with the time derivative of the articulated body inertia, (\mathcal{P})</td>
</tr>
<tr>
<td>(\mathcal{P}^+(k))</td>
<td>(\Delta \mathcal{P}(k)\tilde{\tau}^*(k)) the articulated body inertia (\mathcal{P}(k)) transformed across the joint from (\mathcal{O}k) to (\mathcal{O}{k+1}) for the kth body</td>
</tr>
<tr>
<td>(\tilde{\mathcal{P}}^+)</td>
<td>(\tilde{\tau}\lambda\tilde{\tau}^*) – an operator associated with the time derivative of the articulated body inertia, (\mathcal{P})</td>
</tr>
<tr>
<td>R</td>
<td>number of hinge generalized coordinates for the kth hinge</td>
</tr>
<tr>
<td>(r_p(k))</td>
<td>number of hinge generalized coordinates for the kth hinge</td>
</tr>
<tr>
<td>(r_v(k))</td>
<td>number of generalized velocity coordinates for the kth hinge</td>
</tr>
<tr>
<td>(R(k))</td>
<td>the composite rigid body inertia associated with the kth hinge</td>
</tr>
<tr>
<td>(R)</td>
<td>the block-diagonal spatial operator consisting of composite body inertia of the links</td>
</tr>
<tr>
<td>(F_RG)</td>
<td>(\in \mathcal{R}^{3\times3}) – a rotation matrix that transforms vector representations from the (G) frame to the (F) frame</td>
</tr>
<tr>
<td>S</td>
<td>the adjacency matrix for digraphs</td>
</tr>
<tr>
<td>(S)</td>
<td>a BWA matrix for a tree digraph</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>T</td>
<td>the vector of generalized coordinates for the system</td>
</tr>
<tr>
<td>θ</td>
<td>the articulated body projection operator for the kth hinge</td>
</tr>
<tr>
<td>τ(k)</td>
<td>the complement of projection operator τ(k) for the kth hinge</td>
</tr>
<tr>
<td>Π(k)</td>
<td>the generalized force vector for the kth hinge</td>
</tr>
<tr>
<td>FTG</td>
<td>homogeneous transform</td>
</tr>
<tr>
<td>Ξ</td>
<td>a rooted directed tree of nodes and edges</td>
</tr>
<tr>
<td>U</td>
<td>the projection operator for operational space dynamics</td>
</tr>
<tr>
<td>U⊥</td>
<td>the complement of the U projection operators for operational space dynamics</td>
</tr>
<tr>
<td>Υ+</td>
<td>matrix associated with Υ</td>
</tr>
<tr>
<td>Υ</td>
<td>kernel matrix associated with operational space inertias</td>
</tr>
<tr>
<td>V</td>
<td>the linear velocity of the G frame with respect to the F frame</td>
</tr>
<tr>
<td>v(x)</td>
<td>linear velocity vector for point x</td>
</tr>
<tr>
<td>vI</td>
<td>the linear velocity of the inertially fixed velocity reference frame I for a rigid body</td>
</tr>
<tr>
<td>vI(k)</td>
<td>the linear velocity of the inertially fixed velocity reference frame I for the kth body</td>
</tr>
<tr>
<td>Υω</td>
<td>the stacked vector of angular spatial velocities for all the links</td>
</tr>
<tr>
<td>Υω(F)</td>
<td>the angular spatial velocity component of the V(F) spatial velocity of F frame</td>
</tr>
<tr>
<td>Vωn</td>
<td>the stacked vector of spatial velocities of the task space nodes (also used as generalized velocities for Operational Space dynamics)</td>
</tr>
<tr>
<td>Vω(F,G)</td>
<td>the spatial velocity of the G frame with respect to the F frame</td>
</tr>
<tr>
<td>Vν</td>
<td>the stacked vector of linear spatial velocities for all the links</td>
</tr>
<tr>
<td>Vν(F)</td>
<td>the linear spatial velocity component of the V(F) spatial velocity of F frame</td>
</tr>
<tr>
<td>Vν(Oi)k</td>
<td>the spatial velocity of the ith node on the kth links</td>
</tr>
<tr>
<td>Vν(F,G)</td>
<td>the stacked vector of link spatial velocities</td>
</tr>
<tr>
<td>V(F)</td>
<td>spatial velocity of the F frame</td>
</tr>
<tr>
<td>V(k)</td>
<td>spatial velocity of the Bk frame</td>
</tr>
<tr>
<td>V+(k)</td>
<td>spatial velocity of O+(k) frame</td>
</tr>
</tbody>
</table>
\[\hat{V}^\omega (z) \quad a \in \mathbb{R}^{6 \times 6} \text{ cross-product matrix associated with the } V^\omega (z) \]

\[\tilde{V}_S^\omega = \text{diag} \left\{ \hat{V}^\omega (\varphi(k)) \right\}_{k=1}^n - \text{the block-diagonal matrix with } \hat{V}^\omega (\varphi(k)) \text{ elements} \]

\[\tilde{V}_S^v = \text{diag} \left\{ \tilde{V}^v (\varphi(k)) \right\}_{k=1}^n - \text{the block-diagonal matrix with } \tilde{V}^v (\varphi(k)) \text{ elements} \]

\[V = \text{diag} \left\{ V(k) \right\} - \text{the block-diagonal spatial operator with } V(k) \text{ diagonal elements} \]

\[\bar{V}_S = \text{diag} \left\{ \bar{V}(\varphi(k)) \right\} - \text{the block-diagonal, shifted up version of the } V \text{ spatial operator} \]

\[V_S \text{ the stacked sub-vector corresponding to the } S \text{ sub-graph bodies} \]

\[V_I \text{ the inertially referenced spatial velocity of a point on a body, with } \omega \text{ and } v_I \text{ denoting the angular and linear velocity components, respectively} \]

\[V_{II}(k) \text{ the spatial velocity of the } k\text{th link referred to frame } II, \text{ with } \omega(k) \text{ and } u(k) \text{ denoting the angular and linear velocity components, respectively} \]

\[Z \]

\[z(k) \text{ the residual spatial force for the } k\text{th link} \]

\[z^+(k) \text{ the } z(k) \text{ articulated body inertia residual force propagated across the } k\text{th hinge} \]

\[z_\delta \text{ the correction residual spatial force due to a non-zero tip force} \]
Index

Symbols

\(\phi(\cdot, \cdot) \), 11
 group property, 11
\(\mathbf{E}_+ \) matrix, 408
\(\mathbf{E}_- \) matrix, 408
\(\hat{\cdot} \) operator, 10
 identities, 12
\(\hat{\times} \) cross-product operator
 for 3-vectors, 6
 for spatial vectors, 9
kth articulated body system, 100
1-resolvent
 BWA matrix, 143
 SKO operator, 159
 SPO operator, 159
 elements, 144
 of a nilpotent matrix, 400

A

AB forward dynamics
 SKO models, 182
 flexible-link systems, 264, 267
 for free-flying dual model, 335
 free-flying systems, 338, 339
 geared systems, 243
 optimized algorithm for geared systems, 242
 serial-chain systems, 126, 130
 standard algorithm for geared systems, 241
 tree-topology systems, 182
 under-actuated systems, 322
 with constraint embedding, 308
 absolute coordinates, 38
 acatastatic constraint, 39, 210
active
 degree of freedom, 314
 arm, 315
 hinge, 314
active contact, 225
acyclic digraph (DAG), 137
adjacency matrix, 138
 BWA, see BWA matrix
 block-weighted, see BWA matrix
 canonical tree, 140
digraph, 138
 lower-triangular, 140
 properties, 138
 serial-chain, 140
 strictly canonical tree, 140
tree, 140
adjacent node, 135
aggregation
 SPO operator, 289
 at the component level, 292
 condition, see aggregation condition
 for sub-structuring SKO models, 290
mass matrix, 291
 of a sub-graph, 283
 of an induced sub-graph, 283
 preservation of tree structure, 285
sub-graph, 287
 aggregation condition, 284, 299
 path-induced sub-graphs, 285
 preservation of tree property, 287
 transformed SKO model, 291
algorithm for computing
 \(\phi x \) recursively, 51
 \(\phi^* x \) recursively, 52
 \(\dot{\delta} \) correction accelerations, 131
 \(A x \) recursively, 162
 \(A^* x \) recursively, 163
 \(\Upsilon \) operational space compliance kernel, 195
extended operational space compliance matrix, 192
operational space compliance
kernel, 195
articulated body inertia, see articulated body inertia
composite body inertia, see composite body inertia
diagonalizing generalized forces, 386
diagonalizing velocity coordinates, 386
disturbance Jacobian, 328
dual articulated body inertias, 334
residual forces, 335
elements of $A\times B^*$, 168
elements of $A^*\times B$, 173
forward dynamics, see forward dynamics
generalized dynamics, 322
generalized forces for external forces, 86
generalized Jacobian, 326
inverse dynamics, see inverse dynamics
link spatial velocities, 45
link transformations, 43
mass matrix inverse, 198
using composite body inertias, 64, 169, 238, 261
using inverse dynamics, 90
operational space Coriolis vector, 203
inertia, 194, 351
under-actuated computed-torque, 326
velocity diagonalization Coriolis vector, 391
algorithm for computing mass matrix inverse, 200
ancestor node, 135
angle/axis representation, 405
angular velocity, 5
based quasi-velocities, 71
from angle/axis parameter rates, 406
from Euler angle rates, 404
from quaternion rates, 411
to quaternion rates, 410
anti-causal filter, 112, 338
arborescence digraph, 137
articulated body kth system, 100
dual type, 333
forward dynamics, see AB forward dynamics
hinge inertia, 101
inertia, see articulated body inertia model, see articulated body model
time-derivative, 368–373
transformation matrix, 105
articulated body inertia, 99, 117
relationship to spatial inertias, 107
for SKO models, 175
for flexible-link systems, 262
for geared systems, 239, 240
for under-actuated systems, 317
force decompositions based on, 99
positive semi-definiteness of, 104
relationship to composite body inertias, 107, 121
serial-chain systems, 106
with constraint embedding, 307
articulated body model, 97, 99–111, 115
based force decompositions, 128
comparison with the composite body model, 117
projection operators for, 102
assumed modes, 250
attitude representation, 23
angle/axis parameters, 404
Euler angles, 403
Gibbs vector, 412
Rodrigues vector, 412
unit quaternions, see quaternions
augmented dynamics, 212
equivalence to projected dynamics, 222
augmented forward dynamics, 212–221
algorithm, 213, 219
loop constraints, 215

B
backward Lyapunov equation, 170, 191
base-body, 35
base-invariant
 computation of operational space inertia, 351
 forward dynamics, 338, 339
 operational space inertia, 348
 symmetry, 338
base-to-tip recursion, 52
base-to-tips scatter recursion, 163
bilateral constraint, 209
block-weighted adjacency matrix,
 see BWA matrix
body reference frame, 36
 at hinge frame, 45, 77
 at non-hinge frame, 46, 80, 358
BWA matrix, 141–149
SKO operator, 159
SPO operator, 159
1-resolvent, 143
for multibody systems, 150–159
nilpotency, 143
permutation transformation, 148
powers of, 142
similarity-shift transformation, 149
transforming, 147
tree digraph, 142

C
canonical tree digraph, 137
 adjacency matrix, 140
cantilever modes, 250
catastatic constraint, 39, 210, 301
causal filter, 112, 338
center of mass, 19
 equations of motion about, 25
 of a multibody system, 62
 of a rigid body, 18
 spatial velocity, 63
centeroid, 19
characteristic polynomial
 of a rotation matrix, 405
 of a skew-symmetric matrix, 405
child node, 135
child nodes of a sub-graph, 284
child sub-graph, 274
Christoffel symbols
 for multibody systems, 69
 of the first kind, 68, 381
 of the second kind, 381
 relationship to M_D(i,j), 69
 relationship to Coriolis terms, 69
closed differential form, 71
closed-chain dynamics, 150, 209–227, 297
SKO model, 185, 299
augmented approach, see augmented dynamics
bilateral constraints, 209
constraint embedding approach, see constraint embedding dynamics
direct approach, see direct dynamics
projected approach, see projected dynamics
SKO model, 302
unilateral constraints, 224
compatible operators, 162
compatible operators and vectors, 162
complementarity approach, 224
condition, 226
problem
LCP, 226
NCP, 226
composite body inertia, 59–66, 98, 107
based computation of the mass matrix, 238, 261
for flexible-link systems, 261
for geared systems, 237
for inverse dynamics, 91
Lyapunov equation for, 61, 168
recursive computation of
for SKO models, 169
for flexible-link systems, 261
for geared systems, 237
for serial-chain systems, 60
relationship to articulated body
inertias, 121
serial-chain systems, 59
composite body method, 65
composite body model, 92, 97, 98, 115
comparison with the articulated body model, 117
computed-torque for under-actuated systems, 326
configuration kinematics, 42
connected digraph, 136
conservation of
kinetic energy, 28, 30, 329
spatial momentum, 25, 28, 33, 329
constrained dynamics, see closed-chain dynamics
constraint
acatastatic, 39, 210
bilateral, 209
catastatic, 39, 210
force, 222
squeeze, 214
holonomic, see holonomic constraint
loop, 215
non-holonomic, see non-holonomic constraint
rheonomic, 210
scleronomic, 210
unilateral, see unilateral constraint
constraint embedding, 212, 297–311
AB forward dynamics, 308
direct joint-level constraints, 303
four-bar linkage example, 305, 306
geared example, 304
generalizations, 311
loop constraints, 303
SKO model, 302
strategy, 297
constraint forces, 131
closed-chain, 218
inter-link, see inter-link spatial forces
contact
active, 225
inactive, 225
separation, 225
contact hinge, 41
control
computed-torque, 326
decoupled, 392
operational space, 189
rate-feedback, 392
coordinate transformations, 72
diagonalizing, 72, 379–382
with kth link as base-body, 341
coordinate–frame representations, 4
coordinate–free representations, 4
coordinates
generalized, see generalized coordinates
generalized velocity, see generalized velocity coordinates
Coriolis acceleration, 77, 358, 434
dual, 335
for a cylindrical hinge, 80
for a helical hinge, 80
for a prismatic hinge, 79
for a rotary pin hinge, 79
for simple hinges, 79
with hinge frame as body frame, 77
with inertial frame derivatives, 80
with non-hinge frame as body frame, 80
Coriolis forces vector, 67
for SKO models, 160
for diagonalized dynamics, 382, 387, 393
for flexible-link systems, 257
for geared systems, 236
for serial-chain rigid-link system, 82
Lagrangian form, 67
non-working, 384, 391
operational space, 202
with velocity diagonalization, 389
correction generalized accelerations, 212
cross product
for 3-vectors, 6
for spatial vectors, 9–10
identities, 10, 397
curvature tensor, 381
cut-edge, 138, 209
multibody, 151
cyclic digraph, 137
cylindrical hinge, 40, 41
Coriolis acceleration, 80

d
DAG, 137
DCA algorithm, 218
decomposition of the mass matrix
using composite body inertias, 63, 168
decoupled control, 392
decoupled forward dynamics, 338, 339
derivative
with respect to a vector, 401
with respect to generalized coordinates, see sensitivity
with respect to time, see time derivative
of a vector
with respect to a frame, 5
with respect to the body frame, 7
with respect to the inertial frame, 7
of spatial inertias, 25, 32
of spatial operators, 353
of vectors, 5–8
time, see time derivative
descendant node, 135
determinant
of the mass matrix, 180
of the Newton-Euler factor, 180
diagonalized dynamics
condition, 379, 382
Coriolis forces vector, 382, 387, 393
diagonalizing coordinate transformations, 72
algorithm for computing, 386
global, 379–382
velocity, 382–392
diagonalizing generalized forces
algorithm for computing, 386
differential equation
differential-algebraic, see differential-algebraic equation
ordinary, see ordinary differential equation
differential kinematics, 43
hinge, 37
with \(B_k \neq 0_k \), 45
differential-algebraic equation, 213, 222, 339
digraph
acyclic graph (DAG), 137
adjacency matrix, see adjacency matrix
adjacent nodes, 135
aggregation condition, 284
aggregation of a sub-graph, 283
arborescence, 137
connected, 136
cut-edge, 138, 209
cyclic, 137, 209
disconnected, 136
disjoint, 135
disjoint-contraction, 283
for a multibody system, see multibody digraph
forest, 137
homeomorphic, 279
multiply-connected, 137, 209
node, 135
node-contraction, 283
partitioning, 273–275
polytree, 137
properties, 141
related nodes, see related nodes
root node, 135
rooted, 136
serial-chain, 137
simple tree, 137
simply-connected, 137
spanning tree, 138
standard, 150
tree, 137
unrelated nodes, see unrelated nodes
direct dynamics, 212
directed acyclic graph, 137
directed cycle, 209
in path-induced sub-graph, 274
directed graph, see digraph
direction cosine matrix, see rotation matrix
disconnected digraph, 136
distance function, 225
disturbance Jacobian, 325
computation of, 328
of free-flying systems, 328, 330
divide and conquer algorithm, 208
dual
articulated body inertia, 334
Coriolis acceleration, 335
force decomposition, 336
model, 332
residual force, 335
weight matrices, 333
dynamics
augmented dynamics, 212
closed-chain systems, 209
constraint embedding dynamics, 212
diagonalized, 379
direct dynamics, 212
flexible-link systems, 245
for SKO models, 160
free-flying systems, 331
geared systems, 229
hybrid, 324
invariance across Newtonian frames, 30, 82
operational space, 189
prescribed motion, 322
projected dynamics, 212
rigid body systems, 17
serial-chain systems, 75
tree-topology systems, 155
under-actuated systems, 313

E
direct dynamics, 212
directed acyclic graph, 137
directed cycle, 209
in path-induced sub-graph, 274
directed graph, see digraph
direction cosine matrix, see rotation matrix
disconnected digraph, 136
distance function, 225
disturbance Jacobian, 325
computation of, 328
of free-flying systems, 328, 330
divide and conquer algorithm, 208
dual
articulated body inertia, 334
Coriolis acceleration, 335
force decomposition, 336
model, 332
residual force, 335
weight matrices, 333
dynamics
augmented dynamics, 212
closed-chain systems, 209
constraint embedding dynamics, 212
diagonalized, 379
direct dynamics, 212
flexible-link systems, 245
for SKO models, 160
free-flying systems, 331
geared systems, 229
hybrid, 324
invariance across Newtonian frames, 30, 82
operational space, 189
prescribed motion, 322
projected dynamics, 212
rigid body systems, 17
serial-chain systems, 75
tree-topology systems, 155
under-actuated systems, 313

E
edge, 135
multibody, 150
edge-contraction, 283
equations of motion
for SKO models, 160
for flexible-link systems, 245–255
for geared systems, 230–234
for tree-topology systems, 155
for under-actuated systems, 316
Hamilton form, 70
Lagrangian form of, see
Lagrangian dynamics
operational space, 187, 189
rigid body, 25
Euclidean metric tensor, 381
Euler angles, 41, 403
Euler equation for rotational motion, 71
Euler parameters, see quaternions
Euler–Rodrigues formula, 405
explicit hinge constraints, 36
extended operational space
compliance matrix, 190
algorithm for computing, 192
operator decomposition, 191
for serial-chains, 197
external force
compensating for, 86
equivalent generalized forces, 85
inclusion of, 85, 129
feedback linearization, 189
Fixman potential, 376
flexible joints, 233
flexible-link system
 SKO models, 255–257
 articulated body inertia, 262
 as under-actuated systems, 261
 composite body inertias, 261
 Coriolis forces vector, 257
 equations of motion, 245–255
 forward dynamics, 264, 267
Innovations operator factorization, 263
inverse dynamics for, 259
lumped mass model, 245–249
mass matrix, 257
decomposition, 261
 recursive computation of, 261
 modal model, 249–255
force
 constraint, 222
 move, 214
 squeeze, 214
force decomposition
 dual model, 336
 using articulated body model, 99, 128
 using composite body model, 98
 using terminal body model, 98
force recursion
 for aggregated bodies, 295
 for serial-chains, 76
 for tree systems, 156
forest digraph, 137, 147
forward dynamics, 88
 AB algorithm, see AB forward dynamics
 \(O(N)\) algorithm, see AB forward dynamics
 \(O(N^3)\) algorithm, 122
 \(O(N^2)\) algorithm, 122
articulated body model, 97
augmented dynamics algorithm, 213
base-invariant, 338
DCA algorithm, 208
decoupled form, 338, 339
diagonalized dynamics, 394
divide and conquer algorithm, 208
flexible-link systems, 264
 for SKO models, 182
free-flying systems, 337
gear systems, 239, 243
 of under-actuated systems, 322
projected dynamics algorithm, 223
un-normalized diagonalized dynamics, 395
 with bilateral constraints, 211
 with loop constraints, 215, 219
 with unilateral constraints, 227
forward kinematics, 42
forward Lyapunov equation, 370
 for SPO operators, 166
frame
 body reference, 36
 hinge, 37
 Newtonian, 30, 82
 of interest, see node frame of interest, 54
free generalized accelerations, 212
free-flying system, 331
 as under-actuated system, 329–330
 base-invariant symmetry, 338
disturbance Jacobian, 328, 330
dual articulated body inertias, 333
dual model, 332
forward dynamics, 337–339
generalized Jacobian, 325, 328
 regular model, 332
 with tree topology, 340
free-free modes, 250
friction, 227
G
 gap function, 225
gather recursion, 162
geared system, 229
 articulated body inertia, 239
articulated body inertias, 240
composite body inertia, 237
Coriolis forces vector, 236
equations of motion, 230–234
forward dynamics, 239, 243
Innovations operator factorization, 240
mass matrix, 236
decomposition, 237
recursive computation of, 238
optimized AB forward dynamics, 242
standard AB forward dynamics, 241
generalized accelerations, 24
correction, 212
free, 212
inertial, 27
innovations, 111
generalized coordinates, 23, 37
absolute, 38
diagonalizing transformation, 379
for flexible-links, 251
for geared systems, 233
hinge, 37
minimal, 212
non-minimal, 212
relative, 38
transformation, 72
generalized dynamics algorithm, 322
generalized forces, 24
for external forces, 85
generalized inverse, 214
generalized Jacobian, 325
computation of, 326
of free-flying systems, 325, 328
generalized momentum, 67
gradient of, 67, 365
generalized speeds, see generalized velocity coordinates
generalized velocity coordinates, 23, 39
diagonalizing transformation, 382
for flexible-links, 251
for geared systems, 233, 234
hinge, 39
quasi-velocities, 23
transformation, 70
Gibbs vector attitude representation, 412
global diagonalization condition, 379
gradient with respect to a vector, 401
of the generalized momentum, 67, 365
graph
directed, see digraph
undirected, 135
gravitational force, 87, 128, 202
group
of homogeneous transforms, 4
of rigid body transformation matrices, 11
gyroscopic force, 75
using β_B^I, 30
using β_I^J, 26, 28

H
Hamilton form of equations of motion, 70
helical hinge, 40, 41
Coriolis acceleration, 80
hinge, 35
articulated body inertia, 101
contact, 41
cylindrical, 40, 41, 80
explicit constraints, 36
frame, 37
helical, 41, 80
implicit constraints, 36
kinematics, 37
prismatic, 40
rotary pin, 40
spherical, 40, 41
universal, 41
hinge map matrix, 39
configuration dependent, 41
cylindrical hinge, 40
prismatic hinge, 40
rotary pin hinge, 40
spherical hinge, 40
holonomic constraint, 210
homeomorphic digraphs, 279
homogeneous transform, 4, 37, 42
homogenous transform
time derivative, 38
hybrid dynamics, 324

I
ignorable coordinates, 329
implicit hinge constraints, 36
inactive contact, 225
inboard link, 35
indicator function, 138, 362
induced sub-graph, 273
inertia
articulated body, 99
composite body, 59
moments of, 18
rotational, 18
spatial, 18
inertially fixed reference point, 27
based velocity recursion, 47
for a rigid body, 31–33
for serial-chains, 93
innovations generalized acceleration, 111
innovations generalized force, 111
Innovations operator factorization,
58, 120
after constraint embedding, 308
for SKO models, 179
for flexible-link systems, 263
for geared systems, 240
for serial-chain systems, 115, 120, 122
for tree-topology systems, 179
for under-actuated systems, 319
of the mass matrix, 115, 120
sensitivity, 375
time derivative, 375
innovations process, 113
integrals of motion, 34, 329
inter-link spatial forces, 75
articulated-body model
decomposition, 99
composite-body model
decomposition, 98
computation, 128
operator decomposition, 128
terminal-body model
decomposition, 97
inverse dynamics, 88
for computing the mass matrix, 90
for flexible-link systems, 260
for serial-chains, 88–93
for under-actuated systems, 322
Newton–Euler algorithm, 89
Newton-Euler algorithm, 166
of flexible-link systems, 259
of under-actuated systems, 322
using composite rigid body
inertias, 91
inverse kinematics, 42

J
Jacobi cross-product identity, 10
Jacobian
disturbance, 325
for under-actuated systems,
324–328
generalized, 325
in operational space dynamics,
188
mapping for external forces, 86
operator, 55
joint, see hinge

K
Kalman gain, 101, 113
shifted, 108
Kane’s method, 161
kinematics
differential, 43
forward, 43
hinge, 37
inverse, 42
kinetic energy, 18
as Lagrangian, 67
conservation, 28, 30, 329
flexible body, 251
integral of motion, 329
rate of change of, 384
sensitivity of, 366
serial-chain, 57
using diagonalizing coordinates, 380

L
Lagrange multipliers, 211, 222
Lagrangian dynamics
Coriolis forces vector, 67
equations of motion, 66–70
equivalence with Newton–Euler
dynamics, 367
symmetries of, 34, 329
LCP, 226
linear complementarity
problem, 226
linear velocity constraints, 36
link, 35
base-body, 35
flexible, 245
inboard, 35
outboard, 35
tip-body, 35
link transformations, 43
load balancing, 215
loop constraints, 215, 303
lower-triangular
SKO matrix, 146
SPO matrix, 145, 146
lower-triangular adjacency matrix, 140
lumped mass model for flexible
systems, 245–249
Lyapunov equation
backward, see backward
Lyapunov equation
discrete, 61
for composite body inertias
SKO model, 168
flexible-link systems, 261
gear systems, 237
serial-chain, 61
forward, see forward Lyapunov
equation
in estimation theory, 112
Lyapunov recursion, 60

M
mass matrix, 58, 67
after aggregation, 291
Christoffel symbols, 68, 381
computation of the inverse, 198
computation using inverse
dynamics, 90
classification, 380, 382
decomposition, 63, 168, 237, 261
decomposition of the inverse, 198
determinant, 180
diagonal, 380, 382, 393
Fixman potential, 376
for SKO models, 160
for flexible-link systems, 257
for geared systems, 236
for serial-chain rigid-link system, 82
generalized momentum, 67
identity matrix, 380, 382
Innovations operator factorization,
see Innovations operator
operator inverse, 198
invariance to aggregation, 292
inverse, v, 198
operator decomposition, 198
kinetic energy, 58
metric tensor, 381
Newton-Euler operator
factorization, see
Newton-Euler operator
operator expression, 58
operator inverse, 121
partitioned, 278
for under-actuated systems, 316
recursive computation of, 64, 169,
238, 261
Riemannian symbols, 73, 381
sensitivity, 365
sparsity structure, 282
time derivative, 360
trace, 65
mass matrix inverse
algorithm for computing, 200
operator factorization
after constraint embedding, 308
for SKO models, 179
for flexible-link systems, 263
for geared systems, 240
for rigid-link serial-chains, 121
for under-actuated systems, 319
matrix
block partitioned, 398
inverse identities, 398
norm, 397
Schur complement, 398
metric tensor, 381
micro/macro manipulators, 196
mixed dynamics, 322
modal
integrals, 252
joint map matrix, 253
mass matrix, 252
model for flexible systems, 249–255
spatial acceleration, 253
spatial displacement, 250
spatial displacement influence vector, 250
spatial force, 254
spatial velocity, 251, 253
stiffness matrix, 254
modal matrix, 250
mode shape, 251
modes
assumed, 250
cantilever, 250
free-free, 250
molecular dynamics, 376
moments of inertia, 18
momentum
generalized, 67
spatial, 21
move force, 214
move/squeeze
decomposition, 214
projection matrix, 214
multibody digraph, 150
multibody system
BWA matrix, 150–159
SKO operator, 159
SKO-forest, 151
SKO model, 160
SPO operator, 159
articulated body model, 97
closed-chain, see closed-chain dynamics, 209, 297
composite body model, 97
constrained, see closed-chain dynamics, 209, 297
cut-edge, 151
digraph, 150
edge, 150
node, 150
standard, 150
free-flying, 331
gear hinge, 229
model
articulated body, 97
composite body, 97
terminal body, 97
serial-chain, 35
spanning tree, 151
standard digraph, 150
terminal body model, 97
topological classification, 150
tree-topology, see tree-topology system, 150
under-actuated, 313
multiply-connected
digraph, 137, 209
path-induced sub-graph, 274

N
NCP, 226
Newton–Euler dynamics, 82
equivalence with Lagrangian dynamics, 367
Newton–Euler inverse dynamics, 88
Newton–Euler operator factorization determinant, 180
diagonalizing transformation, 385
flexible-link systems, 257
for SKO models, 156
for SKO models, 160
gereed link systems, 236
of the mass matrix, 58
sensitivity, 375
serial-chain systems, 58, 82, 115
time derivative, 375
tree-topology systems, 291, 302
Newtonian frame, 30, 82
nilpotent matrix, 400
φ spatial operator, 49
BWA matrix, 143
1-resolvent, 400
tree adjacency matrix, 140
node, 54
adjacent, 135
ancestor, 135
child, 135
descendant, 135
multibody, 150
parent, 135
related, 135
unrelated, 135
weight dimension, see weight dimension
node-contraction, 283
Noether’s theorem, 34, 329
non-Euclidean geometry, 381
non-holonomic constraint, 210
non-integrable velocity coordinates, 23
nonlinear complementarity problem, 226
norm
of a matrix, 397
of a vector, 397

O
operational space
algorithm for computing Υ, 195

compliance kernel, see operational space compliance kernel
compliance matrix, 189, 217
computation of Coriolis vector, 203
correlation, 189
Coriolis generalized forces, 202
dynamics, 189
equations of motion, 187
extended compliance matrix, see extended operational space compliance matrix, 217
inertia, see operational space inertia
operational space compliance kernel, 191
algorithm for computing, 195
base-invariance, 349
for free-flying systems, 196, 349
for micro/macro systems, 197
singularity, 196, 349
operational space inertia
algorithm for computing, 194
base-invariant, 348
base-invariant computation of, 351
inverse, 189
operator, 48
SKO, see SKO operator
SPO, see SPO operator
articulated body, 116
backward Lyapunov equation, 170
compatibility, 162
derivatives, 353
expressions with B_k ≠ O_k, 83
for serial-chain systems, 47
forward Lyapunov equation, 166
identities, 117, 176
Innovations factorization, see Innovations operator factorization
Jacobian, 55
mass matrix expression, 58, 120
mass matrix inverse expression,
Newton-Euler factorization, see Newton-Euler operator factorization
pick-off, see pick-off operator
Riccati equation, 174
sensitivity, 361–368
spatial inertias, 58
spatial kernel, see SKO operator
spatial propagation, see SPO operator
time derivatives, 356–361
operator decomposition
of Ω, 191
for serial-chains, 197
of M^{-1}, 198
for serial-chains, 199
of $\phi M \phi^*$, 61, 121
of $\phi M \psi^*$, 121
of $A X B^*$, 166
of $A^* X B$, 170
for serial-chains, 172
of inter-link spatial forces f, 128
of the mass matrix M, 63, 168
optimal estimation theory, 111
filter, 112, 338
smoother, 113, 338
smoothing, 112
ordinary differential equation, 70, 213, 222, 339
outboard link, 35

P
parallel-axis theorem
for rotational inertias, 19
for spatial inertias, 20
parent node, 135
parent nodes of a sub-graph, 284
parent sub-graph, 274
partial velocities, 161
partitioning
induced by sub-graphs, 274
of a mass matrix, 278
of an SKO operator, 276
of an SKO model, 277
of an SPO operator, 277
of free-flying system, 343
of multibody systems, 277
using serial-chain segments, 282
passive
degree of freedom, 314
arm, 315
hinge, 314
path-induced sub-graph, 273, 343
aggregation condition, 285
induced partitions, 274
multiply-connected, 274
partition of SKO and SPO operators, 275
with directed cycle, 274
permutation
re-indexing of nodes, 140
transformation of a BWA matrix, 148
Pfaffian form, 210
pick-off operator
constraint force, 131
external forces, 85
gravitational acceleration, 87, 128, 202
nodes, 55
operational space, 188
polytree digraph, 137
positive semi-definiteness
of articulated body inertia, 104
of rotational inertias, 19
of spatial inertias, 20
of the mass matrix, 58
prescribed motion dynamics, 324
prismatic hinge, 40
Coriolis acceleration, 79
projected dynamics, 212, 221–222
equivalence to augmented dynamics, 222
forward dynamics, 223
projection matrix, 104
articulated body, 102
operational space, 199
quasi-velocities, 23, 382
angular velocity as, 71
diagonalizing velocity coordinates, 382
Lagrangian equations of motion, 70
quaternions, 41, 406–411
E_+ matrix, 408
E_- matrix, 408
acceleration, 411
attitude representation, 406
based transformation of vectors, 410
composition of, 409
identity element, 409
rate from angular velocity, 410
rates to angular velocity, 411
rate-feedback control, 392
reaction-mode control, 329
recursion
backward Lyapunov, 171
base-to-tip, 52
base-to-tips, 163
forward Lyapunov, 167
gather, 162
Lyapunov, 60
Riccati equation, 174
scatter, 163
tip-to-base, 51
tips-to-base, 162
regular free-flying system model, 332
related nodes, 135
Ω simplification, 197
SPO operator sparsity, 146, 278
backward Lyapunov equation, 174
elements in AXB^*, 167
elements in A^*XB, 172
in a serial-chain digraph, 137
mass matrix sparsity, 169
relative coordinates, 38
residual spatial forces vector, 107
reversing
a serial-chain digraph, 141
a tree digraph, 140
an SKO operator, 345
rheonomic constraint, 210
Riccati equation, 105
discrete-time systems, 113
for SPO operators, 174
operator form, 117
Riemannian symbols of the first kind, 73, 381
rigid body
center of mass, 18
conservation of
kinetic energy, 30
spatial momentum, 33
dynamics, 25
rotational, 71
equations of motion, 25
rotational, 71
first moment of inertia, 18
gyroscopic force, 26, 30
kinetic energy, 18
mass, 18
moments of inertia, 18
second moment of inertia, 18
spatial inertia, 18
spatial momentum, 21
transformation, see rigid body transformation
rigid body dynamics, 17
about arbitrary point, 29–31
about center of mass, 25–27
about inertially fixed velocity reference point, 31–33
based on spatial momentum, 30
using body frame spatial velocities, 29–31
using inertial spatial velocities, 27–29
rigid body transformation matrix, 11–12
of $\tilde{V}(x)$, 13
of spatial forces, 15
of spatial inertias, 20
of spatial momentum, 22
of spatial velocities, 12
operator, 43
properties, 22
time derivative, 13

Rodrigues vector attitude
representation, 412

root node, 135

rooted digraph, 136
for multibody systems, 150

rotary pin hinge, 40
Coriolis acceleration, 79

rotation matrix, 4
characteristic polynomial, 405
direction-cosine matrix, 403
eigen-values, 406
eigen-vectors, 404, 405
exponential form, 404
from angle/axis parameters, 405
from Euler angles, 404
from quaternions, 406
time-derivative, 5, 403
trace, 405
rotation of vectors, 412
rotational inertia, 18

S
scatter recursion, 163
Schur complement, 398
scleronomic constraint, 210
semi-group
property of \(\phi(i,j) \), 50
property of \(\psi(i,j) \), 117
property of \(A(i,j) \), 146
sensitivity
of \(D \), 374
of \(D^{-1} \), 374
of \(\Sigma \), 374
of \(\mathcal{P} \), 374
of \(\mathcal{D}^+ \), 374
of \(\tau \), 374
of \(\mathcal{E}_\phi \), 374
of \(H \), 364
of \(H(k) \), 363
of \(\phi \), 364

of \(\phi(\varphi(k), k) \), 363
of \(\phi \mathcal{M} \phi^\ast \), 365
of \(\mathcal{M} \), 364
of \(\mathcal{M}(k) \), 363
of \(\tau \), 374
of articulated body quantities, 373–377
of Innovations factors, 375
of Newton–Euler factors, 375
of spatial operators, 361–368
of the kinetic energy, 366
of the mass matrix \(\mathcal{M} \), 365
of vector quantities, 353
separating contact, 225
serial-chain digraph, 137
adjacency matrix properties, 140
reversal, 141
serial-chain equations of motion, 81
inclusion of external forces, 85
inclusion of gravitational forces, 87
operator form of, 82
using inertially fixed reference point, 93
serial-chain system
Coriolis acceleration, 77, 80, 434
equations of motion, see
serial-chain equations of motion
inverse dynamics, 88–93
kinematics, 35
kinetic energy, 57
model, 35–42
reversal, 345
rigid multibody system, 35
simple hinge Coriolis acceleration, 79
spatial operators, 47
velocity recursion, 46
similarity transformation, 83, 96
similarity-shift transformation, 147, 149
simple tree digraph, see tree
simply-connected digraph, 137
skew-symmetric matrix
associated with cross-products, 6
characteristic polynomial, 405
property of \((M_D^T - M_D)\), 68
SKO formulation
issues for non-tree systems, 185
procedure, 182
SKO model, 160
SKO model, 159–185
AB forward dynamics, 182
aggregation condition, 288
backward Lyapunov equation, 170
definition, 160
development procedure, 183
existence, 161
for aggregated tree, 290
for closed-chain systems, 302
for flexible systems, 255–257
for geared systems, 234
for passive system, 317
forward dynamics, 180
forward Lyapunov equation, 166
generalizations, 161
identities, 176
Innovations operator factorization,
179
inverse dynamics, 166
mass matrix, 168
non-tree generalization, 185
partitioning, 275–278
Riccati equation, 174
with \(k\)th link as base-body, 341
with constraint embedding, 302
with new base-body, 347
SKO operator
BWA matrix, 159
after aggregation, 288
of reversed serial-chains, 345
partitioned, 276
SKO-forest, 151
spanning tree, 138
multibody, 151
sparsity structure
SPO operator, 278
mass matrix, 169, 282
of serial-chain \(\mathcal{E}_A\), 145

of serial-chain \(\mathcal{A}\), 145
of tree \(\mathcal{E}_A\), 145
of tree \(\mathcal{A}\), 145
of tree SKO, 280
of tree SPO, 281
spatial acceleration, 76
from innovations accelerations,
125
modal, 253
spatial deformation, 246
spatial force, 15
inter-link, 75
residual, 107
rigid body transformation, 15
spatial inertia, 17–21
of full system, 62
rigid body transformation, 18
spatial operator, 58
spatial inertias
composition of, 21
spatial kernel operator (SKO), see
SKO operator
spatial momentum, 21
of full system, 63
rigid body transformation, 22
spatial operator, see operator
spatial propagation operator (SPO), see
SPO operator
spatial vector, 8–14
cross product for, 9–10
spatial force, see spatial force
spatial momentum, see spatial
momentum
spatial velocity, see spatial
velocity
spatial velocity, 9
modal, 251
recursive algorithm for, 45
relative, 39
rigid body transformation, 12
spherical hinge, 40, 41
SPO operator
1-resolvent matrix, 159
after aggregation, 289
backward Lyapunov equation, 170
Index

forward Lyapunov equation, 166
identities, 176
partitioned, 277
product with vectors, 162
Riccati equation, 174
sparsity structure, 278
squeeze force, 214
stacked vectors, 48
standard digraph, 150
strictly canonical tree digraph, 137
adjacency matrix, 140
structural
mass matrix, 248
stiffness matrix, 248
sub-graph, 273
path-induced, 273
aggregation, 283
child nodes, 284
child sub-graph, 274
induced, 273
induced partitions, 274
parent nodes, 284
parent sub-graph, 274
sub-structured SKO models, 290
symmetries of the Lagrangian, 34

T
terminal-body model, 76, 97
time derivative
of $H^*_k(k)$, 94
of D, 368
of D^{-1}, 368
of \mathcal{S}, 368
of \mathcal{P}, 368
of \mathcal{P}^+, 368
of τ, 368
of \mathcal{E}_ϕ, 368
of H, 357
of $H(k)$, 356
of ϕ, 357
of $\phi(k+1,k)$, 356, 359
of \mathcal{M}, 357
of $\mathcal{M}(k)$, 356
of τ, 368
of articulated body quantities, 368–373
of homogenous transforms, 38
of Innovations factors, 375
of Newton–Euler factors, 375
of quasi-coordinates, see quasi-coordinates
of spatial operators, 356–361
of the mass matrix \mathcal{M}, 360
of the rigid body transformation matrix, 13
time-derivative
of a 3-vector, 6
of a rotation matrix, 5
of a spatial vector, 10
tip-body, 35
tip-to-base recursion, 51
tips-to-base gather recursion, 162
torque minimization, 215
trace
of a rotation matrix, 405
of the mass matrix, 65
transform
homogeneous, 4
rigid body, see rigid body transform
transformation
change of base-body, 341
diagonalizing, 380
of a BWA matrix, 147
tree digraph, 137
adjacency matrix properties, 140
canonical, 137
reversal, 140
strictly canonical, 137
tree-topology system, 150
\mathcal{E}_ϕ BWA matrix, 155
equations of motion, 155

U
under-actuated system, 313
articulated body inertia, 317
decomposition, 315
disturbance Jacobian, 325
equations of motion, 316
Index

flexible-link systems, 261
forward dynamics, 322
free-flying system, 329–330
generalized Jacobian, 325
Innovations operator factorization, 319
inverse dynamics, 322
mixed dynamics, 322
modeling, 314–320
relation to prescribed motion systems, 322
undirected graph, 135
unilateral constraint
 complementarity approach, 224
distance function, 225
forward dynamics, 227
gap function, 225
penalty method, 224
unit quaternions, see quaternions, 41
universal joint, 41
unrelated nodes, 135
 SPO operator sparsity, 146, 278
elements in \(\mathbb{A} \mathbb{X} \mathbb{B}^* \), 167
elements in \(\mathbb{A}^* \mathbb{X} \mathbb{B} \), 172
 in tree digraphs, 137
 mass matrix sparsity, 169

\(\mathbb{V} \)
 vector
 derivative, 5–8

norm, 397
rotation of, 412
velocity
degrees of freedom, 39
diagonalization condition, 382
diagonalizing coordinate transformations, 382–392
generalized, see generalized velocity coordinates
hinge coordinates, 39
reference frame, 31
velocity recursion
 for aggregated body, 294
 for serial-chains, 44
 for tree systems, 154
with \(\mathbb{B}_k \neq \mathbb{O}_k \), 46
with kth link as base-body, 342

\(\mathbb{W} \)
 weight dimension, 141
determination, 184
 for rigid-link systems, 153
weight matrices, 141
determination, 184
 for dual model, 333
 for rigid-link systems, 153
general properties, 161