Index

Note: The letters ‘f’ and ‘t’ following the locators refer to figures and tables respectively.

A

Aamodt, A., 260
Abbate, J., 4
“Acceptance of provocation/activation,” 231
Accessibility and age-related cognitive impairments, 276–277
accessibility, definition, 276
long-term memory, 277
normal aging impairments, 276
short-term memory, 277
Accommodation process, 40–41, 71, 226–227, 233
Acrobat Connect technology, 195
Action research
analytical/constructive, 163
defined by Bitinas, 163
defined by Dick, 163
ActionType, 216
“Activation of prior knowledge,” 227–228, 232
Activation phase, 351, 353, 355
Active learning, see Collaborative learning (CL)
Activity monitoring tool, 214
objectives, 214–215
preliminary phase, 214
Addison, P., 263
Adeoye, B., 294–295
Adler, A., 278
Affective/diffuse cultures, 294
Affiliation-based cultures, 294
Akroyd, D., 18
Alexander, P. A., 13
Al-Hunaiyyan, A., 294
Al-Huwail, N., 294
Allen, J. K., 261
Al-Sharhan, S., 294
Altermann-Köster, M., 5
American Psychological Association, 13
American Revolutionary War, 52, 149
‘Analytical’ action research, 163
Anderson, I., 97
Anderson, T. M., 375
Andrianoff, S., 263
Anglin, G. J., 126
Antolf, A. N., 105
Antonacci, D. M., 194–195
Anzai, Y., 104
APA Work Group of the Board of Educational Affairs, 13
API, see Application programming interface (API)
Application domain specifics, 88–91
concepts and subordinate concepts, 91
educational system, 89
flows between institutions, 89f
frame-based representation, 90
inter-institutional knowledge, analysis of, 88
knowledge element, 90–91
knowledge representation approach, requirements, 90
knowledge schema, example of, 90f
See also Prototype for knowledge representation
Application phase, 353, 355
Application programming interface (API), 9, 78, 213, 215, 219–221, 228
Argyris, C., 69
Arinze, B., 252
Arter, 188
Ashbaugh, H., 346, 349
Asian Institute of Technology, 291–292, 296
Aspray, W., 3
Assimilation process, 13, 40, 71, 226–227, 242t
Atkins, M., 12
Attewell, P., 7
Attitudes, beliefs and practices, 17
Augustinaitis, A., 162, 167–168
Austad, C. S., 345
Authority-based learning approaches, 294
Ayres, P., 18, 105
Azvedo, R., 12, 16–17
Aznai, Y., 233

B
Baby boomers, Finland, 274
Baker, W., 354–356
Bakker, G., 193–205
Balanskat, A., 237
Bannon, L., 279
Banwell, L., 243
Barak, M., 328
Barnes, L. B., 260
Barry, M., 310
Barsi, L. M., 364
Barty, K., 238, 241
“Basics in Information Technology,” 157
Bastiaens, T., 348
Bauer-Morrison, J., 104
Bayen, U. J., 274, 276, 278–279
Becerra, M., 252
Bechter, C., 291–306
Becker, W. E., 240
Beck, I. L., 52
Bednarik, R., 273, 275, 285
Beichner, R., 26
Bell, P. D., 18
Bennet, R. E., 328
Bersneviciene, D., 164
Bergin, D. A., 348
Bétrancourt, M., 104
Beyer, R., 52
Bion, W. R., 328
Birney, R., 310
Bitinas, B., 163
Blackboard Learning Environment, 240
Blamire, R., 237
Blessing, A. M., 147–160
Brading, H., 274
Bruner, J., 118
Bruner, R., 348
Brunken, R., 18
Bryan, L., 17
Buffalo State College, 199
Bunz, U., 252
Burkhardt, H., 3
Business simulation, 291

C
Café, 301
Cahill, L., 151
Calvo, R. A., 310
Campbell, J., 346
Cañas J. J., 105
Canonical vs. individual meaning, misconception, 16
Caplat, G., 214
Carey, J., 123
Carey, L., 123
Carlson, H. L., 103
Carney, R. N., 126
Carrol, W., 356
Carrol, N. L., 310, 312
Carroll, N. L., 310
Carson, J. G., 356
CARTE, see Collection, activity Analysis and Regulation based on Traces Enriched (CARTE)
Case-based reasoning (CBR), 260
Casey, N. C., 5
“Categories of transmission medium,” 53
CBR, see Case-based reasoning (CBR)
CELEA, see Cognition and exploratory learning in the digital age (CELEA)
CFS, see Cognitive Flexibility Scale (CFS)
Chaffin and Harlow model, 275, 284
Chalvin, A., 214, 223
Chandler, P., 105
Chang, Y., 292
Chang, Y.-J., 311
Chan, H. C., 244
Charness, N., 105, 113
Chen, C.-H., 311
Cheng, C., 237, 251
Chiarelli, S., 12
Chickering, A. W., 364
Chignell, M., 311
Chi, M. T. H., 330
Chin, A., 311
Chiu, M. H., 330
Christensen, C. R., 260
Christmann-Jacoby, H., 69
Clark, R. E., 16
Classical clover model, 212
 communication/coordination/production, 212
 regulation/retroaction type traces, 212–213
C2LEARN project, 238
 benefits, 239
 collaborating institutions, research notes, 240
 goals of, 239
 project activities, 239
 pilot virtual CoL, 239
 robust CoL, 239
 website information, 239
CLEs, see Constructivist learning environments (CLEs)
CMC, see Computer-mediated communication (CMC)
CMSs, see Course management systems (CMSs)
Cocking, R. R., 356
CoffeeRoom, communication tool, 214–215, 218–222
Coffield, F., 363
Cognition and exploratory learning in the digital age (CELEA), 6, 8–9, 377
Cognition and Technology Group, 8
Cognition/student-centered, web-based learning
 assumptions underlying, 12–15
 nagging issues, see Web-based learning, issues in
 research/theory/design, implications for, 15–18
Cognitive Flexibility Scale (CFS), 107, 109
Cognitive load, 15, 18, 113, 134, 138–139, 141
CoL diagnostics, illustration of, 250t
Collaborative learning (CL), 164
 activity, 213–214
 development process of individuality (Vasiliauskas), 164
 discussion as ‘active learning method,’ 166
 face-to-face collaborative learning, evaluation, key components, 164
 group learning, application, 164
 information and communication technologies, application in, 165–166
 learning process, constructivist approach, 164
 role of teacher, 164
 objectives
 group processes, 165
 individual responsibility, 165
 positive interdependence, 165
 social skills, 165
 stimulating interaction, 165
Collection, activity Analysis and Regulation based on Traces Enriched (CARTE), 223
 experiments, 214–215
 retroaction and regulation, 212–213
 use model to support regulation, 213
 software learning tools, 215–220
 awareness tool2, 218f
 jibiki, 216f
 pair management tool1, 217f
 traces, 210–212
 TBS, 212f
 trace structure, 212f
Collins, A., 14, 229
CoLs, see Communities of Learning (CoLs)
Communication
 general ways of
 graphic, 165
 physical, 165
 verbal, 165
Communication (cont.)
 virtual means
 Google groups, 169
 Messenger, 170
 Moodle, 169
 SkyDrive, 170
 Wiki, 169
 Windows Live, 169
Communities of learners, 237–254
 barriers and critical success factors, 238–241
 barriers to creating virtual communities of learning, 241–242
 C2LEARN project case, 238–241
 Virtual CoLs, 242t
CoL Participants’ Behavior, 252–253
 common values/sense of purpose/shared understanding, 252
 sense of belonging, 252–253
 sensitivity/cultural awareness/netiquette, 253
 trust, 252
CSFs for creation of virtual CoLs, 242–244
 human resources
 CoL diagnostics, illustration of, 250t
 communication, 250–251
 diagnosis/monitoring of CoL, framework for, 245t–249t
 ICT skills status and learning, 244–250
 interaction frequency, 251
 infrastructure and contextual resources, 244
 ICTs as communication media, 244
 ICT, use and provision of, 244
 time/resources/workload, 251
Communities of Learning (CoLs), 238–244, 249
Community of practice (CoP), 238, 241, 243, 251–252, 254
Compter, E., 194
Computer courses, 282–283
 20-h computer courses, 282
 WWW-questionnaire, 282
Computer literacy, 5
Computer-mediated communication (CMC), 240, 250–251
Computer-supported collaborative learning (CSCL), 161–175
 CL environment, benefits, 163
 face-to-face CL, Piagetian and Vygotskian approach, 164
 qualitative research, 170–172
 quantitative research, 172–174
transdisciplinary action research, 162–163
 action research (Bitinas), 163
 action research (Dick), 163
 ESOF 2004, success/result, 162
 knowledge, role of modern scientific research, 163
 transdisciplinarity (Nicolescu), 163
 transdisciplinarity (Wikipedia encyclopedia), 163
transdisciplinary action research groups, 166–170
 convenient/inconvenient interaction, 166
 diverse software groups, investigation of, 166
 five projective activity years, changes during, 168–169
 group learning, characteristics (Tereseviciene and Gedvilie), 167
 post-modern model of professionalism (Augustinaitis), 167
 research group work, stages (Brazdeikis), 168
 in transdisciplinary groups, 161–162
 aim of research, 162
 Computer Science faculty/Institute of Arts, participants from, 162
 information rationality, 162
 life-long learning, collaborative work as criteria, 162
 research methods, 162
See also Collaborative learning (CL)
Conceptual change, e-training, 328, 330, 339
Conklin, M. S., 198
Connerade, J.-P., 162
Conole, G., 243
Conrad, R.-M., 354
Construction–integration model, 54–57
 learning measurements, 56–57
 prior knowledge, 55
 situation model, 55
 text coherence, 55–56
‘Constructive’ action research, 163
Constructivism, 12–13, 102–103, 194, 378–379
Constructivist approach
 learning, 292
 training, 329
Constructivist learning, 13, 194–195
 definition, 195
 downsides of, 196
 role in, 195–196
 Active Worlds and Second Life, 195
CMSs and VLEs, 195
MMORPG World of Warcraft, 195
telepresence (avatars)/immersion, 196
support providence, 196–197
education/learning strategies, features, 197
Constructivist learning environments (CLEs), 196–197
Content-first approach
component skills and knowledge, identifying (step 3), 350
procedural essay introduction screen, 350f
series of similar tasks of increasing complexity, identifying (step 2), 349–350, 351f
whole tasks, identifying (step 1), 349
Contents construction method, qualitative analysis for, 125–133
chart for content analysis, 127f
extraction of features/characteristics on contents
ordinability for figures/sentences, 127–131, 129f
pattern of progressive, 130f
pattern of regressive, 131
pattern of spiral, 131f
procedure (frame characteristics), 131f
question items about characteristics of figures, 128f
semantic relationship between figures and sentences, 126–127, 128f
two-dimensions as ordinability, 129f
extraction of features/characteristics on frames
analysis for frame characteristics, 132
procedure, 131–132
extraction of features/characteristics on frame sequences
liner/branch/binding, 133f
liner/nonbinding, 133f
procedure, 132
procedure (frame sequences), 133f
steps (13), 125–126
study plan, 126
Contextual-writing experiences, 346
Convergence in e-learning, 296
Cooper, L. W., 261, 270
CoP, see Community of practice (CoP)
Copeland, M. T., 260
Coppola, N. W., 364
Cordova, D. I., 348
Cortese, J., 18
Cottrell, D. J., 37
Coulson, G., 243
Coulson, R. L., 106
Course management systems (CMSs), 195–196, 311
Courtenay, B. C., 278
Courtin, C., 209–233
Craik, F. I. M., 277
Cramton, C., 242
Crane, M., 12
Crews, T. B., 345
Critical success factors (CSFs), 238–239, 241–244
Cromley, J. G., 16–17
Cronjé, J., 294
Cross-cultural usability, 295
high context/low context, 296
Cruysbergh, B., 193–205
CSFs, see Critical success factors (CSFs)
Culture, definition, 292
Cummings, J., 241
Cunningham, A., 177–178
Cycle of interrelated instructional phases, principles
activation (tell me), 351
application (let me do it), 352–353
demonstration (show me), 351–352, 352f
integration (watch me), 353, 353f
task-centered, content-first approach, see
Content-first approach
Czaja, S., 275, 277, 279
D
Dabbagh, N., 17
Damashek, R., 354
Danichak, M., 363
Dan-Gur, Y., 328
Dannenhoffer, J. F., III, 240
Darabi, A. A., 101–113
“Data Transmission and Networks Communications,” 57
David, J. P., 223
Davidson, B. D., 240
Davis, C., 260
DC, see Digital Cottage (DC)
Dede, C., 194, 196
Deductive epistemology, 378
De Leeuw, N., 330
Demunter, C., 274
Department of Computer Science at University of Joensuu, 281
Derntl, M., 309–323
De Rode, J., 200
De Troyer, O., 294, 296
Dewey, J., 187–188, 190–191
Dewey’s three-part action-based reflection typology, 187
Dewsbury, G., 276
Dick, B., 163, 168
Dickey, M. D., 194–195
Dickinson, A., 276–277
Dick, R., 293
Dick, W., 123
Didactics of Informatics, 261–262, 267, 269–270
Digital age’s dawn, 3–4
analytical machine, 3
binary number system, 3
ENIAC, 4
integrated circuit, 4
mechanical calculator, 3
punch card, 3
Z3, 3
Digital Communication curriculum, 200
Digital Cottage (DC)
computer club for elderly people, 279–281
feedback and results, 281
image manipulation, 280
office 2003 package, 280
post-www-questionnaire, 280
risk factors during activities, 280
student co-op Tukeva, 280
Windows XP in Finnish, 280
WWW questionnaires, 280
and Seniors’ Club, 275
Digital photography, 281
Digital video reflection techniques, improving teacher performance
findings, see Teacher’s reaction to video-enhanced reflective process, findings
implications
practical, see Practical implications
theoretical, see Theoretical implications
level-two licensure (tenure), 177
use of video clips by teachers, potential benefits, 177–178
video, reflection, and performance methodology, see Video analysis
research background and rationale, see Research on video, reflection, and performance
Dijkstra, S., 6
DiMaggio, J., 159
Dimitracopoulou, A., 238, 309
Dimitriadou, E., 76
Dinter, F. R., 104, 227
Distance education, interactions
learner–content, 329
learner–learner, 329
learner–teacher, 329
Distributed cognition theory, 70
Diverse software groups, 166–167
Doerr, H., 328
Doise, W., 328, 330
Dolnicar, S., 76
Domizi, D., 18
Donaldson, J. A., 354
Dorf, M. L., 263
Dorn, B., 261
Dörner, D., 377
Dörr, G., 227
Downes, S., 309
Doyle, W., 13
Driessen, S. J., 84
Dufare, D. L., 252
Duguid, P., 14, 241
Dummer, P., 4–5, 69–84, 227, 357–358
Dunckley, L., 292
Dunn, P., 292, 294
Dunwoody, S, 18, 139
3D virtual worlds, experiencing/learning with
assessment
results, 203–204
students’ answers to questions concerning their own attitude, 204f
students’ opinion about cooperation, 204f
students’ opinion about course, 204f
survey, 202
course on
course structure, 200
virtual world as an educational tool, 200–201
new technology/paradigm, constructivist learning, see Constructivist learning
subjective impressions, assessment of, measuring experience, 197–198
living through, assessment, 198
VAS scales, 198
survey, 202
theory and practice, observations in, 198–199
Active Worlds world, 199
complex large-scale molecule models, 199
knowledge creation/transfer, tools for, 199
multimedia virtual worlds, 199
real-world part/virtual-world part, course, 199
teaching for, 278
virtual classrooms, 199
VNEC on Second Life, 198
Dwyer, D. C., 13

EADLs, see Enhanced activities of daily life (EADLs)
Eaton, J., 275, 277
Eccleston, K., 363
Eden, D. M., 15
Ecclestone, K., 363
EFQM Excellence Model, 243
Eldred, G. O., 52
Eisner, R., 277
Elderly people
continuing education for, 278–279
educational gerontology, 278
elderly/ICTs/instructors, interaction between, 279
old age education, 278
participation in learning technology, 274
software and physical interfaces, 279
in Europe, 274

e-learning
behaviors, 295t
differences in, 300t
communication tools: East/south Asia, 299t
cultural features
and internet behavior, 293t
qualitative/quantitative insights, 298–304
data collection and analysis, 266–267
effectiveness of, 266
definition, 293
dimensions, 295t
discussion board postings, 299t
language-cultural tool, 293
learning cultures, 305t
participant analysis
literature review, 292–296
methodology, 296–297
objective/questions, research, 297
time spent online, 298f
e-learning, different learning styles in, 361–372
associations, 368–369, 369t
differences accommodator vs. assimilator, 366–367, 366t
accommodators (Acco)/assimilator (Assi), 366
assimilators like to, 366–367
discussion board, 364
diverger vs. converger, 365, 365t
convergers prefer to, 365
divers (Dive) and convergers (Conv), 365
learning styles
Kolb’s learning style model, 362f
and online behavior, 372t
objective and methodology, 364–365
links between Kolb’s learning styles, 364–365
research questions, 364
perceptions on simulation course, 367–368
accommodator, 367t
assimilator, 367t
diverger, 368t
converger, 368t
qualitative insights, 369–371
Sample Postings, Broad Question –
Branding and Innovation
accommodator, 370–371
assimilator, 371
converger, 371
diverger, 371
Sample Postings: Focused Question –
Ryanair Case Study
accommodator, 369
assimilator, 370
diverger, 370
e-learning environment, system configuration of, 119–122
structure of webclass-RAPSODY, 120
student’s e-KARTE and mentoring functions
displayed example for mentoring, 122f
mentoring and coaching, 121–122
use of digital portfolio (e-KARTE), 121
e-learning, features of, 298–304
qualitative insights, 301–304
québec, 301
case studies and textbook, 304
communication with tutor, 303
continuous learning process, 304
course-related topics, 301–302
current issues, 303
peer assessment, 302–303
peer support, 303
quantitative insights, 298–301
e-learning, qualitative study on contents analysis/construction method aspects, 118

Bruner’s representation of thinking theory, 118

eventive/iconic/symbolic, 118

concept of “frame,” definition, 119

content analysis/construction, 140–141

contents construction method, qualitative analysis, 125–133

dance of understanding and knowledge-circulated managing, 138–140

See also Understanding and knowledge-circulated managing

instructional design and learning design, 122–124

aspect from instructional design, 122–124

aspect from learning design, 124

LICAP-β model, 124–125

Organizational Knowledge Management, 123

structured database of learning resources in webclass-RAPSODY, 118–119, 119f

synergy effect, 141

“synergy effect” by sound narrations in frames, 134–138

system configuration of e-learning environment, 119–122

theory of “Good Frame and Bad,” 119

theory of “Programmed Learning,” 119

“The structured Database of Learning Resources,” modules, 118

e-learning technologies, activity implementation, 259

case study activity

educational material, 263t

evaluation criteria, 267t

phases/assigned tasks, 264t

empirical study, 262–267

case study, 262

data collection and analysis, 266–267

materials, 262–263

participants, 262

procedure, 263–266

initial bubble sort Role Playing, 265f

phase A initial activities, evaluation, 267t

phase D initial activities, evaluation, 268t

results, 267–270

revised bubble sort Role Playing, 266f

students’ answers, bubble sort representation, 269t

students’ positive/negative comments on teacher’s role, 268t–269t

types of activity, 259–260

ELF (English as foreign language), 293

Eliëns, A., 194

Ellis, C., 212

Ellis, D., 241

Ellson, J., 78

Emergent technologies/Semantic Web, 8

Emotion and learning, 151

See also VCQs as new setup for learning

Enhanced activities of daily life (EADLs), 283

Eppler, M. J., 73

Eraut, M., 241

Ericsson, K. A., 105, 113

Eronen, P. J., 280–281

Ertmer, P. A., 347

Esichaikul, V., 361–372

ESOF 2004, see Euroscience Open Forum, 2004 (ESOF 2004)

Euro*MBA, 291

Euroscience Open Forum, 2004 (ESOF 2004), 162

Eveland, W. P., 18, 139

Evidence-based explanations, 12

Expert’s mental model, 102

Eynon, R., 240

F

Face-to-face

collaborative learning

evaluation, key components, 164

issues (Switzer and Hartman), 166

lab meetings, 311

Fadali, M. S., 263

Fajardo, I., 105

Fallahi, C. R., 345

Fallahi, H., 345

Fassinger, P. A., 364

Feenberg, A., 194

Feldberg, F., 194

Feltovich, P. J., 106

Ferraris, C., 223

Fessakis, G., 309

Fichl, K., 322

Fisk, A. D., 274–275, 277, 283, 285

Fleming, M., 105

Foltz, P. W., 71, 76

Fontainha, E., 237–254

Four-component instructional design (4C/ID) model, 104

Fowler, C., 241
Frame system, usage of, 94–95
Frame Set, 94–95
 Insight the frame system, 95f
 tree structure (hierarchy), 94

See also Prototype for knowledge representation

France, L., 209, 211, 223
Francesco, A. M., 364
Franks, J. J., 55
French, T., 292
Friedman, E. D., 246

G
Gabbitas, B., 310
Gagne, R., 123
Gale, K., 241
Gamson, Z. F., 364
Gannon-Leary, P., 237–254
Gansner E. R., 78
Gap-filling process, 52
Gardner, H., 27, 328
Garner, I., 363
Garrison, D. R., 364
Gasparinatou, A., 51–64
Gedviliene, G., 165, 167
Gee, J. P., 328
Gefen, D., 252
General-writing experiences, 346
Gentner, D., 227
Gentner, D. R., 227
Gerdt, P., 273, 275
Gibson, C. B., 241
Gibson, G. V., 241
Gick, M. L., 228
Gilbert, C. G., 354
Glogoff, S., 311
Goal-based scenarios, 8
Goals, K., 123
Gogus, A. S., 377
Goodman, J., 274
Gordin, D., 13
Graham, C. R., 310
Graphical user interface (GUI), 4
Graphic communication, 165
Greene, B. A., 18
Greenfield, P. M., 4
Green, J. L., 328
Greeno, J. G., 102
Gregor, P., 277
Grigoriadou, M., 16, 51–64, 259–271
Griswold, S. L., 177
Gronbæk, K., 279
Grossman, S., 177

Group learning, characteristics (Tereseviciene and Gedviliene), 167
Groupware model, 215
Grudin, J., 279
Grundspenksis, J., 87–98
Grünvogel, S. M., 199, 204
Grützmacher, B., 199, 204
GUI, see Graphical user interface (GUI)
Gulgoz, S., 52
Gulikers, J., 348
Günther, H., 4
Guo, W., 88
Gupta, A. K., 252
Guthrie, J. T., 12
Guzdial, M., 260

H
Haberman, S., 26
Hadwin, A. F., 105
Haft, H., 4
Hall, E., 363
Halloun, I., 26
Hammond, M., 310–311
Hampden-Turner, C., 295t
Hands-on exercises, 311
Hanke, U., 225–234
Hannafin, K. M., 11–20
Hannafin, M. J., 11–20, 378
Hansen, A. J., 260
Hansen, J. G., 354–355
Hara, N., 241
Hardman, L., 15
Harlow, S. D., 273–275, 284–285
Harris, B., 194
Hartman, 166
Hassanein, K., 293
Hatton, 187
Hawthorn, D., 282
Hayes, E. R., 196
20-h computer courses, 282
HE, see Higher education (HE) teaching practices
Head, M., 293
HEA/JISC e-learning benchmarking program, 240
Healy, A. F., 52
Heckhausen, H., 150
Hegarty, 227
Heigelheimer, 18
HEIs, see Higher education institutions (HEIs)
Hendler, J., 8–9
Hennipman, E. J., 193–205
Heraud, J. M., 211
Hermeking, M., 292, 293t, 296
Hernandez-Serrano, J., 260
Herreid, C. F., 260
Hestenes, D. L., 26
Hetherington, 198
Higher Education Academy’s benchmarking e-learning project, 243
Higher education (HE) teaching practices, 237, 240
Higher education institutions (HEIs), 237–238, 240
Highly Interactive Model-based Assessment Tools and Technologies (HIMATT), 356–357
MITOCAR methodology, 357
SMD methodology, 357
High power distance, 293–294, 296, 301, 303
Hilgard, E. R., 227
Hill, J., 12, 14–15, 17–18
Hiltz, S. R., 364
Hlapanis, G., 238
Hmelo, C. E., 259
Hoadley, C., 13
Hodges, C. B., 15
Hofstede, G., 292–293, 295
Hogeschool Utrecht University of Professional Education, 193, 200
Hohenadel, I., 230
Holden, N., 293t
Holyoak, K. J., 228
Home teaching, 273–286
Hone, K., 281
Horn, C., 348
Huber, E., 225–234
Hubscher, R., 17
Huijsen, W., 84
Huotari, M.-L., 242
Hutchins, E., 71–72
Hwang, A., 364

Informatics and telecommunications, 53–54, 57, 259, 262
Informatics texts, learning
collection-integration model, 54–57
learning measurements, 56–57
text coherence, 55–56
matching activity scores (%), 60t
proportion of correct responses, 62t
reading rates (words per minute), 61t
results, 60–63
matching activity, 60–63
study, 57–60
assessment questions, 59–60
data collection, 60
materials and tasks, 58–59
method, 57–58
text recall, 59, 62t
Information and communication technologies (ICT), 165–166, 237
motivation for learning, 277–278
everly people deduced/engaged activities, 277
factors influencing, 277
learning efficacy questionnaire, 277
physical conditions/cognition as barriers, 277
self generated and facilitated by learning conditions, 277
Information process, assimilative or accommodative, 226
Information rationality, 162
Instant Messaging (IM), 301
Instructional situations that support learners’ adaptive responses
mental effort, 105
supportive information, direct/responsive, 104–105
van Merriënboer’s (1997) four-component instructional design (4C/ID) model, 104
Instructor-centered learning, role, 294
Instructor’s blog, 311
Instrumented collective learning situations (ICLS), 210, 213, 215, 222
“Integration of mental model,” 228
Integration phase, 355–356
International Conference on Advanced Learning Technology conference, 376
“Internet search engines,” 157
Ioannides, C., 330
Iran-Nejad, A., 40
“Irrelevancies” (Irr), 42

ICLS, see Instrumented collective learning situations (ICLS)
ICT, see Information and communication technologies (ICT)
Ifenthaler, D., 3–9, 67–141, 227, 357–358
Iiyoshi, T., 12
IM, see Instant Messaging (IM)
“Incas” Private Ltd, 173
Indicators, 52, 55, 57, 210–211, 222, 245t, 294, 330, 331t, 332, 337–339, 341
Individualistic active learning techniques, 294
Isaías, P., 145–205
Islas Sedano, C., 281
Ito, M., 278

J
Jacobs, J., 84, 310
Jacobs, J. W. M., 84, 310
Jacobson, M., 17
Jacobson, M. J., 106
Jacquard, J. -M., 3
Jadallah, 187
Jarvenpaa, S. L., 252
Jasper Woodbury Series, 8, 14
Jay, J. K., 177–178, 187, 191
Jean-Patrick Connerade (president of EuroScience), 162
Jibiki, production tool, 214
JISC Jubilee project, 243
Joel, B., 159
Johnson, C. M., 143, 241
Johnson, K. L., 178
Johnson-Laird, P. N., 4, 103, 227
Johnson, T., 356
Johnson, T. E., 345–358
Johnstone, K., 346, 349
Jonassen, D., 12
Jonassen, D. H., 196, 260, 328–329, 332, 377
Jones, B. D., 274, 276, 278, 279t
Jones, J., 263
JUBILEE toolkit, 243
Just, 227

K
Kabicher, S., 322
Kalyuga, S., 105, 113
Kamel Boulos, M. N., L., 198
Kanidis, E., 262
Kanuka, H., 364
Karavidas, M., 277–278
Karp, P. D., 94
Katsikas, S. L., 277
Kauffman, D., 12, 16
Keates, S., 276
Kefala, S., 237
Keiko, I., 126
Keller, 297
Keller, J., 123
Keller, J. M., 348
Kelley, L., 13
Kelly, P., 241
Kemp, J., 195
Keränen, J., 280
Kerres, M., 6–7
Kessler, E. H., 364
Kiesler, S., 241
Kilby, J., 4
Kim, C., 345–358
Kim, H., 17–18
Kim, H. N., 348
Kim, M., 17–18
Kinshuk, K., 207–286, 330
Kintsch, E., 51
Kintsch, W., 51–52, 54–57, 59, 61, 63
Kirikova, M., 87–98
Kirkup, G., 241
Kirriemuir, J., 196
Kirschner, P. A., 16, 104, 349–350
Kitsantas, A., 17
Klaas’s, 151
Klein, J. D., 13
Kleinman, J., 261, 270
Knowledge-accretion vs. tool, 16–17
Knowledge management (KM), 69–70, 72–73
Knowledge representation, prototype for, see Prototype for knowledge representation
Knowles, M. S., 328
Kolb, D. A., 362–363
Kolodner, J. L., 259–261
Konijn, E., 194
Kornilakas, H., 16
Kortenkamp, U., 147–160
Ko, S., 251
Koszalka, T. A., 358
Kotler, 297
Koutsofios, E., 78
Krampe, R. T., 105, 113
Kuhn, T. S., 328
Kumar, V., 163
Kupperman, J., 12
Kürschner, C., 156

L
Lachner, A., 69–84
Laham, D., 71, 76
Lake, C., 329
Lakoff, G., 328
Lamont, L., 194
Landauer, T. K., 71, 76, 244
Land, S., 12, 14–15, 18
Land, S. M., 12, 15–16, 18
Lane, J. L., 260
Langley, G. B., 198
Lapucci, T., 327–342
Large-scale testing, 25–27, 45
Laslett, P., 275
Lassila, O., 8–9
LaVancher, C., 330
Lave, J., 285
Lawton, M. P., 275
Learnability, definition, 296
Learner-centered environments
description, 13
psychological principles, 13
Learners’ adaptive responses, instructional situations supporting
mental effort, 105
supportive information, direct/responsive, 104–105
van Merriënboer’s (1997) four-component instructional design (4C/ID) model, 104
Learners’ mental models, measurement, 356–357
assessment tools, HIMATT, 356–357
measuring techniques, learning assessment, 356
Learning and Contents Management System (LCMS), 118, 120
Webclass-RAPSODY, 120
Learning and Teaching Enhancement Section of Academic Registry, 240
Learning assessment model
illustrations using actually student data, 40–41
simplified learning patterns, 41f
student performance change, 41–45
concrete and figurative thinking, 42
“Irrelevancies” (Irr), 42
literal interpretations (Lit), 42
oversimplification (OS), 44
student 160 – age: 9–4, 45t
student 1150 – age: 13–3, 44t
student 1660 – age: 14–7, 43t
student 2350 – age: 16–9, 42t
three areas of gain, 43
Learning/instruction in digital age
beyond the digital age, 8–9
digital age’s dawn, 3–4
opportunities/concerns, 4–6
personal learning management systems, 6–8
local vs. distant, 7
learnability, 25–27, 45
neutrality of tools, 7
potential for integration, 7
private v.s. public, 7
symbiosis, 7
user v.s. author, 7
Learning management system (LMS), 6–7, 120–121, 139, 147–148, 152, 159, 297–300, 306
Learning style inventory (LSI), 362–366, 369
Learning styles, 362–363
“learning by doing,” 362
“learning by hearing,” 362
“learning by processing text,”, 362
“learning by seeing,”, 362
learning modes, 362
doing (active experimentation), 363
feeling (concrete experience), 362
thinking (abstract generalization or conceptualization), 362
watching (reflective observation), 362
LSI model, 362
active–reflective and abstract–concrete, 362
learners, types, 362
personal learning styles, 363
Learning, subprocesses, 228
Lee, C. C., 198, 275, 277, 279
Leibniz, G. W., 3
Leidner, D. E., 252
Lejeune, A., 223
Lepper, M. R., 348
Lesh, R., 328
Leutner, D., 18, 153
Level-two licensure (tenure), 177
Lever, M., 37
Levie, W. H., 105
Levine, D., 263
Levin, J. R., 126
LICAP-β model, 124–125, 124f
modules, 125
Lifelong learning, definition, 275
Lim, N. K., 277
Lin, H.-F., 252
Linvingstone, D., 195
Li, Q., 369
Liston, D. P., 177
Liu, J., 354–355
Li, X., 275, 277
Lloyd, S. P., 76
Linde, C., 278
Lines, L., 253, 281
Lin, H.-F., 252
Liston, D. P., 177
Liu, J., 354–355
Li, X., 275, 277
Li, Y., 275, 277
Lloyd, S. P., 76
Index

LMS, see Learning management system (LMS)
Local network topologies, 54, 58
Loftus, T., 196
Log system technique, 211
Long-term memory, 52, 56, 277, 279t
Loxterman, J. A., 52
LSI, see Learning style inventory (LSI)
Luca, J., 311
Lundeberg, M., 51
Lundstrom, K., 354–356

M
Maas, R., 69
Macdonald, J., 253
Maddison, S., 369
Magoulas, G. D., 16
Maloney-Krichmar, D., 238
Mangeot, M., 214, 223
Mangler, J., 313
Mannes, S., 52
Manochehr, N.-N., 363
Manuel, J. A., 241
Marciaulyni, R., 161–175
Margolin, 188
Marinetti, A., 292, 294
Markauskaite, L., 310
Marketing management, 291, 296–298, 303
Marshall, S., 244
Martel, C., 210, 223
Martens, R. L., 348
Martinez, L. M., 194, 196
Martinez, P., 194, 196
Martin, M. M., 107
Marty, J. C., 211
“Mask the task,” 149
VCQ, concept of, 150f
Mason, H., 196
Mason, L., 328
Massively multiplayer online role-playing games (MMORPG), 195
Masterman, E., 17
Materials, criticism, 263
Maulchy, J. W., 4
Maule, R. W., 16
Mayer, R. E., 104, 108, 134, 148
Mayes, J., 241
Mayhorn, C. B., 274, 277–278
May, R., 341
Mayring, P., 317
Mazzolini, M., 369
McCannon, M., 345
McCarthy, J., 159
McCombs, B. L., 13
McDaniel, M. A., 52
McDermott, R., 241
McDonald, G., 261
McDonald, M., 261
McGill, M. J., 76
McGroarty, M. E., 355
McIntyre, J. M., 362–363
McKeown, M. G., 52
McLoughlin, C., 311
McNamara, D. S., 51–53, 55, 58–59, 63
McNichols, K. H., 263
Means, B., 13
Means, M. I., 51
Memorization for understanding, substituting memorization vs. understanding, 28t
pre–post testing, 27
selection age level of multiple-choice test answers, 28t
Mendenhall, A., 345–358
Mendes Passos, A., 230
Mental disequilibrium, 226–229, 233
Mental equilibrium, 226–228
Mental models
approaches of constructing, 103
definition by instructional psychology, 102–103
expert’s mental model, 102
exploring roles of supportive information and practice, 106–112
Cognitive Flexibility Scale (CFS), 107
IF-THEN participant mental model instrument, 107
learners’ and expert mental model, progression of match between, 110f
mental model match, means and standard deviations of participants’, 111f
multivariate analysis, 110–112
nine-point Mental Effort Scale (MES), 107
participants with high/low scores, 112f
sample screen of introduction and supportive information, 108f
series of 10 IF-THEN statements, 106f
simulation control panel interface, 107f
simulation system, 108
treatment and observation design, 109f
instructional situations that support learners’ adaptive responses mental effort, 105
supportive information, direct/responsive, 104–105
mental models and model-centered instruction, 71
ad hoc (on fly) construction, 71
goal of model centered instruction, 71
schema, 71
model-based knowledge management,
72–73
three-layer generic model of knowledge representation, 72–73, 73f
modules, 74
preprocessing, 75
semantic clustering, 75–76
semantic interpretation and categorization, 70–71
Montague Grammar, semantics interpretation, 70
TYPES, 70
technological study, results from, 80t
validation study, 80–83
hypotheses, 80–81
weighted tf-idf-term-document matrix X", 76t
Model inspection trace of concepts and relations (MITOCAR), 77, 357
vs. SMD, graph comparisons, 357
Model of Model-Based Instruction (MOMBI), 226–230, 232–234
Model-oriented instruction and mental model progression, 102–104
MOMBI, see Model of Model-Based Instruction (MOMBI)
Montague Grammar, 70
Montague, R., 70–71
Moodle, 152–153, 157, 169, 195
Moore, G. M., 329
Moore, J. L., 260
Moravcsik, J. E., 55
Moroni, C., 327–342
Morris, A., 274, 277–278
Morris, M., 274–275, 277
Moseley, D., 363
Motivation, definition, 150
Motschnig-Pitrik, R., 322
MTrace (model trace), 211, 221, 223
Mugny, G., 328, 330
Multimedia and digital age, 5
“Multimedia enhancements,” 148
Multimedia learning environments, 5–6
Murphy, P. K., 13, 196
Musch, J., 156
Mushtaha, A., 294, 296
Mynatt, E., 278
Mental models (cont.)
van Merriënboer’s (1997)
four-component instructional design (4C/ID) model, 104
model-oriented instruction and mental model progression, 102–104
Merrill, M. D., 347–349, 351–354, 356, 375
Merrill’s first principles of instruction, 347
MES, see Nine-point Mental Effort Scale (MES)
Messer, D. J., 330
Metacognitive demands, 18
Meulenberg, F., 200
Microstructure, referred, 55
Miki, H., 27
Millard, S., 253
Mille, A., 211, 214
Milne, S., 277
Min, H.-T., 354–355
Miniwatts marketing group, 4
Minocha, S., 292
Minsky, M., 94
Miraftabi, R., 273–275
Mistree, F., 261
Mitchell, G., 244
MITOCAR, see Model inspection trace of concepts and relations (MITOCAR)
MMORPG, see Massively multiplayer online role-playing games (MMORPG)
Modaress, N., 194–195
Model-based instruction, in Spanish/mathematics, 225–234
method, 230–231
MOMBI, 226–230
significant differences between Spanish/mathematics, 231t, 232–233
Model-based knowledge mapping
approximate SVD Matrix X", 76t
conventional knowledge mapping, 73–74
discrepancies, 73–74
five steps construction, 73
data visualization with T-MITOCAR
Artemis, 77–79
MITOCAR, 77
prior work, 77–79
T-MITOCAR (Text-MITOCAR), 77
discussion, 83–84
process model, 83
distributed cognition, 71–72
equivalent for text-document frequency
matrix, 75t
Index

N
Naomi Nagata, 117–141
Narayanan, N. H., 259–261
Naumanen, M., 273–286
Nelson, D. W., 101–113
Nelson, G. L., 356
Nevgi, A., 294
Newby, T. J., 347
Newell, A., 102
Newman, S. E., 229
New media/communication technologies, 4
Newstead, S. E., 229
Newstetter, W., 261
New technologies, characteristics, 5–6
Ng, C., 274, 278, 285–286
Nicaise, M., 12
Nicolescu, B., 163
Nicolini, P., 327–342
Niederhauser, D. S., 18
Nielsen, J., 244, 276
Nine-point Mental Effort Scale (MES), 107, 109t
Nishimura, S., 294
Nixon, R., 159
Nonaka, I., 69
North, S. C., 78
Noyce, R., 4
Nüßbickel, M., 72, 84
Nussbaum, M., 164–165

O
Objectives/questions, research, 297
Observations and teaching diary notes, 284
adjustment learning, DC, 284
discovery learning, 284
import of skills, 284
outside instructions/control of learning, 284
pedagogy and technology, 285
sense of mastery, 284
situated learning, 285
Observation station, 209–223
See also Collection, activity Analysis and Regulation based on Traces Enriched (CARTE)
“Observeds,” 213, 218, 220
Observing children at school, workshop design, 329–335
at end of course, 334–335
at starting point, 333–334
O’Connor, D. L., 356
O’Day, V. L., 278
O’Dell, F., 251
ODPM FAME project, 243
O’Driscoll, 197
Office 2003 package, 280
O’Heigeartaigh, M., 310
Okamoto, T., 117–141
Old age ICT education, practices in, 273–286
continuing education for elderly, 278–279
age-related changes in cognitive ability/implications for teaching, 279t
computer courses, 282–283
DC– computer club for elderly people, 279–281
home teaching, 283
levels of Chaffin-Harlow model, 284f
seniors’ club, joy of collaborativity, 281–282
user-centered design of learning for elderly people, 286f
requisites for old age learning accessibility and age-related cognitive impairments, 276–277
motivation for learning ICT, see Information and communication technologies (ICT)
teaching for elderly, 278
“Older adults,” 275
Oldridge, R., 241
Oliver, K., 12
Oliver, M., 243
Olson, G. M., 241
Olson, J. S., 241
One-way ANOVA, 61, 313
Online community concept, 238
Online English writing course, design framework for contextual/general writing experiences, comparison, 346
controversial social problems as writing tasks (Friedman and colleagues), 346
English legal terminology course, task-centered approach (Weber), actual model legal essays, use of, 346
task-centered approach cycle of interrelated instructional phases, 348–353
measurement for learners’ mental models, 356–357
peer review for practice and evaluation, 354–356
Online English (cont.)
Merrill’s first principles of instruction, 347
topic-centered approach, drawbacks, 346
Online socialization tools, 237
Open University of the Netherlands (OUNL), 124
Oppelaar, E. J., 193–205
Opportunities/concerns, learning/instruction, 4–6
learning individuality, 6
time/space constraints, independence from, 6
Optional parameters, 211
Orchestral Manoeuvres in the Dark (OMD), 155
Orey, M., 194–195
Orrill, C. H., 14
Otero, J., 54
OUNL, see Open University of the Netherlands (OUNL)
Outcomes from workshop (2006/2007), 335–337, 336t
Outcomes from workshop (2008/2009), 340–341
Owens, D. L., 123
Ozdemir, S., 241

P
Paas, F., 105, 107, 109
Pair management tool, 217–218
Palanki, S., 102
Palloff, R. M., 253–354, 356
Paneva, D., 362
Papademetriou, E., 330
Papanikolaou, K. A., 16
Paper-and-pencil test, 328
Papert, S., 13
Participant analysis, e-learning, 291–297
literature review, 292–296
design emphasis, 292
methodology, 296–297
objective/questions, research, 297
Paulus, T. M., 355
Pavesio, M., 166
Pea, R., 13
Peer review for practice and evaluation
activation phase, 355
application phase, 355
component skills, 354
development of mental models, 354
instructors, role in guidance/training, 355–356
integration phase, 355–356
online learning environments, criticism, 354
quality of work, improved, 354
social interaction, means of cognitive development, 354
Peers’ mental models, 354
Penner, D. E., 103
Pérez, J. A., 330
Perkins, A., 275, 277
Perkins, D. N., 329
Pernelle, P., 223
Personal learning management systems
local vs. distant, 7
neutrality of tools, 7
portal, 7
potential for integration, 7
private vs. public, 7
symbiosis, 7
user vs. author, 7
Personal learning systems (PLS), 7–8
Petermann, F., 151
Petermann, U., 151
Philippon, M., 214
Phillips, D. C., 13
PHP programming, 319
Piaget, J., 4, 29, 71, 226–227, 328
Pick & Mix methodology, 243
PIIKFS, requirements and challenges
challenges, 92f
concepts, knowledge about, 92
knowledge schema, 93
planned knowledge representation structure, 93f
requirements, 91–92
visualization, 92
See also Prototype for knowledge representation
Pincas, A., 253
Pine, K. J., 330
Pirnay-Dummer, P. N., 4–5, 69–84, 227, 357–358
Plass, J., 18
Plaza, E., 260
PLS, see Personal learning systems (PLS)
Polhemus, L., 363, 365
Polvinen, 199
Porter, M., 75
Portuguese university, 239–240
Positive interdependence, 165
Posner, G. J., 329
Post-modern model of professionalism, 167–168
Post-www-questionnaire, 280
Powell, J. C., 25–48
Power distance, 293
Practical implications, 189
Pratt, K., 253–354, 356
Predefined set of actions, 216–217
Preece, J., 238, 244, 276
Prendergast, G., 251, 253
Presentation, 228
Prié, Y., 211
Probst, G., 69
Professional teaching criteria, 187
Protheroe, 185
Prototype for knowledge representation
application domain specifics, 88–91
concepts and subordinate concepts, 91
educational system, 89
flows between institutions, 89f
frame-based representation, 90
inter-institutional knowledge, analysis of, 88
knowledge element, 90–91
knowledge representation approach, requirements, 90
knowledge schema, example of, 90f
discussion, 98
meeting the requirements and challenges, 94–97
created solution, 96–97
proposed solution, 96
usage of frame system, see Frame system, usage of prototype, PIIKFS, role of, 97
requirements and challenges concerning PIIKFS
challenges, 92f
concepts, knowledge about, 92
knowledge schema, 93
planned knowledge representation structure, 93f
requirements, 91–92
visualization, 92
“Provocation of mental disequilibrium,” 227–228
Pugh, K. J., 348
Puhan, G., 26
Puntambekar, S., 17
Purdie, N., 274, 277
Pyatt, E. J., 259

Q
Qualitative blog content analysis, 317–319
category system development, 317
and hits, 318t
first topic concerns problems, 317
“further plans and open tasks,”, 317
individual learning process, 319
“individual work” and “team work,” 317
networking and communication, categories of, 319
reflections categories, 318
“reflective logbook,” 318
task requirements, 317–318
Qualitative content analysis (QCA), see Qualitative blog content analysis
Qualitative research, CSCL, 170–172
advantages, 171
disadvantages, 171
distinguished categories, 171–172
face-to-face meetings held, 170
Quantitative research, CSCL, 172–174
implementation of research work
e-business solutions, 172–173
Kaunas School Librarian Methodological Council,
Web site of, 172
management system for e-booking, 173
students’ professional skills, evaluation, 173
trans-disciplinary action, assessment of benefits
in new situations, 173f
in regard to communication aspect, 173f
in regard to occupational aspect, 174f
results/students’ outcomes, 174f
Quesada, J. F., 105
Question categories
bridging-inference questions, 60
elaborative-inference questions, 60
problem-solving questions, 60
text-based questions, 60
Quintana, C., 17

R
Rabardel, P., 211
Rafaeli, S., 328
Rasch, G.
RAT, see Readiness assessment tool (RAT)
Raub, R., 69
Ray, J., 159
Reader’s mental representation, 52, 54
Readiness assessment tool (RAT), 243
Reder, L. M., 106
Reflection on the spot, 330
“Reflective logbook”, 310, 312, 318
Regulation (R) mechanism, 209–210, 214
Renkl, A., 105
Remote method invocation (RMI), 220–221
Research group work, stages (Brazdeikis), 168
Research on video, reflection, and performance
areas of research
reflection, 178
teacher evaluation, 178
video observation/analysis, 178
reflective practice, questionnaires for, 178
teacher evaluation, questionnaires for, 179
video application for promoting reflection,
questionnaires for, 178
Research/theory/design, implications for,
15–18
appropriate and relevant resources,
identification, 19–20
legitimacy/veracity/accuracy of
resources, 19
negotiation of individual learning needs by
students, 19
scaffolding-managing cognitive
complexity, 19
web-based learning be scaffolded, 15–18
Resnick, M., 4
Response spectrum analysis interpretation
(RSAI), 25–47
Results, informatics texts, 60–63
matching activity, 60–63
assessment questions, 62–63
reading rates, 61
text recall, 61–62
Retroaction mechanism, 210, 213–214,
221–222
Reynolds, R. E., 18
Rheingold, H., 252
Richardson, R. M., 296
Ridings, C. M., 252
Ringstaff, C., 13
Ritzema, T., 194
Rivera, E., 166
RMI, see Remote method invocation (RMI)
Roblyer, M. D., 369
Rogers, W. A., 274–275, 277, 283–285
Rogers, Y., 17, 276
Rohlhr-Murphy, L., 196
Rojas, R., 4
Role-Playing method, teaching, 261–270
Rollinson, P., 354, 356
Roschelle, J., 13
Rosen, S., 251
Rotter, N. G., 364
RSAI, see Response spectrum analysis
interpretation (RSAI)
RSAI, feedback to inform teaching
alternative approach to test scoring
analysis step 1, 31t
cross-tabulated answers for item 18, 30t
RSAI ratings of all cells, 32t
solving linear dependency issue, 30–31
implications for testing theory
dicey alternative, 34–35
dichotomy, 33–34
exposing dynamics of learning, 35–37
impact of high-stakes schooling, 38t
impact on best students, 39t
20-item test as a coin toss, 34f
levels of classifications, 37–38
students’ developmental sequences
from ALL answers, 33t
two developmental patterns in one
item, 36t
large-scale testing, 25
meaning from alternative answers, 27–29
new model for assessing learning
illustrations using actually student data,
40–41
student performance change, 41–45
substituting memorization for
understanding
memorization vs. understanding, 28t
pre–post testing, 27
selection age level of multiple-choice
test answers, 28t
summative vs. formative testing, 26–27
course inventories, 26
test interpretation problem, 27
randomness, 27
Rubens, W., 166
Rubin, I. M., 362–363
Rubin, R. B., 107, 109
Russ, M., 293
S
Saliari, S., 275, 277
Salmen, D. J., 18
Salmon, G., 253
Salton, G., 76
Sandholtz, J. H., 13
Saye, J. W., 17
SC, see Seniors club (SC)
Scaffolding, 14, 17–19, 229–233, 282,
349–350
Index

Scardamalia, M., 328
Schank, R. C., 8
Schematization process, 227–229, 231, 233
Schenk, K., 104
Schickard, W., 3
Schmalhofer, F., 54
Schnotz, W., 156
Schenk, K., 104
Schuh, K. L., 15
Schulmeister, R., 147
Schwen, T., 241
Scriven, M., 332
“Search for further information,” 227–228
Second Life (LindenLab), 193
Seel, N. M., 4–7, 70–73, 101–113, 226–228, 233, 357–358, 377
Seibert, D., 12, 16–17
Self-assessment
different versions of workshop,
comparison, 331t
naïve/expert observation text, differences between, 333t
observing children at school, workshop
design, 329–335
outcomes from workshop (2006/2007), 335–337, 336t
outcomes from workshop (2007/2008), 337–340, 337t
outcomes from workshop (2008/2009), 340–341
Self-reviewing ability, 356
Selwyn, N., 274, 278
Senge, P. M., 69
Seniors club (SC)
joy of collaborativity, 281–282
Service-oriented architecture, WEB 3.0, 9
Settouli, L., 211
Shapiro, A. M., 15, 17–18
Sharp, H., 276
Sheppeard, H., 198
Sherin, M. G., 177
Shklov, N., 30–31, 33, 35, 39, 48
Short-term memory, 277
Shunn, 106
Shyu, C. R., 260
Sikorski, E. G., 102
Simple Object Access Protocol (SOAP), 78
Sinatra, G. M., 52
Sinatra, M. G., 52
Sinclair, G. P., 52
Sinharay, S., 26
“Situated learning paradox,” 16
Situation-model
comprehension measures, 58–59
measures, 53
bridging-inference questions, 53
elaborative-inference questions, 53
problem solving questions, 53
Skinner, B. F., 119
Skolmoski, P., 18
SkyDrive, 170
Slide rules, engineering programs, 376–377
SMD, see Surface, Matching, and Deep Structure (SMD)
Smestad, O., 330
Smidt, E., 18
Smihily, M., 274
Smith, A., 292, 295–296
Smith, D., 346
Smith, G., 260
Smith, J. D., 241
Smith, P., 241
Smith, P. J., 238
Smith, S. W., 296
Snow, R. E., 102–103
Snyder, N. T., 252
Snyder, W. M., 241
Social interaction, 164, 194, 354, 356
Social software, 7
“Software architectures and web technologies,” 311
blogging tool, instructions for using, 312
blog posting (public/private mode), 313
lab course, 311–312
lecture course, 311
reflective logbooks, aspects of, 312–313
Software Markstrat Online, 297
Software tools, 209, 211, 213, 215, 218, 220–222
Sonner, N. B., 51
Song, L, 15, 17
Spiro, R. J., 106
Spitzer, M., 151
Stacey, E., 238, 241
Stanford University, 198
Stanley, E., 260
State-of-the-art technology, 193
Stecjuka, J., 97
Steinkuehler, C. A., 195
Sternberg, R., 328
Steyn, D., 294, 295t
Strazdina, R., 97
Strittmatter, P., 227
Stuckey, B., 241

Student blogs in blended learning course, case study
blogs in education, 310–311
blog postings, 311
instructor’s blog, 311
learners’ virtual community, 311
“reflective logbook,” 310
course context and setting, 311–313
lab groups overview, 312
“software architectures and web technologies,” 311
qualitative analysis, student perspective
blog descriptive statistics, 313
qualitative blog content analysis, 317–319
student survey, 319–320
quantitative analysis, blogging behavior
blogging activity and student score, correlations, 315–316
temporal distribution of blogging activity, 314–315
reflections/recommendations, facilitator’s perspective
communicating blogging requirements, 321–322
drawing information from blogs, 320–321
increased responsibility of facilitator, 322
reserving time for reading blog postings, 322
support of community features, 322
Student-centered learning, assumptions, 12–15
locus/nature of knowledge, 13–14
prior knowledge/experience, role of, 15
role of context, 14–15
Student-centered learning environments, 13–14, 378
Student slide rule (10 in), 376, 376f
Study, informatics texts, 57–60
assessment questions, 59–60
data collection, 60
materials and tasks, 58–59
matching activity, 58
propositional representation of text, 59
texts, 58–59
method, 57–58
participants, 57–58
procedure, 58
text recall, 59
Sullivan, H., 13
Summative vs. formative testing, 26–27
concept inventories, 26
Supportive information and practice, exploring roles, 106–112
Cognitive Flexibility Scale (CFS), 107
IF-THEN participant mental model instrument, 107
mental model match, means and standard deviations of participants’, 111f
multivariate analysis, 110–112
nine-point Mental Effort Scale (MES), 107
participants with high and low scores, comparisons of, 112f
progression of match between learners’ and expert mental model, 110f
sample screen of introduction and supportive information, 108f
series of 10 IF-THEN statements, 106f
simulation control panel interface, 107f
simulation system, 108
treatment and observation design, 109f
See also Mental models
Surface, Matching, and Deep Structure (SMD), 357
vs. MITOCAR, graph comparisons, 357
Susan, M. M., 119
Sutinen, E., 280–281
Swan, K., 363
Sweller, J., 16, 105
Switzer, J. S., 166
Syme, A., 277
Synchronous or asynchronous methods of communication, 239
“Synergy effect” by sound narrations in frames, 134–138
Brunner’s representation model, 134
cognitive load,” 134
effective description of explanatory sentences for understanding procedures, 135
test result of sound-narration contents, 136
test results and analysis, 135–136
K-zone, definition of, 134f
more effective method of adding sound narrations comparative orders of those average values, 138f
form of frame construction, 137f
procedure, 136
question items, explanatory sentences/sound-narrations, 137f
test result and analysis, 136–138
T
Tabbers, H., 105
Takeuchi, H., 69
Talbot, S., 211, 213–214, 221, 223
Tang, S., 364
Task-centered approach, 346
online English writing course, cycle of interrelated instructional phases
activation (tell me), 351
application (let me do it), 352–353
demonstration (show me), 351–352
integration (watch me), 353
task-centered, 348–351
Tatsis, K., 309
TBS, see Trace-based system (TBS)
Teacher performance improvement, techniques findings, see Teacher’s reaction to video-enhanced reflective process, findings
implications practical, see Practical implications theoretical, see Theoretical implications
level-two licensure (tenure), 177
use of video clips by teachers, potential benefits, 177–178
video, reflection, and performance methodology, see Video analysis research background and rationale, see Research on video, reflection, and performance
Teacher’s reaction to video-enhanced reflective process, findings
getting started
thematic analysis, 180–181
vignette, 180
principal’s experience
thematic analysis, 186
vignette, 185–186
teacher written reflections experience
thematic analysis, 182
vignette, 181–182
video-based reflection experience
thematic analysis, 183
vignette, 183
video-supported consultation experience
thematic analysis, 184–185
vignette, 184
Technical system knowledge/familiarity, 15–18
Technology Enhanced Learning and Teaching (TELT) field, 211
Technology integration, 377
Technology, Usability & Pedagogy (TUP) model, 275, 285
Tella, S., 294
TELT, see Technology Enhanced Learning and Teaching (TELT) field
Templates, types (signals/sequences), 211
Teo, H.-H., 244, 253
Tereseviciene, M., 165, 167
tesch-Römer, C., 105, 113
Tessmer, M., 329
Testing theory, implications for
dicey alternative, 34–35
dichotomy, 33–34
exposing dynamics of learning, 35–37
impact of high-stakes schooling, 38t
impact on best students, 39t
20-item test as a coin toss, 34f
levels of classifications, 37–38
students’ developmental sequences from ALL answers, 33t
two developmental patterns in one item, 36t
Test interpretation problem, 27
randomness, 27
Test scoring, alternative approach to analysis step 1, 31t
cross-tabulated answers for item 18, 30t
RSAI ratings of all cells, 32t
solving linear dependency issue, 30–31
Text base comprehension measures, 58–59
“The achievement of reflection,” barriers to administrative “buy-in” and support example, 187
ambiguity and definition of reflection, 187
benefits of reflection outweighed by its cost, 187
reflective practice/training of teachers, barriers Dewey’s three-part action-based reflection typology, 187
professional teaching criteria, 187
Thematic analysis, 179–184, 186
Theoretical implications reflective practice Dewey’s three-part action-based reflection typology, 187
“achievement of reflection,” barriers to, 187
teacher evaluation, 188–189
teacher evaluation, barriers bias and subjective nature of teacher evaluation, 188
definition of effective teaching, 188–189
VCQs, see VideoClipQuests (VCQs)

VCQs as new setup for learning
- evaluation, 157–158
 - means and standard deviations, 157t
 - statements and ratings, 157t
- framework, 148–157
 - basic concept, 149–150
 - ease of creation, 152–153
 - emotion and learning, 151
 - learning targets, tasks, and assessments, 153–157
 - motivation and learning, 150–151
- requirements, 148–149

See also VCQ, theoretical framework

Further possibilities
- assignment and assessment, 158
- Let the students quest, 159
- sharing VCQs, 159
- VCQs and wikis, 158–159
- VCQs in face-to-face learning, 159
- video clips, 158

VCQ, theoretical framework, 148–157
- basic concept, 149–150
- concept “mask the task” within a VCQ, 150f
- creating a VCQ, 149
 - “mask the task,” 149
 - solving a VCQ, 149–150
- ease of creation, 152–153
 - adding resource in moodle, 152–153
 - area of YouTube page with code snippets, 152
- emotion and learning, 151
- learning targets, tasks, and assessments
 - Gathering Information and Solving, low achievers, 154–155
 - “Maid of Orleans” quiz, 155
 - WYSIWYG mode of web page, 153–157
- motivation and learning, 150–151
- requirements, 148–149

Video analysis
- impact on teacher reflection-for-action baseline for study, 179
 - baseline/intervention analysis, thematic analysis technique, 179
 - video-enhanced “self-reflection for action” model, 179
 - theoretical implications
 - specific evaluation criteria, 188
 - success of video implementation in teacher training, barriers, 188
 - VideoClipQuests (VCQs), 147–160
 - in face-to-face learning, 159
 - and wikis, 158–159
 - Video-enhanced “self-reflection for action” model, 179
 - Video implementation in teacher training, barriers
 - limited empirical research, 188
 - providing systematic method for analyzing video, 188
 - video being too cluttered for teachers, 188
 - Vignollet, L., 223
 - Virtual communities of learning, barriers, 238, 241–242
 - cutting-edge knowledge, 241
 - “knowing how to be in practice,” 241
 - open communication, 241
 - shifting membership/fluidity of composition, 241
 - tacit knowledge and transactive knowledge, 241
 - trust building, 241
 - use of technology, 242
 - Virtual learning environments (VLEs), 6, 171, 175, 195–196
 - Virtual Neurologic Education Centre (VNEC), 198
 - Virtual VU-campus, 194
 - Visual Analogue Scales (VAS), 198, 202–203
 - VLEs, see Virtual learning environments (VLEs)
 - VNEC, see Virtual Neurologic Education Centre (VNEC)
 - Von Freytag-Löringhoff, B., 3
 - Von Hentig, H., 4
 - Vosniadou, S., 259, 330
 - Voss, J., 51
 - Vrasidas, C., 328–329
 - Vyas, D., 198

W
- Wager, W., 123
- Wages, R., 199, 204
- Wagner, N., 293
- Wainer, H., 25
Wainer, J., 212
Wallace, R., 12
Walrand, J., 58
Walther, J. B., 252
Wang, F., 12
Wang, F. K., 260–261
Wang, X., 240
Warfield, T., 346, 349
Warkentin, G., 194
Waterman, M., 260
Watts, M., 240
Web 1.0, 6
author/user, distinguishing, 6–7
Web 2.0, 6
API, 6
read/write environment, 8
social revolution, 8
social software, 7
user generated content, 8
Web 3.0, 8
data network, emersion, 9
emergent technologies/Semantic Web, 8
free learning environments, 9
intelligent (artificial intelligence), 8
semantic web, extension, 9
service-oriented architecture, 9
Web-based learning, issues in
attitudes/beliefs/practices, 17
canonical vs. individual meaning, misconceptions, 16
cognitive load, 18
disorientation, 15–16
knowledge-accretion vs. tool, 16–17
metacognitive demands, 18
to scaffold/to direct, 17
technical system knowledge/familiarity, 15–18
Webclass- RAPSODY, 118–120, 122
Web client, 215
Weber, J., 346, 349
Wedman, J., 260
Wei, K. K., 244
Weingessel, A., 76
Welsch, D., 54
Wenger, E., 241
Wenglinsky, H., 13
Wentling, R., 294–295
West, R. E., 310
Wheeler, S., 198, 241
Whipp, J. L., 12
Whisler, J. S., 13
Whitehead, A. N., 16
Wiencke, W. R., 369
Wilke, H., 69–70
Williams, J. B., 310
Williams, M. R., 4
William, W. L., 123
Willis, S. L., 275, 277
Williston, J., 177
Wilson, T. D., 242
Winchell, W., 159
Windows Live Spaces, 169–170
Winkel, S., 151
Winne, P. H., 105
Wired Local Networks – Bus Topology, 52
Wired topologies, 53
Wittgenstein, L., 378
WM, see Working memory (WM)
Wood, R. M., 345
WordPress blog, 281
Word processing, 282
Working memory (WM), 276–279
Workshop for Observing Children at School, 329–330, 335, 337, 340
World of Warcraft (Vivendi), 193
Wright, G., 310
Wright, G. A., 177–191
Würtz, E., 292
X
Xie, B., 275, 278, 282, 284
Y
Yang, S.-H., 309
Yokoyama, T., 104, 233
Z
Zahir, S., 296
Zajicek, M., 276
Zeichner, K. M., 177
Zeltmate, I., 87–98
Zhang, Z., 244
Zhelev, Y., 362
Zhou, X., 293
Zhuge, H., 88
Zhu, W., 355
Zimbardo, P. G., 151
Zimmerman, B. J., 105
Zimny, S., 54
Zurita, G., 164–165
Zuse, K., 3