Subject Index

Note: The letters ‘t’ and ‘f’ following the locators refer to tables and figures respectively.

A

ABC transporters, see ATP-binding cassette (ABC) transporters
AC, see Adenocarcinoma (AC)
Accelerated radiotherapy and carbogen breathing (ARCON), 469
ACE-I/ACE-II, autoinhibitory control elements, 64
Action mechanisms, GIT-27NO
 induction of cell death
 autophagic cell death, 448
 cell death triggered by GIT-27NO, 448t
 cytostatic/cytotoxic action, 448
 PCD, 448
NO, mediator of tumoricidal action of action in intracellular/extracellular compartment, 450–451
DETONONOate treatment, 451
function as oxidant/antioxidant, 450
protective/destructive signals, parameters, 450
See also Cell death by GIT-27NO

Acute inflammation, 8
Acute nonlymphocytic leukemia (ANLL), 151, 155–156, 158
Adenocarcinoma (AC), 7, 29, 49, 330–331
colorectal, 138, 198
esophageal, 70
human breast, 109
human colon, 113, 334, 336
intestinal
gastric, 71
lung, 334
pancreatic, 26, 71, 113
Adenoviral gene transfer of iNOS (AdiNOS), 255, 392t, 396, 399t, 403, 408t
AdiNOS, see Adenoviral gene transfer of iNOS (AdiNOS)

Alanosine, 369, 369f
Alkylating agents, 411
Alzheimer’s disease, 8, 151
Aminoguanidine, 107, 118, 170, 191, 310, 317, 322, 423
AMP-activated protein kinase (AMPK), 312
AMPK, see AMP-activated protein kinase (AMPK)

Angiogenesis, 13
 and blood flow, 271–272
 and regulation of tumor blood flow
 iNOS-derived NO, tumoricidal activity, 198
 NO, role in inhibition/promotion of angiogenesis, 198
 NO, role in tumor cell respiration, apoptosis and necrosis, 198
 NO as classical endothelium-derived relaxing factor, 199
 NO downregulation of tumor vascular permeability, 199
 and vascular permeability, role of NO down-regulation of angiogenesis inhibitors, 90
 HIF-1α upregulation, 90
 IL-8 upregulation, 89
 increase in production of PGs, effects, 90
 VEGF, enhanced angiogenesis, 89
ANLL, see Acute nonlymphocytic leukemia (ANLL)

Anthracyclines, 271, 411–412, 432

Anti-apoptotic effect
 of NO donors by heme oxygenase-1, 119
 of NO donors by survivin, 120

Anti-apoptotic properties, NO carcinogenesis promotion
 DNA repair process, inhibition of, 42
 inhibition of apoptosis by NO, 42
Anti-apoptotic (cont.)
- NOHA-induced apoptosis, 43–44, 48f
- L-ornithine, effects of, 44
- survivin downregulation in lung/breast cancer cells, 43
Anticancer drugs, 271, 481–482, 486
Anti-metastatic treatments, 210
Anti-tumor therapy, 107, 123
- macrophage activation, 107
Apoptosis, see Apoptosis and NO
Apoptosis and NO, 152f
- apoptosis, causing mechanisms, 151
- bone marrow NO production
 - CD34+ cells, role, 154
- DETA-NO, effects on marrow formation, 153
- treatment with IFN-γ and endotoxin, 153
- treatment with IFN-γ and TNF-induced NOS2 mRNA, 153
- drosophila study (Enikolopov), 155
- mitochondrial pathway/death receptor pathway, 151–152
- NOS1, modulator of nervous tissue cell apoptosis, 153
- NOS1 expression in mouse study (Krasnov), 155
- YY1, role, 153
Apoptosis inhibition
- by caspase-9 nitrosylation, 121
- by the ceramide pathway, 121
- by Fas signal pathway, 121
- by pleiotrophin, 120
- by scavenging of superoxide anions, 120
Apoptosis-regulatory proteins, 93–94
- and tumor survival
 - Bcl-2, inhibition of intrinsic pathway of apoptosis, 94
 - caspases, evidence of S-nitrosylation, 93
 - extrinsic pathway of cell death, 93
 - Src, pro-survival factors, 94
 - TRX, anti-apoptotic protein, 94
Apoptotic pathways, NO regulation of
- by caspases, extrinsic/intrinsic pathways, 41–42
- pro and anti-apoptotic properties, 42
Arachidonic acid, 74, 315–316, 316f
ARCON, see Accelerated radiotherapy and carbogen breathing (ARCON)
Arginase, 43
Aspirin, 111, 135, 156, 245, 247, 269, 390t, 394, 426, 444, 446, 463
Astrocytic gliomas, 69
ATP-binding cassette (ABC) transporters, 271
Autophagic cell death, 448
Autophagy, 448
B
- Bacillus Calmette-Guerin (BCG), 148
- BAECs, see Bovine aortic endothelial cells (BAECs)
- BAFF/APRIL, autocrine/paracrine mechanisms, 174–175
- Barrett’s metaplasia, 70
- Base excision repair (BER) pathway, 273
- Bax integration, 43
- B cell receptor (BCR), 172, 174f
- proteasomal degradation, inhibition of, 118–119
- BCNU, see L,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)
- BCR, see B cell receptor (BCR)
- Benzofuroxans and furoxans, 372–375
- BER pathway, see Base excision repair (BER) pathway
- BID, 43–44
- Biotin switch assay, 30–32
- B16M and HSE, interaction, 192
- Bone marrow NO production, 153
- Bovine aortic endothelial cells (BAECs), 26, 114, 312
- Bradykinin, 63, 67, 240
- NOS induction/inhibition, 424
- Burkitt lymphoma, 347
- Bystander effect, tumor cells, 239, 255, 286, 404
C
- CAB, see Chorioallantoic membrane (CAB)
- Cancer, NO expression in
 - biosynthesis of nitric oxide
 - affinity to iron atoms, 60
 - eNOS, 62–64
 - half-life of NO in water, 59
 - iNOS, 65–68
 - nitrate and nitrite formation, 60
 - nNOS, 64–65
 - NO as EDRF, 60
 - NO reaction with thiols, 60
NOS isoforms, molecular cloning of, 62

inducible NOS/COX-2 interaction, target for cancer treatment, 74–75

iNOS-mediated COX-2 induction in tumor cells, signaling pathways, 75f

nitric oxide, tumor cell proliferation, and apoptosis

angiogenesis, brain cancer development, 68

apoptosis-inducing factor induction by cytotoxic agents, 72

colorectal tumor development, role of iNOS, 71

HNSCC patients, study, 69

iNOS activity in Barrett’s metaplasia and in esophageal adenocarcinoma, 70

iNOS activity in gastric adenocarcinoma, 70

iNOS activity in pancreatic cancers, 71

iNOS expression and tumor stage, correlation, 70

NO-NSAIDs, chemopreventive effects, 73, 73f

NO-NSAIDs, study of Wallace’s group, 73

ovarian tumors/tumor-associated macrophages, role of iNOS in, 69

PGE2 production, NO on COX-2 activity in, 71

tumor angiogenesis/suppression by iNOS activity, study, 68

Cancer and endothelial cells, interaction of cancer cell arrest within microcirculation infiltration of leukocytes to the inflammatory site, 190

inflammation and metastasis, link, 191–192

organ selectivity, importance, 190–191

Paget’s theory of seed and soil, 191

tumor cell adhesion to vascular endothelium, inhibition/promotion, 191

tumor cell arrest in microvessels, mechanism, 190

endothelium-induced cancer cytotoxicity

NO and H2O2 cytotoxic actions of, 193–194

in vitro lysis of metastatic tumor cells (Weiss), 193

Wang’s mechanism, 193

molecular determinants of metastatic cell survival

Bcl-2/its anti-apoptotic homologs, permeabilization inhibitors, 195

Bcl-2 overexpression in B16M cells, 195

GSH regulation of Bcl-2, importance, 195–196

high GSH content, parameter, 195

HSE-induced cytotoxicity, 193–194

mitochondrial dysfunction/MPT, death mechanisms, 196

ROS/RNS toxicity, 194

Cancer and nitric oxide

COX2 and NOS2, prognostic markers in tumors, 9

inflammation, cause of cancers, 8

transient hypoxia reperfusion, 8

and wound healing, 8f

NO-mediated MMP-9 regulation, 13

See also Nitric oxide (NO)

Cancer and selenium

daily Se supplements intake

200 μg/d, effects, 481

400 μg/d, effects, 481

daily Se supplements intake, effects, 481

MSC optimal dose, defined, 481

Se concentrations, clinical phase I trial novelty of approach, 481

SLM/vitamin E, prevention trials, 481

Cancer therapy and chemoprevention

cancer deaths in US/worldwide, estimation, 361–362

hybrid NORMs and prodrugs, 364–366

See also Hybrid NORMs

NO, physiological effects, 362

NO, role in CNS/PNS, 362

NO, role in CVS, 362

NO-NSAIDs, 377–379

NORMs, classes of, 362f

classical organic nitrates and nitrites, see Nitrates and nitrites (organic)

diazeniumdiolates, 369–371

diazetine dioxides, 375

furoxans and benzofuroxans, 372–375

N-hydroxy-N-nitrosamines, 368–369

nitrosothiols (RSNOs), 371–372

N-nitrosamines, 367–368

sydnonimines, 376

NORMs therapeutic applications, evaluation, 363

status of NORMs in cancer treatment chemoprevention, 363

chemotherapy, 363

side effect attenuation, 363
Subject Index

Cancer therapy resistance, NO modulation of NO development in oxygen-containing atmosphere
“the paradox of oxygen,” 266
NO-mimetic agents, chemo/radio-resistance modulation anticancer agents modulation, role in drug resistance, 269 chemotherapeutics, use in drug-resistance, 269 hypoxia, tumor therapy resistance, 268 MAPK- and PI3K signal transduction pathways, 269 radiation therapy effects on hypoxia, 268–269
ROS and RNS, biochemistry of Fenton reaction, 266 mitochondrial respiratory chain inhibition, effects, 267 reaction balance between ROS/RNS, 267 sites of generation, 266 thioredoxin and glutaredoxin, role, 267 ROS-independent signaling pathways of RNS in cancer, 267–269 NO cytoprotective/cytotoxic effects, contradiction, 268
Cancer treatments, conventional chemosensitisation alkylating agents, 411 anthracyclines, 411–412 cisplatin, 405–411 5-FU, 412 nitrosourea, 405 sensitisation of tumour cells to cytotoxic chemotherapy by NO in vitro/ in vivo, 406t–409t monotherapy cytotoxicity of NO against tumour cells in vitro/in vivo, 389t–393t
cisplatin, 405–411
5-FU, 412
nitrosourea, 405

Chemotherapeutics, use in drug-resistance, 269

Chemotherapy
clinical studies, 240–241
cytotoxicity effects by chemotherapeutic agents on NO, 239–240
future directions, 239
preclinical studies
blood–brain barriers, 240
C6 glioma model/9L rat glioma model, study, 240
cytotoxic potentiation by NO, mechanism, 240

Chemotherapy and NO
chemotherapeutic agents, anti-tumor effect perspectives
clean/dirty NO donors, use, 286–287
GTN, randomized phase II clinical trial study, 287
improved blood flow/better distribution of oxygen, 286
“normalization” of tumor vasculature, 287
stromal/endothelial tissues, chemotherapeutic targets
bystander effect, 286

Cholangiocarcinoma, 344–345, 350–351
Chorioallantoic membrane (CAB), 112, 216

Chronic inflammation, 8
gene mutations/modifications of cancer-related proteins, 300–
Helicobacter pylori-induced gastric cancer, cause, 300
immunosuppression, associated with, 300
ROS, influence on, 300

Chronic lymphocytic leukemia (CLL), 151, 153, 157–160, 169–181

Chronic nitrate therapies, 367

CIN, see Cervical intraepithelial neoplasia (CIN)

and carboplatin, drugs used in bladder cancer, 464

CLL, see Chronic lymphocytic leukemia (CLL)

CLL, apoptosis inhibition by NO (endogenous) common in Western countries, 170
detection of NOS in CLL cells, see NOS detection in CLL cells
disease of proliferation and accumulation, 170
down-regulation of iNOS expression and NO production
caspase 3 activity, Western blot/ELISA analysis, 177
flavopiridol-promoted apoptosis, 176–177
proteolytic cleavage of iNOS by calpain I (Walker), 177
TRAIL or chlorambucil treatment, 176
ubiquitination–proteasome pathway, 177

NO, Bel-2 family and control of mitochondrial apoptosis, 179–180
NO (endogenous), anti-apoptotic in CLL cells
mechanisms, 178–179
mitochondria biogenesis, role of NO in, 175
regulation of iNOS expression
BAFF/APRIL, CLL protection by autocrine/paracrine mechanisms, 174–175
increased iNOS expression, factors, see INOS expression, increase in TLR-7 agonists, role, 172–173, 174f
in vivo leukaemia cells, role, 172

cNOS, see Constitutive NOS (cNOS)

CNS, see Central nervous system (CNS)

Colorectal adenocarcinoma, 138, 198

NO donor, 425
NOS induction/inhibition, 425–426
NSAIDs, 426

Condyloma acuminatum, 346–347, 347f
“Constitutive” enzyme, see Neural NOS (NOS1)

Constitutive NOS (cNOS), 40, 65, 86, 330, 463

Conventional cancer treatments chemosensitisation
alkylating agents, 411
anthracyclines, 411–412
cisplatin, 405–411
5-FU, 412
nitrosourea, 405
Conventional cancer (cont.)

tumour cells sensitisation to chemotherapy by NO in vitro/ in vivo, 406t–409t

monotherapy

cytotoxicity of NO against tumour cells in vitro/in vivo, 389t–393t

iNOS gene therapy, 394–396

NO donor drugs, 394–395

NO, cytotoxic effector in macrophages, 388

NO/nucleophile complexes, growth/survival of A375 human melanoma cells, 388

radioesensitisation, 397–405

therapeutic implications, 412

Corynebacterium parvum, 138

COX2, see Cyclooxygenase type 2 (COX2)

CPR, see Cytochrome P450 reductase (CPR)

CRC, see Colorectal cancer (CRC)

Cupferron, 369, 369f

Curcumin, 49

CVS, see Cardiovascular system (CVS)

2-Cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), 171

Cyclin-dependent kinases (CDKs), 176, 331

Cyclooxygenase type 2 (COX2), 315–316, 316f

Cytochrome c, 104

Cytochrome P450 reductase (CPR), 62, 266, 367

Cytotoxic effects of endogenous NO anti-tumor therapy

macrophage activation, 107

eNOS induction in vascular cells by polyphenols, 109

Fas expression, enhancement, 108

iNOS gene transfer therapy, 108

iNOS induction in tumor cells by synthetic retinoid, 109

by Th1 and M1 cytokines, 107–108

using plant extract, 108

using statins, 109

Cytotoxic effects of exogenous NO cytotoxic effect of NO donors

hybrid type of NO donors, 111

organic nitrate type of NO donors, 110

S-nitrosothiol type of NO donors, 110

hybrid type of NO donors, 111

organic nitrate type of NO donors, 110

S-nitrosothiol type of NO donors, 110

Cytotoxic/protective activity of NO in cancer, 140f

direct role in cytotoxicity

endogenous NO, see Endogenous NO, cytotoxic effects

exogenous NO, see Exogenous NO, cytotoxic effects

high/low NO concentrations, effects on tumor cells, 134

NO synthesis by NOS isoforms, 137–138

nNOS/eNOS vs. iNOS, 133–134

protective effect of NO from cytotoxic stimuli

endogenous NO, see Endogenous NO, protective effects

eNOS, pro-tumorigenic role, 138

exogenous NO, see Exogenous NO, protective effects

Cytotoxic stimuli regulation in immunotherapy, preclinical findings

NO-mediated immune suppression in tumor-bearing hosts, 245–247

potentiation of immune-derived cytotoxicity against tumor cells, 244

D

Death-inducing signaling complex (DISC), 93

Dephostatin, 368

DETA/NO, see Diethylenetriamine NO (DETA/NO)

DFS, see Disease-free survival (DFS)

Diazeniumdilates, 370f

advantages as NORMs, 370

5-FU, anti-tumor agent, 371

GST-P1, anti-cancer drug, 371

JS-K, anti-cancer drug, 371

NONOates, NO donors, 110–113

SPER/NO and DEA/NO, rapid- and medium-release rate NO donors, 369

Diazetine dioxides, 375

Diethylenetriamine NO (DETA/NO), 269, 274

Differential NO stress, flow charts, 46f

Dinitroso iron complexes (DNIC), 4

DISC, see Death-inducing signaling complex (DISC)

Disease-free survival (DFS), 296

DNA damage, 341–352
DNA damage and repair
 oxidative damage, repair mechanisms
 HR enzymes, 273
 NHEJ mechanism, 273
DNA repair enzymes
 DNA alkyltransferases, 42
 OGC1, 42
 XPA protein, 42
DNA repair proteins, 6
DNIC, see Dinitroso iron complexes (DNIC)
Dopastatin, 369, 369f
Dr. Harald zur Hausen, 346

E
EBERs, see EBV-encoded RNAs (EBERs)
EBV-encoded RNAs (EBERs), 349
EBV infection, see Epstein-Barr virus (EBV) infection
E-cad transcription, 213
EDRF, see Endothelium-derived relaxing factor (EDRF)
EGF, see Epidermal growth factor (EGF)
EMT process, see Epithelial to mesenchymal transition (EMT) process
Endogenous NO, cytotoxic effects
 anti-tumor therapy
 macrophage activation, 107
eNOS induction in vascular cells by polyphenols, 109
Fas expression, enhancement, 108
iNOS gene induction, signals, 134
iNOS gene transfer therapy, 108
iNOS induction in tumor cells
 by synthetic retinoid, 109
 by Th1 and M1 cytokines, 107–108
 using plant extract, 108
 using statins, 109
macrophage-mediated tumor cell killing, 134
macrophages, antitumor effects, 134
NO production in humans/rodent, distinction, 135
Endogenous NO, protective effects
 anti-apoptotic effect of survivin, 119
 chronic inflammation, risk factor, 138
 Fas signal pathway, inhibition of, 118
 IFN-induced apoptosis by NO, inhibition of, 119
 IL-1 gene expression, study, 138
 iNOS inhibition by AMG, 118
 pro-inflammatory cytokines, role, 138
 proteasomal degradation of Bcl-2, inhibition of, 118–119
treatment with Corynebacterium parvum, effects, 138
 VEGF promotes iNOS expression, 118
Endonuclease G, 104
Endothelial nitric oxide synthase (eNOS), 23–32, 61, 62–64
 activation by AKT, 24
 activation in pancreatic cancer, 27–28
 angiogenesis, role in, 63
 chronic inhibition of, effects, 64
 member of NOS family, 23
 post-translational modification, 63
 protein interactions in less active/more active states, 64
 role in tumorigenesis
 C118 mutations of wild-type HRas, 31, 32f
 eNOS-dependent activation of HRas, impact, 31
 nitrosylated GTP-bound HRas levels, determination, 30–31, 31f
 NO production, effects, 30
 sGC, target in cancer cells, 30
 vs. nNOS/iNOS, 23–24
Endothelial NOS (eNOS), 40
Endothelium-derived relaxing factor (EDRF), 4, 60, 86, 199
eNOS, see Endothelial nitric oxide synthase (eNOS); Endothelial NOS (eNOS)
eNOS induction in vascular cells by polyphenols, 109
Epidermal growth factor (EGF), 71
Epithelial to mesenchymal transition (EMT) process, 209–210, 469–470
Epstein-Barr virus (EBV) infection, 150, 347–349
ERK, see Extra-cellular signal-regulated kinase (ERK)
E-selectin, 192–193
Esophageal adenocarcinoma, 70
Esophageal cancer, prognostic significance of iNOS in epidemiology and etiology
 CDK inhibitors, role in tumor progression, 331
 esophageal SCC study, inference, 329
 iNOS and p53, association, 333–334
 iNOS expression and prognosis
 anti-tumor effect of iNOS, 335
Esophageal cancer (cont.)
esophageal SCC, cumulative
Kaplan–Meier survival curves, 335f
iNOS-19 tumor, growth of, 334
ONO-1714, invasive cancer
inhibitor, 334
tumor cell angiogenesis in HCC by
MMP-9 modulation, 334
wild-type/mutant p53, tumor
biology, 336
iNOS expression in
in non-neoplastic esophageal
epithelium, 332
in ovarian cancer, 333
tumors exhibited cytoplasmic staining
for iNOS, 332, 332f
in vitro/in vivo study, 332
NO, genotoxic effects, 330
NOS, classes
constitutive NOS, 330
iNOS, 330
OS rate of patients, 330
risk factors, 329, 331
types
adenocarcinoma, 330
SCC, 330
Esophageal SCC
 genetic changes caused by carcinogens
p53 tumor-suppressor gene
mutation, 331
incidence in China, US, 330–331
Estrogen, 63, 93t, 118, 198, 424
Exogenous NO, cytotoxic effects
cytotoxic effect of NO donors
diazeniumdiolate type of NO donors,
112–113
hybrid type NO donors, 113
organic nitrate type of NO donors,
111–112
S-nitrosothiol type of NO donors, 112
diazeniumdiolates (NONOates) type of NO
donors, 110–111
hybrid type of NO donors, 111
NO donors
JS-K, role, 135–136
NCX 4040, in vivo anti-cancer
effect, 135
NO and HIF-1 activity, 136
NO-aspirin, chemopreventive
agents, 135
NSAIDs, role in treatment of
cancers, 135
organic nitrate types of NO donors, 110
S-nitrosothiol type of NO donors, 110
tumor microenvironment
hypoxia, 136
mouse with an eNOS deficiency, study
results, 136
pro-inflammatory infiltrate in,
 radiosensitizing strategies, 137
Exogenous NO, protective effects
anti-apoptotic effect of NO donors by heme
oxygenase-1, 119
anti-apoptotic effect of NO donors by
survivin, 120
inhibition of apoptosis
by caspase-9 nitrosylation, 121
by the ceramide pathway, 121
by Fas signal pathway, 121
by pleiotrophin, 120
by scavenging of superoxide
anions, 120
NO donors, 139
proteasomal degradation of Bcl-2,
inhibition of, 120
tumor microenvironment, 139–140
Extra-cellular signal-regulated kinase (ERK),
9, 13, 26, 43, 47, 94, 218f, 245, 259,
298, 309–310, 317, 318f, 319, 322,
452, 466
F
FAD, see Flavin adenine dinucleotide (FAD)
Farnesyl transferase inhibitors (FTIs), 47, 50
Fas expression
 enhancement, 108
upregulation by NO, 114
Fas signal pathway, inhibition of, 118
Fe-NO EPR signal, 4
Fenton reaction, 266
Flavin adenine dinucleotide (FAD), 61
Flavin mononucleotide (FMN), 61
Flavopiridol, 158, 176–178
Fluorescence-tagged tumor cell and
video-capturing image
techniques, 190
5-Fluorouracil (5-FU), 158, 241, 269, 370f,
371, 412, 426
FMN, see Flavin mononucleotide (FMN)
FTIs, see Farnesyl transferase inhibitors (FTIs)
5-FU, see 5-Fluorouracil (5-FU)
Furoxans and benzofuroxans, 372–375
G
Gastric adenocarcinoma, 70, 333
Gastric cancer, 69, 70–71, 90, 114, 213, 300,
319, 332, 424, 444
Lauren’s classification, 71
NOS induction/inhibition, 422
GC, see Guanylyl cyclase (GC)
GDN, see Glyceryl dinitrate (GDN)
GIT-27NO
action mechanisms
induction of cell death, 448–449
NO as mediator of tumoricidal action of, 450–452
See also Action mechanisms, GIT-27NO
aspirin and NSAIDs, role in apoptosis, 444
limitations, 444
modification of drugs, outcomes, 444–445
design of novel antineoplastic drugs, aim, 453
effects on tumor cell growth in vitro/in vivo
cell lines sensitive to GIT-27NO treatment, 446
 treatment of androgen-independent
p53-deficient PC3 cell line, 447
treatment of C57BL/6 mice with
GIT-27NO, efficacy, 447
influence on MAP kinase activity, 452
NSAIDs, anticancer properties of, 444
subacute/acute toxicity of, 447
VGX-1027 vs. its NO-modified derivative, GIT-27NO
composition of GIT-27NO, 445
ConA-induced hepatitis, findings, 445–446
Glucose transporter (Glut-1), 372, 483
Glut-1, see Glucose transporter (Glut-1)
Glutaredoxin, 267
Gluthionine disulfate (GSSG), 267
Glyceryl dinitrate (GDN), 366
Glyceryl mononitrate (GMN), 366
Glyceryl trinitrate (GTN), 269, 366
Glycolysis, 313, 314f, 470, 483
GMN, see Glyceryl mononitrate (GMN)
GST-P1, see P1 isof orm of the phase II
detoxification enzyme glutathione-
S-transferase (GST-P1)
GTN, see Glyceryl trinitrate (GTN)
Guanylyl cyclase (GC), 4, 10–11, 60, 67, 149, 319

H
HAECs, see Human aortic endothelial cells
(HAECs)
Hairy cell leukaemia, 171
Hazard ratio (HR), 297
HCC, see Hepatocellular carcinoma (HCC)
HCC, prognostic significance of iNOS in hepatocarcinogenesis, 310
iNOS and signal transduction pathways
COX2 and iNOS, cross talk, 316, 316f
EGFR activation, effects, 317
HCV-positive HCC patients, study, 317
iNOS interplay with IKK/NF-κB and
Ha-RAS/ERK pathways, 317–318, 318f
PGE2, role in cancer metastasis, 317
PGs, role in inflammatory processes, 316
sGC/cGMP/PKG signaling pathway,
mouse colitis model, 317
liver infiltration, DNA damage, 310
NO and peroxynitrite production, effects
on HCC, 311
NO interference with SAM synthesis and
DNA methylation
synthesis of methionine/S-
adenosylmethionine and
methylation reactions, 321f
partial liver resection/liver transplantation,
treatments, 310
risk factors, 310
RNS, role in carcinogenesis, 311
RNS and hepatocarcinogenesis,
production/metabolic effects
AMPK activation, effects, 312
hepatic glucose metabolism, NO
effects, 313
mitochondrial respiratory chain/Krebs
cycle/glycolysis, NO effects, 313, 314f
NO-mediated DNA repair inhibition/
vasodilation, HCC
cause, 312
NOS isoforms in liver, 311
Warburg effect, 313
HCNP, see Hippocampal neurostimulating
peptide (HCNP)
Head and neck squamous cell carcinoma
(HNSCC), 68, 112, 119, 298
Helicobacter pylori (H. pylori), 70
-induced gastric cancer, 300
infection, 344
Hematopoiesis, 153–155
Hematopoietic/nonhematopoietic cells, 153
Heme-regulated inhibitor (HRI), 46, 46f
Hepatic sinusoidal endothelium (HSE), 192
Hepatic zonal heterogeneity, 193
Hepatitis B virus (HBV), 310
Hepatitis C virus (HCV), 310
Hepatocarcinogenesis, 310
and RNS
 AMPK activation, effects, 312
 hepatic glucose metabolism, NO effects, 313
 mitochondrial respiratory chain/Krebs cycle/glycolysis, NO effects, 313, 314f
 NO-mediated DNA repair inhibition/vasodilation, HCC cause, 312
 NOS isoforms in liver, 311
 Warburg effect, 313
Hepatocellular carcinoma (HCC), 309–323
 NO donor, 428
 See also HCC, prognostic significance of iNOS in
HIF, see Hypoxia-inducible factor (HIF-1α)
HIF-dependent genes (P-gp, VEGF), 271
ABC transporters, 271
VEGF, 271
Hippocampal neurostimulating peptide (HCNP), 212
HME, see Human mammary epithelial (HME) cells
HNSCC, see Head and neck squamous cell carcinoma (HNSCC)
Homologous recombination (HR), 273
Hormonal therapy, 210, 460
4-HPR, see N-(4-hydroxyphenyl) retinamide (4-HPR)
HPV, see Human papilloma virus (HPV)
HPV oncoproteins, 346
HR, see Hazard ratio (HR); Homologous recombination (HR)
HRI, see Heme-regulated inhibitor (HRI)
HSE, see Hepatic sinusoidal endothelium (HSE)
HSVECs, see Human saphenous vein endothelial cells (HSVECs)
Human aortic endothelial cells (HAECs), 26
Human breast adenocarcinoma, 109
Human colon adenocarcinoma, 93, 113, 390t, 412
Human HeLa cancer cells, 256
Human leukemia cells and NO
 expression of NOS by leukemia/MDS cells, 156–157
 macrophage-mediated cytotoxicity, research study, 148
 NO and acute non-lymphoid leukemia, 155–156
 NO and apoptosis, 151–153
 NO and CLL, 157–160
 NO and normal hematopoiesis, 153–155
 NO generalities, 149
 NOS inhibitors, 150–151
 NO synthases
 NO production from NOS isoforms, 149–150
 Human mammary epithelial (HME) cells, 46
 Human melanoma, prognostic significance of iNOS in
genome microarray technology, 294
iNOS expression in metastatic melanomas, 297–298
iNOS expression in primary melanomas,
 see Primary melanomas, iNOS expression in
iNOS-produced by NO, molecular analysis, 294
 localization of protein expression, 301–302
 melanoma, therapies for
 DTIC, 303
 IFN-γ, 302
 IL-2, 302-303
 iNOS inhibitors, selectivity, 303
 iNOS-produced NO, novel targeted therapy, 303
 melanoma progression, regulatory effects
 HIF-1, role in tumor angiogenesis, 299
 inhibition of, by IL-24, 299
 iNOS expression and lymphangiogenesis, correlation, 297–298
 MAPK pathway, 298
 Ras/Raf/MEK/ERK pathway, 299
 SCF-regulated cytokine expression, 298
 tissue invasion, role of NO in, 300
 tumor-cell-derived NO, cause, 298
 NO, inflammation, and melanoma
 chronic inflammation, high cancer risk, 300
 Helicobacter pylori-induced gastric cancer, 300
 immunosuppression, cancer risk, 300
 iNOS gene, gastric cancer in Japanese women, 300
 pro-inflammatory cytokines, neoplastic growth effects, 301
 TAM, role in cancer metastasis, 301
 prognostic factors available, 294
 prognostic markers, significance, 294
 AJCC staging system, 294
Human ovarian cancer, 40
Human papilloma virus (HPV), 345–347
cervical cancer, cause, 345
discovery of, Dr. Harald zur Hausen, 345
high-risk types of HPV, 345
HPV-16 and HPV-18, carcinogenic to humans, 345
Human saphenous vein endothelial cells (HSVECs), 26
Hybrid NORMs, 364–366
classes of, 364, 365f
anti-inflammatory activity, 364
NO-releasing warheads/apoptotic cytotoxins, 364
NSAID, bioactive carrier, 364
definition, 364
GI damage, chronic use of NSAIDs, 364
molecular deconstruction of, 364–365
NO-ASA, 363
prospects and obstacles, 365–366
Hybrid type of NO donors, 111, 113
Hydrophobic NOS inhibitors, 171
Hypoxia, 268
Hypoxia-inducible factor (HIF-1α), 94, 121, 134, 199, 269–270, 299, 313, 420, 480, 482
Hypoxic cell radiosensitizers, 254, 469

I
IAN, see Iso-amyl nitrite (IAN)
IARC, see The International Agency for Research on Cancer (IARC)
IFN-induced apoptosis by NO, inhibition of, 119
IIIB/IV non-small-cell lung cancer, 259–260
IκBα phosphorylation, inhibitors of, 173
Immunotherapy
dual role of NO in immune cell responses
NO, influence on immune functions, 242
NO regulation of central/peripheral tolerance, 242
growth promoting effects of NO in tumor cells, 244
immune suppressive role of NO, 243–244
immunosuppressive mechanisms, 242
regulation of T-Cell priming by NO, 243
TAA responses, study, 241–242
Immunotherapy and NO
cytokine-activated macrophages, role, 287
direct/indirect elimination of tumor cells, 287–288
direct/indirect immunotherapeutic approaches, 288
expression of apoptosis-related genes, regulation of, 288
NO donors, sensitization of tumor cells/metastatic process, 288
Inducible nitric oxide synthase (iNOS), 23, 61, 65–68
in Barrett’s metaplasia and in esophageal adenocarcinoma, 70
calcium independent, 66
expression, inhibition of, 66–67
in gastric adenocarcinoma, 70
induced by pro-inflammatory stimuli, 65
induction mechanism, 65
NO reaction with radicals, 67
peroxynitrite, physiological/pathophysiological roles, 67–68
toxic/protective effects, 66
inflammatory processes, importance in, 65
in pancreatic cancers, 71
and signal transduction pathways
COX2 and iNOS, cross talk, 315–316, 316f
EGFR activation, effects, 317
HCV-positive HCC patients, study, 317
iNOS interplay with IKK/NF-κB and Ha-RAS/ERK pathways, 317–318, 318f
PGE2, role in cancer metastasis, 316–317
PGs, role in inflammatory processes, 316, 316f
sGC/cGMP/PKG signaling pathway, mouse colitis model, 319
Inducible NOS (iNOS), 40
Infection/inflammation-related carcinogenesis, prognostic significance of nitrative DNA damage
cancer caused by infectious agents worldwide, 342t
DNA damage and prognosis of patients with soft tissue sarcoma, 349–350
EBV and NPC, 347–349
human papilloma virus and cervical cancer, 345–347
liver fluke infection and cholangiocarcinoma, see OV infection, risk of cholangiocarcinoma
8-nitroguanine formation by chronic inflammation, 343f, 344
See also 8-Nitroguanine
ROS/RNS, cause of oxidative/nitrative DNA damage, 343
Infiltration of leukocytes to the inflammatory site, process, 190

Inflammation

basic processes, 8f
cause of cancers, 8
and metastasis, link, 192
B16M and HSE, interaction, 192
carbohydrate–carbohydrate recognition, 192
E-selectin, role, 192
liver, common site for metastasis development, 192
types
acute/chronic, 8

Inflammatory mediators, 138

Inorganic nitrites, formation of, 367

iNOS, see Inducible nitric oxide synthase (iNOS); Inducible NOS (iNOS)
iNOS expression, increase in factors
IL-4 and IFN-γ, 172
ligation of CD23, 172
low-affinity IgE receptor, 172
iNOS expression by VEGF, 118
iNOS gene/NO induction by tumor-infiltrating dendritic cells, 114
iNOS gene transfer therapy, 108
iNOS induction in tumor cells by synthetic retinoid, 109
by Th1 and M1 cytokines, 107–108
using plant extract, 108
using statins, 109
iNOS inhibition by AMG, 118
iNOS-19 tumor, 334

Interaction of cancer and endothelial cells
cancer cell arrest within microcirculation
infiltration of leukocytes to the inflammatory site, 190
inflammation and metastasis, link, 192
organ selectivity, importance, 190–191
Paget’s theory of seed and soil, 191
tumor cell adhesion to vascular endothelium, inhibition/promotion, 191
tumor cell arrest in microvessels, mechanism, 190
endothelium-induced cancer cytotoxicity
NO and H2O2, cytotoxic actions of, 194
in vitro lysis of metastatic tumor cells (Weiss), 193
Wang’s mechanism, 193
molecular determinants of metastatic cell survival
Bcl-2/its anti-apoptotic homologs, permeabilization inhibitors, 195
Bcl-2 overexpression in B16M cells, 195
GSH regulation of Bcl-2, importance, 196
high GSH content, parameter, 195
HSE-induced cytotoxicity, 195
mitochondrial dysfunction/MPT, death mechanisms, 196
ROS/RNS toxicity, 195

The International Agency for Research on Cancer (IARC), 342

Intestinal adenocarcinoma, 71
Intrahepatic cholangiocarcinoma, 344
Intra-tumoural injection, 396
Ionizing radiations, 254–256
ISDN, see Isosorbide dinitrate (ISDN)
Iso-amyl nitrite (IAN), 367
Isosorbide dinitrate (ISDN), 110, 216, 238, 255, 258, 269, 272, 366, 411

K

Kaplan–Meier method, 349
KIPase, 177
Krebs cycle, 313, 314f
Kupffer cells, 192

L

Lauren’s gastric cancer classification, 71
L,3-bis(2-chloroethyl)-l-nitrosourea (BCNU), 6
Leukoplakia, 344
Lewis lung carcinoma (LLC), 27, 111, 216, 427
Lipopolysaccharide (LPS), 66, 71, 107, 134, 154f, 193, 285, 320, 421
Listeria monocytogenes, 148
Liver, common site for metastasis development, 192
Liver fluke infection, 344–345
LLC, see Lewis lung carcinoma (LLC)
L-NG-monomethyl arginine (L-NMMA), 4
L-NIL, 151
L-NMMA, see L-NG-monomethyl arginine (L-NMMA)
LPS, see Lipopolysaccharide (LPS)
Lung adenocarcinoma, 334
Lung cancer
NO donor, 427
NOS induction/inhibition, 427
Lymphoma
 Burkitt, 170, 347
 gastric, 70
 lymphocytic, 150
 non-Hodgkin’s, 171, 217, 466, 481
 NOS induction/inhibition, 423

M
 Macrophage reprogramming by S1P, 121–122
 Malignant fibrous histiocytoma (MFH), 349
 Kaplan–Meier method, statistical analysis, 349
 Malignant melanoma
 NO donor, 428
 NOS induction/inhibition, 428
 Malignant tumor, therapeutic applications
 of NO
 animal models, 420–421
 breast cancer
 NOS induction/inhibition, 423–424
 colorectal cancer
 NO donor, 425
 NOS induction/inhibition, 425–426
 NSAIDs, 426
 gastric cancer
 NOS induction/inhibition, 424
 hepatic cellular carcinoma
 NO donor, 428
 human studies
 non-randomized studies, 431–434
 randomized studies, 434–436
 lung cancer
 NO donor, 427
 NOS induction/inhibition, 427
 lymphoma
 NOS induction/inhibition, 423
 malignant melanoma
 NO donor, 428
 NOS induction/inhibition, 428
 other malignant tumors
 NO donor, 428–429
 NOS induction/inhibition, 429–430
 renal cellular carcinoma
 NOS induction/inhibition, 427
 role of NO in prostate cancer
 NO donor, 421–422
 NOS induction/inhibition, 422
 MM, see Multiple myeloma (MM)
 Mechanism of NO cytotoxicity
 apoptosis, denitrosylation by thioredoxins, 105
 EGFR tyrosine kinase activity inhibition, 106–107
 GAPDH, NO target, 105
 NO downregulation of Cdc25A, 107
 survivin by NO, inhibition of, 106
 Yin-Yang1 apoptosis upregulation by NO, inhibition of, 106
 Mechanism of NO protection from cytotoxins
 inhibition of ceramide pathway, 117
 inhibition of Fas signal pathway, 117
 inhibition of mitochondrial permeability transition pores, 117
 inhibition of the caspase family, 117
 Metastasis, definition, 209
 Metastatic melanomas, iNOS expression in
 iNOS/COX-2, prognostic value, 297
 NRAS and BRAF mutations, 297
 patients treated by therapy/prior to therapy, study, 297
 univariate/multivariate analysis, 297
 MFH, see Malignant fibrous histiocytoma (MFH)
 MHC Class I shedding under hypoxic tumor conditions, 122
 Microenvironment of tumor
 Fas expression upregulation, NO, 114
 iNOS gene/NO induction by tumor-infiltrating dendritic cells, 114
 MMP downregulation by stromal cells, 114–115
 NO production by irradiation-activated macrophages, 114
 NO production from nitrite, 115
 Micrometastases, migration/limited survival of, 197–198
 Mitochondria biogenesis, role of NO in, 175
 Mitochondrial membrane potential (MMP), 43, 197
 Mitochondrial permeability transition (MPT), 196
 Mitochondrial respiratory chain, 313–315
 Mitogen-activated protein kinase (MAPK), 299
 Mitogen-activated protein kinase MAPK phosphatase-1 (MKP-1), 43
 MKP-1, see Mitogen-activated protein kinase MAPK phosphatase-1 (MKP-1)
 MM, see Multiple myeloma (MM)
MMP, see Mitochondrial membrane potential (MMP)

MMP downregulation by stromal cells, 114–115

Molecular cloning, 61

“Molecular signature” approach, 10

Monotherapy

iNOS gene therapy
adenoviral delivery, 396
cationic lipid vectors/direct intra-tumoural injection, use of, 395–396
delivered via intravenous route, 396

E9 promoter, antitumor effects, 396

GTN administration for localised prostate cancer, 396

Soler’s strategy, 395

NO donor drugs
inhibition of liver tumours, study, 395
JS-K, in vitro/in vivo study in myeloma cells, 395
NCX 4040, study, 395

NO-ibuprofen/aspirin, study of cytostatic/pro-apoptotic effects, 394
NONOates, radio-/chemo-sensitising potency assessment, 394

NO-NSAID, anticancer activity determination, 394

NO release by nitrogen-containing compounds, mechanisms, 394

MPT, see Mitochondrial permeability transition (MPT)

MSC, see Se-methylselenocysteine (MSC)

MSC, potential role
angiogenic regulation/molecular resistance by iNOS modulation
EGFR, drug resistance marker, 483
FaDu xenografts of MSC/irinotecan, iNOS expression, 483–484
inhibition of COX-2, results, 485f

regulation of HIF-1α and angiogenesis by iNOS, 484f

HIF-1α and PHDs
hydroxylation of proline residues of, 482

selenium and cancer, 481
tumor tissues heterogeneity, 480

VEGF/Glut-1, HIF-1α transcriptionally regulated genes

HIF-1α and Glut-1, colorectal cancer patients study, 483

HIF-1α degradation by MSA, 483

HIF-1α upregulation of VEGF, 483

Mucosa-associated lymphoid tissue (MALT), 70

Multifaceted role of NO in cancer biology
concentration-dependent effects of NO, 47–49
NOS expression/arginase activities, human breast cancer cells, 46f thymidine uptake in MDA-MB-231 cells, effects, 48f
expression of NOS in tumors, see NOS expression in tumors

NO-based cancer therapy, 49–51

NO in physiological processes, signaling pathways, 40

NO regulation of apoptotic pathways, see Apoptotic pathways, NO regulation of

NO regulation of translation cyclin D1, role, 45
DETA-NONOate, protein synthesis inhibition, 46

oncogenesis maintenance/therapeutic drug design, importance, 46

Multiple myeloma (MM), 171

Myeloid-derived suppressor cells (MDSCs), 242

N

Nasopharyngeal carcinoma (NPC)
EBV infection, cause, 347
LMP1, role in, 348

environmental and dietary factors, risk of
herbal medicine, increased risk, 348
phorbol diester, increased risk, 348
higher incidence in southern China, 347
mechanism of 8-nitroguanine formation by EBV infection, 348–349, 348f
EBER/LMP1, detection, 349
IL-6, role in iNOS expression, 349

NCX-4016, 363

Neural NOS (NOS1), 149
expression, 150
mRNA transcription, regulation, 150

Neuronal nitric oxide synthase (nNOS), 23, 61, 64–65

excitotoxicity of NO to neurons, 65
expression sites of brain, 64
nitric oxide- or peroxynitrite-mediated neuronal injury, 65

NO as neurotransmitter/neuromodulator, 64
NOS I, Ca$^{2+}$–calmodulin-dependent enzyme
calcium-dependent stimulation of, effects, 65
synaptic plasticity, 65
structure upon molecular cloning, 64

Neuronal NOS (nNOS), 40

NF-κB
role in tumor metastasis, 210–211
regulation of tumor cell survival/metastasis, 211
transcriptional regulation of genes, 211

γ^G-monomethylarginine (NMMA), 150
acute myocardial infarction, treatment of, 151
migraine headache, inhibitor for, 151

NHEJ, see Non-homologous end joining (NHEJ)

NHL, see Non-Hodgkin’s lymphoma (NHL)

N-hydroxy L-arginine (NOHA), 43

N-hydroxy-N-nitrosamines
as potential drugs
alamosine, 369, 369f
cupferron, 369, 369f
dopastatin, 369, 369f

N-(4-hydroxyphenyl) retinamide (4-HPR), 109

NIH-OVCAR-3, 257

Nitrates and nitrites (organic), 367f
inorganic nitrite, formation, 367
nitrate tolerance
chronic nitrate therapies, 367
NO donors, organic nitrates, 366
Nitrate tolerance/cross-tolerance, 367

Nitric oxide-acetyl salicylic acid (NO-ASA), 363

Nitric oxide/nitric oxide-donating agents, molecular mechanisms, 270f

Nitric oxide (NO)
biochemical and physiological effects
p53 pathway activation in vivo, 9–10
temporal properties, 10
dichotomous property, 4–5
DNIC formation, 4
GC activation, 4
identification in endothelial cells/macrophages, 4
in mechanisms of genotoxicity, 5f
in nitrovasodilators, active component of, 4
NOS2 expression in tumor cells, study, 7–8
pathophysiological processes, role in, 4–5
post-therapeutic tumor regrowth, role in, 12–13
p53 point mutations in human cancer, study, 6–7
reactions, types
direct reactions, 5
indirect reactions, 5
signaling pathways
application of NOS inhibitors, 12
macrophages, role in mediation of NO functions, 10, 11
superoxide and ROS, role, 10
in vivo study
“molecular signature” approach, example, 10–11
and wound healing, 8f
Nitric oxide non-steroidal antiinflammatory drugs (NO-NSAIDs), 363
classic prodrugs, 364
phase II chemoprevention clinical trial for CRC, 363
use in arthritis/pain treatments/CRC, 364
Nitric oxide- or peroxynitrite-mediated neuronal injury, 65
Nitric oxide-releasing molecules (NORMs), 361–379
Nitric oxide synthase (NOS), 61–63
family, iNOS/eNOS/nNOS, 23
NOS-catalyzed oxidation of L-arginine to NO, steps, 62
prosthetic groups, 62
vs. CPR, 62

Nitrites, 4
Nitrogen dioxide, 4
8-Nitroguanine, 343f, 344
apurinic site, formation of, 344
carcinogenesis/8-oxodG, cause, 344
formation of in chronic hepatitis C patients, interferon therapy, 344
formation mechanism and tumor development, 351f
formation mechanism by chronic inflammation, 343f
formation mechanism by EBV infection, 348–349, 348f
in liver infected with liver fluke OV, 344
in patients with cancer-prone inflammatory diseases, 344
in patients with Helicobacter pylori infection, 344
in premalignant and inflammatory diseases/OLP/leukoplakia, 344

Nitrosamine, 42
Nitrosamines, 4
Nitrosating agents, 367
Nitrosative stress, 5–6, 104
transition mutations, 7
Nitrosoproligne, 4
Nitrosothiols (RSNOs), 371–372
Nitrosourea, 405
Nitrosylation, 31f
Nitrovasodilators, 4
N-methyl-N-nitrosoanilines, see Dephostatin
NMMA, see N\(^{-}\)monomethylarginine
(NMMA)
N-nitrosoamines
classes of, 368, 368f
cysteine inhibitors, example, 368
formation of, 367
N-nitrosoamides, 367
N-nitrosocarbamates, 367
N-nitrosoureas, 367
alkylating agents, 368
NNOS, see Neuronal nitric oxide synthase
(nNOS); Neuronal NOS (nNOS)
NO, anti-apoptotic role in B lymphocytes
addition of iNOS inhibitors, effects, 171
hydrophobic NOS inhibitors, CLL cell
death, 171
NOS isoforms in leukaemia cells,
detection, 171
NO, enhancer for cancer therapy
clinical studies, 259–260
NO produced by tumor cells/host cells,
models, 253–254
synergy of NO with cytotoxic drugs,
258–259
synergy of NO with ionizing radiations
preclinical studies, 254–256
See also NO synergy with ionizing radiations
synergy of NO with members of TNF
family
FasL and TRAIL, tumor cell killing
receptors, 256
GTN, tumor cell sensitized to
FasL-induced apoptosis, 257
nitrosoylcobalamin, sensitization to
apoptosis, 257
PAPANO sensitization of lymphoma
cells, 258
SNP/TRAIL, 256–257
TNF-\(\alpha\)-mediated cytotoxicity, NO
sensitization of, 258
NO, general reactions, 149
NO, pro-adhesive effects, 191
NO, rate-limiting factor for metastases
development
Cancer and endothelial cells, interaction,
see Interaction of cancer and
endothelial cells
Extravasation and metastatic growth
Adaptive response toward higher
resistance, 199–200
angiogenesis and regulation of tumor
blood flow, 198–199
migration and limited survival of early
micrometastases, 197–198
NO, sensitization of cancer cells to
chemo-immunotherapy
NO and chemotherapy, 286–287
NO and immunotherapy, 287–288
NO and radiotherapy, 285–286
NO biology, concepts
iNOS, immune response regulation
against tumor cells, 285
smallest pleiotropic signaling
messenger, 284
NO, sensitizing effect to cytotoxic
stimuli
boosting anti-tumor immunity by
modulation of NO-mediated
immunosuppression
aspirin, GM-CSF-based cancer
vaccine, 245
clinical studies, 247
iNOS and COX-2 inhibitors, treatment,
246–247
NO release, anti-tumor immune
responses, 245–246
chemotherapy
clinical studies, 241
future directions, 241
preclinical studies, 240
cytotoxic stimuli regulation in
immunotherapy, preclinical
findings
NO-mediated immune suppression in
tumor-bearing hosts, 245
potentiation of immune-derived
cytotoxicity against tumor cells,
244–245
immunotherapy
dual role of NO in immune cell
responses, 242–243
growth promoting effects of NO in
tumor cells, 244
immune suppressive role of NO,
243–244
regulation of T-Cell priming by NO, 243
radiotherapy
clinical studies, 239
further research, 239
preclinical studies, 238–239
NO, tumor cell metastasis inhibition
inhibition of metastasis by high NO concentrations
anti-metastatic properties of DETA-NO, detection, 216–217
NO derived from tumor cells synthesized by iNOS, effects, 215
NO-releasing agents/generating agents, impact, 216
NO signal modulation, treatment of tumors, 215
silencing of iNOS by anti-sense oligonucleotides, effects, 215
metastatic process, features
EMT process, cause of metastasis, 209–210
transcription factors, 210
molecular mechanisms regulating metastasis
NF-κB survival pathway, implication of, 210–211
RKIP in regulation of tumor metastasis, 211–213
SNAIL in regulation of tumor metastasis, 213–214
NO-mediated inhibition of EMT, molecular mechanisms of
inhibition of snail in induction of RKIP, 222–223
metastasis via induction of RKIP, inhibition, 218–220
metastasis via inhibition of NF-κB, inhibition, 217–218, 218f
RKIP upregulation by NO, mechanisms, 220–222
NO-mediated inhibition of NF-κB/snail/RKIP loop results, 223–224
NO-releasing agents, management of tumor metastasis, 224–225
NO and acute non-lymphoid leukemia, 155–156
NO and apoptosis, 152f
apoptosis, causing mechanisms, 151
bone marrow NO production
CD34+ cells, role, 154
DETA-NO, effects on marrow formation, 153
treatment with IFN-γ and endotoxin, 153
treatment with IFN-γ and TNF-induced NOS2 mRNA, 153
drosophila study (Enikolopov), 155
mitochondrial pathway/death receptor pathway, 151–152
NOS1, modulator of nervous tissue cell apoptosis, 153
NOS1 expression in mouse study (Krasnov), 155
YY1, role, 153
NO and chemotherapy
chemotherapeutic agents, anti-tumor effect perspectives
clean/dirty NO donors, use, 286–287
GTN, randomized phase II clinical trial study, 287
improved blood flow/better distribution of oxygen, 286
“normalization” of tumor vasculature, 287
stromal/endothelial tissues, chemotherapeutic targets
bystander effect, 286
NO and immunotherapy
cytokine-activated macrophages, role, 287
direct/indirect elimination of tumor cells, 287–286
direct/indirect immunotherapeutic approaches, 288
expression of apoptosis-related genes, regulation of, 288
NO donors, sensitization of tumor cells/metastatic process, 288
NO and life/death of human leukemia cells
expression of NOS by leukemia/MDS cells, 156–157
macrophage-mediated cytotoxicity, research study, 148
NO and acute non-lymphoid leukemia, 155–156
NO and apoptosis, 151–153
NO and CLL, 157–160
NO and normal hematopoiesis, 153–155
NO generalities, 149
NOS inhibitors, 150–151
NO synthases
NO production from NOS isoforms, 149–150
NO and normal hematopoiesis
cell proliferation/differentiation, 154f
NO and peroxynitrite production, effects on HCC, 311f

NO and radiotherapy
 hypoxia, prognostic factor for tumor outcomes, 285
 NO as radiosensitizer, 285
 NO sensitization of tumor cells to radiotherapy controversy/issues, 286

NO-ASA, see Nitric oxide-acetyl salicylic acid (NO-ASA)

NO-aspirin (NO-ASA), 135

NO-based cancer therapy
 DETA-NO/YC1, pro- and anti-apoptotic effects, 50
 gene therapy approach, 50
 inhibition of NOS enzymatic activity, approach, 49
 cPTIO, 49
 curcumin, 49
 ebselen inhibitors, 49
 NO as anti-neoplastic agent, 50
 post-translational modification of proteins farnesylation of Ras protein, 50
 FTI, tumor cell growth inhibition, 50–51
 tumor growth and proliferation, inhibition
 L-arginine, use of, 49
 L-NAME/D-NAME, treatment with, 49–49

NO-cGMP signaling pathway, 40

NO cytotoxicity, mechanism of apoptosis, denitrosylation by thioredoxins, 105
 EGFR tyrosine kinase activity inhibition, 106–107
 GAPDH, NO target, 105
 NO downregulation of Cdc25A, 107
 survivin by NO, inhibition of, 106
 Yin-Yang1 apoptosis upregulation by NO, inhibition of, 106

NO donors, anti-cancer therapeutics designs for future, 472
 extrinsic (Type I)/intrinsic (Type II) apoptotic pathways, 460
 metastasis inhibition and mimic of other inhibitors of metastasis inhibition of EMT, 469–470
 inhibition of hypoxia by NO, 470–471
 NO mimics anti-angiogenic drugs, 471
 multivalent-targeted sensitizing activity mimic of chemotherapeutic drugs as sensitizing agents, 464–466

mimic of NF-κB inhibitors in tumor cell sensitization to cytotoxic drugs, 467–468
mimic of proteasome inhibitors in reversal of tumor cell resistance, 468
mimic of rituximab-induced sensitization of resistant tumor cells, 466–467

NF-κB and Raf-1/MEK1/2/ ERK1/2, anti-apoptotic pathways, 461, 462f

NO, dual effects, 461

NO and cancer
 NO, chemo-/radio-/immune-sensitizer, 463
 NO, pro-tumor/anti-tumor effect, 463
 NO-producing tumor cells/NSAIDs, role, 463
 overexpression of NO, effects, 463

NO donors, treatment of cancer patients, 471

NO mimics radiosensitizing agents, 469

NO donors, cytotoxic effects
diazenumdiolate type, 112–113
hybrid type, 113
organic nitrate type, 111–112
S-nitrosothiol type, 112

NO donors by heme oxygenase-1, anti-apoptotic effects, 119

NO donors by survivin, anti-apoptotic effects, 120

NO (endogenous), cytotoxic effects of anti-tumor therapy macrophage activation, 107
eNOS induction in vascular cells by polyphenols, 109
Fas expression, enhancement, 108
iNOS gene transfer therapy, 108
iNOS induction in tumor cells by synthetic retinoid, 109
by Th1 and M1 cytokines, 107–108
using plant extract, 108
using statins, 109

NO (endogenous), protective effects anti-apoptotic effect of survivin, 119
Fas signal pathway, inhibition of, 118
IFN-induced apoptosis by NO, inhibition of, 119
iNOS inhibition by AMG, 118
proteasomal degradation of Bcl-2, inhibition of, 118–119
VEGF promotes iNOS expression, 118
NO (exogenous), cytotoxic effects of
cytotoxic effect of NO donors
diazeneumdiolate type of NO donors, 112–113
hybrid type NO donors, 113
organic nitrate type of NO donors, 111–112
S-nitrosothiol type of NO donors, 112
diazeneumdiolates (NONOates) type of NO
donors, 110–111
hybrid type of NO donors, 111
organic nitrate types of NO donors, 110
S-nitrosothiol type of NO donors, 110

NO (exogenous), protective effects
anti-apoptotic effect of NO donors by heme
oxygenase-1, 119
anti-apoptotic effect of NO donors by
survivin, 120
inhibition of apoptosis
by caspase-9 nitrosylation, 121
by the ceramide pathway, 121
by Fas signal pathway, 121
by pleiotrophin, 120
by scavenging of superoxide
anions, 120
proteosomal degradation of Bcl-2,
inhibition of, 120

NO expression in cancer
biosynthesis of nitric oxide
affinity to iron atoms, 60
eNOS, 62–64
half-life of NO in water, 59
iNOS, 65–68
nitrate and nitrite formation, 60
nNOS, 64–65
NO as EDRF, 60
NO reaction with thiols, 60
NOS isoforms, molecular cloning of, 61
inducible NOS/COX-2 interaction, target
for cancer treatment, 74–75
iNOS-mediated COX-2 induction in
tumor cells, signaling pathways, 75f
nitric oxide, tumor cell proliferation, and
apoptosis
angiogenesis, brain cancer development,
69
apoptosis-inducing factor induction by
cytotoxic agents, 72
colorectal tumor development, role of
iNOS, 71
HNSCC patients, study, 68

iNOS activity in Barrett’s metaplasia
and in esophageal adenocarcinoma, 70
iNOS activity in gastric adenocarcinoma,
70
iNOS activity in pancreatic cancers, 71
iNOS expression and tumor stage,
correlation, 70
NO-NSAIDs, chemopreventive effects,
73, 73f
NO-NSAIDs, study of Wallace’s
study, 73
ovarian tumors/tumor-associated
macrophages, role of iNOS in, 69
PGE2 production, NO on COX-2
activity in, 71
tumor angiogenesis/suppression by
iNOS activity, study, 68

NOHA, see N-hydroxy L-arginine (NOHA)
NO in cancers, cytotoxic/protective activity
cytotoxic (apoptotic) effects, 104f, 105f
endogenous NO, see Endogenous NO,
cytotoxic effects
exogenous NO, see Exogenous NO,
cytotoxic effects
mechanism of NO cytotoxicity, see NO
cytotoxicity, mechanism of
nitrosative stress/S-nitrosylation,
cause, 104
tumor microenvironment, see
Microenvironment of tumor
protective (anti-apoptotic) effects, 116f
endogenous NO, see Endogenous NO,
protective effects
exogenous NO, see Exogenous NO,
protective effects
mechanism of protective
(anti-apoptotic) effect of NO, see
Protective effect of NO, mechanism
tumor microenvironment, see Tumor
microenvironment, protection from
cytotoxins

NO interference with SAM synthesis and DNA
methylation, 320–321
synthesis of methionine/
S-adenosylmethionine and
methylation reactions, 321f

NO-mediated inhibition of EMT, molecular
mechanisms
inhibition of snail in induction of RKIP,
222–223
metastasis via induction of RKIP,
inhibition, 218–220
NO-mediated inhibition (cont.)
metastasis via inhibition of NF-κB, inhibition, 217–218, 218f
RKIP upregulation by NO, mechanisms, 220–222
NO-mimetic agents
chemo/radio-resistance modulation
anticancer agents modulation, role in drug resistance, 269
chemotherapeutics, use in drug-resistance, 269
hypoxia, tumor therapy resistance, 269
MAPK- and PI3K signal transduction pathways, 269
radiation therapy effects on hypoxia, 268–269
drug resistance
DETA/NO, 269
GTN, 269
ISDN, 269
See also NO-mimetic agents, drug resistance modulation mechanisms
NO-mimetic agents, drug resistance modulation mechanisms
angiogenesis and blood flow, 271–272
DNA damage and repair
oxidative damage, BER pathway, 273
oxidative damage, repair mechanisms, 273
HIF-dependent genes (P-gp, VEGF), 271
hypoxia-inducing factor 1α, 269–270
NF-κB, 274
nitric oxide/nitric oxide-donating agents, molecular mechanisms, 270f
oxidative stress
ROS-detoxifying mechanisms, 272
p53, tumor suppressor, 273–274
NO mimics chemotherapeutic drugs as sensitizing agents
FasL-induced sensitization, 464
NO-mediated inhibition of YY1, 464
TRAIL-induced apoptosis, sensitization
cisplatin and carboplatin, drugs used in bladder cancer, 464–465
combination of TRAIL and adriamycin, treatment results, 465
DETA-NONOate, reversed resistance, 465–466
XIAP, role, 465
NO mimics NF-κB inhibitors in tumor cell sensitization to cytotoxic drugs
anti-apoptotic gene products, apoptosis inhibition, 467
DHMEQ, NF-κB inhibitor, 468
NO mimics proteasome inhibitors in reversal of tumor cell resistance, 468
NO mimics radiosensitizing agents
hypoxic cell radiosensitizers, 469
nicotinamide/terapazamine, study, 469
NONOates, vasoactive complications, 469
oxygen supply, importance, 469
NO mimics rituximab-induced sensitization of resistant tumor cells
sensitization to chemotherapeutic drug-induced apoptosis, 467
sensitization to FasL and TRAIL-induced apoptosis, 466–467
Non-Hodgkin’s lymphoma (NHL), 171
Non-homologous end joining (NHEJ), 273
NONOates, 369
NO-NSAIDs, see Nitric oxide non-steroidal antiinflammatory drugs (NO-NSAIDs)
NO-producing nitrovasodilators, 216
NO production
by irradiation-activated macrophages, 114 from nitrite, 115
NO quenchers/scavengers, 149
NO regulation of translation
cyclin D1, role, 45
low/high NO stress, impact, 46
DETA-NONOate, protein synthesis inhibition, 44–46
differential NO stress, flow charts, 46f
NO treatment of MDA-MB-231 cells, 45
oncogenesis maintenance/therapeutic drug design, importance, 46
pre-treatment with FTI, effects, 47
NO-releasing agents, 224–225
Normal hematopoiesis and NO, 153–155
Normalization of tumor vasculature, cytotoxic therapy, 123
NORMs, see Nitric oxide-releasing molecules (NORMs)
NORMs, classes of classical organic nitrates and nitrites, 366–367
diazeniumdiolates, 369–371
diazetine dioxides, 375
furoxans and benzofuroxans, 372–375
N-hydroxy-N-nitrosamines, 368–369
nitrosothiols (RSNOs), 371–372
N-nitrosamines, 367–368
sydnonimines, 376–377
NOS, see Nitric oxide synthase (NOS)
NOS, isoforms, 40
NOS2, inducible NOS, 149
NOS3, endothelial NOS, 149
NOS/COX-2 interaction
 astrocytic tumorigenesis, cause, 69
target for cancer treatment, 74–75
NOS detection in CLL cells
 CDDO, role in apoptosis of CLL, 171–172
iNOS expression in B lymphocytes
cGMP-dependent/independent mechanisms, 170
MM/NHL, histopathologic study, 171
NO, anti-apoptotic role, 170–171
NOS dimer formation, inhibitors of, 150–151
NOS expression by leukemia/MDS cells, 156–157
NOS expression in tumors
 NO, anti-tumorigenic role, 41
 reduced tumor growth, Nunakawa study, 41
tumor development and progression, study association with angiogenesis, 41
 increased activity in lung cancer/ ulcerative colitis
 patients, 41
iNOS activity in breast carcinoma, 40
iNOS activity in human ovarian cancer, 40
NOS I, Ca$^{2+}$–calmodulin-dependent enzyme, 64
NOS inhibitors
 NMMA, cytotoxicity inhibition, 150
 NOS dimer formation, inhibitors of, 150–151
 NOS oxidase inhibitors, 150
 NOS1-specific inhibitors, 151
 NOS2-specific inhibitors, 151
NOS oxidase inhibitors, 150
NOS1-specific inhibitors, 151
 study in animal models, 151
NOS2-specific inhibitors, 151
L-NIL, oral drug for asthma, 151
NO synergy with ionizing radiations preclinical studies
 activation of p53, effects, 255
cytotoxic synergy in human colon carcinoma cells, SNAP treated, 256
gene activation, 256
hypoxic cell radiosensitizers, 252
NO donors/releasing agents, sensitization effects, 254–255
NO synthases, 149–150
NPC, see Nasopharyngeal carcinoma (NPC)
OV infection (cont.)
in vitro study with RAW264.7, 345
in vivo study with OV-infected hamsters, 345
praziquantel, treatment with, 345
Oxidative–nitrosative stress, 5–6
Oxidative stress, 5–7, 272
transversions, 6–7
8-oxodG, 343–345, 347f, 350–351
8-oxoguanine glycosylase-1 (OGC1), 42
“Oxygen effect” in DNA, 404

P
Paget’s theory of seed and soil, 191
PAMPs, see Pathogen-associated molecular patterns (PAMPs)
Pancreatic adenocarcinoma, 26, 71, 111, 113
Partial liver resection/liver transplantation, treatments, 310
Pathogen-associated molecular patterns (PAMPs), 174
PCD, see Programmed cell death (PCD)
PDGFR, see Platelet-derived growth factor receptor (PDGFR)
PEA3, see Polyoma enhancer activator 3 (PEA3)
PEBP, see Phosphatidylethanolamine binding protein (PEBP)
PeIF2-α, see Phosphorylated eIF2-α (peIF2-α)
Pentaerithrityl tetranitrate (PETN), 366
Peripheral nervous system (PNS), 64, 362
PETN, see Pentaerithrityl tetranitrate (PETN)
PGH2, see Prostaglandin H2 (PGH2)
PGs, see Prostaglandins (PGs)
Phases of tumor progression
metastatic phase, 295
RGP, 295
VGP, 295
PHDs, see Prolyhydroxylase (PHDs)
Phorbol diester, 348
Phosphatidylethanolamine binding protein (PEBP), 211–212
affinity to phospholipids, effects, 212
characteristics, 212
gene array analysis (Fu), 212
HCNP, choline acetyltransferase synthesis, 212
Phosphatidylinositol 3-kinase (PI3K), 24, 27, 312
Phosphorylated eIF2-α (peIF2-α), 46
PI3K, see Phosphatidylinositol 3-kinase (PI3K)
PIN, see Protein inhibitor of nNOS (PIN)
P1 isoform of the phase II detoxification enzyme glutathione-S-transferase (GST-P1), 371
PKR, see Protein kinase R (PKR)
Platelet-derived growth factor receptor (PDGFR), 95, 210
PNS, see Peripheral nervous system (PNS)
Polyoma enhancer activator 3 (PEA3), 72
Polyphenols, naturally occurring, see Quercetin (QUER); Trans-pterostilbene (t-PTER)
p53 (protein 53) mutations, 7, 273–274, 331
Praziquantel, antiparasitic drug, 345
Primary melanomas, iNOS expression in IHC of iNOS in human primary melanoma, 296f
malignant transformation of melanocytes, role, 295
phases of tumor progression, 295
primary cutaneous tumor samples, interim statistical analysis DFS/OS HR estimation, 296t
Pro-apoptotic properties, NO
NF-κB activity, inhibition of, 42
NO-induced apoptosis in breast cancer cells
ERK inactivation/MKP-1 inhibition, 43
p53 accumulation, 42
Programmed cell death (PCD), 448
Pro-inflammatory cytokines, 138
Prolyhydroxylase (PHDs), 482
Prostaglandin H2 (PGH2), 316
Prostaglandins (PGs), 71–72, 90, 198, 315–316, 316f, 444
production, 316
Prostanoids, 316
Prostate cancer, role of NO
NO donor, 421–422
NOS induction/inhibition, 422
Proteasomal degradation of Bcl-2, inhibition of, 120
Protective effect of NO, mechanism
inhibition of ceramide pathway, 117
inhibition of Fas signal pathway, 117
inhibition of mitochondrial permeability transition pores, 117
inhibition of the caspase family, 117
Protective effects of endogenous NO from cytotoxins
 anti-apoptotic effect of survivin, 119
 Fas signal pathway, inhibition of, 118
 IFN-induced apoptosis by NO, inhibition of, 119
 iNOS inhibition by AMG, 118
 proteasomal degradation of Bcl-2, inhibition of, 118–119
 VEGF promotes iNOS expression, 118
Protective effects of exogenous NO from cytotoxins
 anti-apoptotic effect of NO donors by heme oxygenase-1, 119
 anti-apoptotic effect of NO donors by survivin, 120
 inhibition of apoptosis by caspase-9 nitrosylation, 121
 by the ceramide pathway, 121
 by Fas signal pathway, 121
 by pleiotrophin, 120
 by scavenging of superoxide anions, 120
 proteasomal degradation of Bcl-2, inhibition of, 120
Protein inhibitor of NOS (PIN), 150
Protein kinase R (PKR), 46, 46f
Protein nitrosation, 367

Q
QUER, see Quercetin (QUER)
Quercetin (QUER), 109

R
Rabbit aortic endothelial cells (RAECs), 26
Radial growth phase (RGP), 295
Radiation therapy, 108, 114, 139, 210, 268, 285, 335, 361
See also Radiotherapy
Radiosensitisation, cancer treatments
 insulin administration to tumour-bearing mice, results, 404
 mice bearing liver tumours implanted into leg muscle, study, 404–405
 radiation-inducible promoters, use of
 ADiNOS treatment, 403–404
 CMV and pE9 promoters, 403
 WAF1/p21 promoter, 402
 single radiation doses/X-ray doses, use of “oxygen effect” in DNA, 404
 of tumour cells by NO in vitro/in vivo, 398t–401t
Radiosensitization, definition, 238
Radiotherapy
 clinical studies, 239
 further research, aim, 239
 preclinical studies
 bystander effect of tumor cells, 239
 NO released by intratumoral macrophages, tumor effects, 238
 radioresistant macrophages, role, 238
 in vitro/in vivo induction of NO in tumor cells, effects, 238
Radiotherapy and NO
 hypoxia, prognostic factor for tumor outcomes, 285
 NO as radiosensitizer, 285
 NO sensitization of tumor cells to radiotherapy
 controversy/issues, 286
RAECs, see Rabbit aortic endothelial cells (RAECs)
Raf-1 kinase inhibitor protein (RKIP), 211–213
 nasopharyngeal carcinomas, invasion suppressor protein, 213
 PEBP family, member of, 211
 reduced expression of, tissue microarray analysis, 213
Ras signaling
 NO treatment of MDA-MB-231 cells, 45
 pre-treatment with FTIs, 47
 Reactive nitrogen species (RNS), 5, 30, 61, 112, 115, 137, 201, 243, 266, 272, 311–315, 343, 450
 See also ROS and RNS, biochemistry of
 Receptor tyrosine kinase (RTK), 24, 25f
 Redox sensor proteins, 365, 379
 Renal cellular carcinoma, 427
 NOS induction/inhibition, 427
Resiquimod, 173
Retinoblastoma protein, 46
Ribonucleotide reductase, 60, 65, 105, 151, 152f
RKIP, see Raf-1 kinase inhibitor protein (RKIP)
RKIP upregulation by NO, mechanisms, 220–222
RNS, see Reactive nitrogen species (RNS)
RNS, role in carcinogenesis, 310–311
RNS and hepatocarcinogenesis, production/metabolic effects
 AMPK activation, effects, 312
 hepatic glucose metabolism, NO effects, 313
RNS and hepatocarcinogenesis (cont.)
mitochondrial respiratory chain/Krebs cycle/glycolysis, NO effects, 313, 314f
NO-mediated DNA repair inhibition/vasodilation, HCC cause, 312
NOS isoforms in liver, 311
Warburg effect, 313
ROS and RNS, biochemistry of
Fenton reaction, 266
mitochondrial respiratory chain inhibition, effects, 267
reaction balance between ROS/RNS, 267
sites of generation, 266
thioredoxin and glutaredoxin, role, 267
ROS-detoxifying mechanisms, 272
Roswell Park Cancer Institute, 481
RTK, see Receptor tyrosine kinase (RTK)

S
S1177, phosphorylation of, 24, 28, 28f
SAM synthesis and DNA methylation, 320–321
Sapium sebiferum, 348
SCC, see Squamous cell carcinoma (SCC)
SCF, see Stem cell factor (SCF)
Selenium and cancer
daily Se supplements intake
200 μg/d, effects, 481
400 μg/d, effects, 481
daily Se supplements intake, effects, 481
MSC optimal dose, defined, 481
Se concentrations, clinical phase I trial novelty of approach, 481
SLM/vitamin E, prevention trials, 481
Selenomethionine (SLM), 480–481
“Self cannibalism,” see Autophagic cell death
Se-methylselenocysteine (MSC), 479–486
See also MSC, potential role
Serine proteases, 212
SGC/cGMP/PKG, see Soluble guanylyl cyclase/cGMP/cGMP-dependent protein kinase (sGC/cGMP/PKG)
SLM, see Selenomethionine (SLM)
Smac DIABLO, 42, 257, 460, 465–466
SNAIL in regulation of tumor metastasis post-transcriptional regulation
GSK-3β phosphorylation, 214
Snail interference in HaCa4 and CarB, 214
as transcriptional repressors
E-cad transcription, 213
zinc-finger type encoding, 213
S-nitrosothiol (SNO), 42, 60, 90, 110, 112, 156, 224
S-nitrosylation
nitric oxide and cancer
angiogenesis and vascular permeability, 89–90
metastasis, 90
NO, cytoprotective/tumoricidal effects, 88
phases of cancer progression, 88f
proliferative and anti-apoptotic effects, 88–89
protein S-nitrosylation, tumor survival growth/survival and apoptosis-regulatory proteins, 93–94
S-nitrosylation of protein targets, 91t–93t
vascularization and metastatic potential, regulators of, 94–95
SNO, see S-nitrosothiol (SNO)
SOD, see Superoxide dismutase (SOD)
Soft tissue sarcoma, 349–350
See also Malignant fibrous histiocytoma (MFH)
Soluble guanylyl cyclase/cGMP/cGMP-dependent protein kinase
(sGC/cGMP/PKG), 319
“Spacer” or “linker,” 445
Sphingosine 1-phosphate (S1P), 63, 121–122, 198
Squamous cell carcinoma (SCC), 7, 213, 239, 259, 298, 329–330, 481, 483, 485
See also Head and neck squamous cell carcinoma (HNSCC)
Src, proto-oncoprotein, 94
Stem cell factor (SCF), 154f, 296
Stromal fibroblast iNOS, chemoresistant upregulation of tumor by, 122
Superoxide dismutase (SOD), 60, 67, 87, 110, 149, 200, 216, 267, 396, 450
Survivin, 43, 69, 106, 119–120, 217, 258, 461, 467–468
anti-apoptotic effect of, 119
Sydnonimines, 156, 376, 376f

T
TAAs, see Tumor-associated antigens (TAAs)
TAM, see Tumor-associated macrophage (TAM)
TBID, see Truncated BID (tBID)
T-cell priming, 243, 246
Terapazamine, 469
“The paradox of oxygen,” 266
Thiol proteins, oxidation of, 42
Thioredoxin, 94, 105, 178–179, 199, 267
Thioredoxin-like oxidoreductase (TRX), 91t, 94
TIMP-2, see Tissue inhibitor of matrix metalloproteinases (TIMP-2)
Tissue inhibitor of matrix metalloproteinases (TIMP-2), 395
Toxoplasma gondii, 148
T-PTER, see Trans-pterostilbene (t-PTER)
Transferrin–polyethyleneglycol–polyethylenimine complex, 396
Trans-pterostilbene (t-PTER), 109
Truncated BID (tBID), 43
TRX, see Thioredoxin-like oxidoreductase (TRX)
Tumor-associated antigens (TAAs), 241, 288
Tumor-associated macrophage (TAM), 9, 12, 113–114, 122, 244, 301–302
Tumor cell adhesion to vascular endothelium, inhibition/promotion, 191
hepatic zonal heterogeneity, 193
Tumor cell arrest in microvessels, mechanism, 190
Tumor-infiltrating dendritic cells, 114
Tumor microenvironment, protection from cytotoxins
chemoresistant upregulation of tumor by stromal fibroblast iNOS, 122
macrophage reprogramming to M2 phenotype by S1P, 121–122
MHC Class I shedding under hypoxic tumor conditions, 122
normalization of tumor vasculature, cytotoxic therapy, 123
Tumor tissues heterogeneity, 480
MSC/SLM, multi-targeted molecules, 480
V
Vascularization and metastatic potential, regulators of, 94–95
Vasodilation, 63, 114, 238, 253, 311, 362, 429
VEGF, see Vascular endothelial growth factor (VEGF)
Vertical growth phase (VGP), 295
Vessel remodeling, 62
VGP, see Vertical growth phase (VGP)
VGX-1027 vs. GIT-27NO, 445–446
W
WAF-1/iNOS gene therapy, 402–403
WAF1/p21 promoter, 402
Warburg effect, 313, 314f, 315 overexpression of the AKT oncogene, cause, 313
“Warhead,” 364
Wortmannin, PI3K inhibitor, 24
Wound healing model, 9
X
Xeroderma pigmentosum A (XPA), 42, 89
XIAP, see X-linked inhibitor of apoptosis (XIAP)
X-linked inhibitor of apoptosis (XIAP), 258, 317, 461, 465, 467–468
XPA, see Xeroderma pigmentosum A (XPA)
Y
Ying-Yang 1 protein (YY1), 152f, 153, 221, 257, 274, 288, 375, 422, 451–452, 464, 466–468
YY1, see Ying-Yang 1 protein (YY1)