Plate 1 The different heads of ISO 19115 (See also Fig. 1.1 on Page 6)

Plate 2 Illustration of the three descriptor types of ISO 19115 (See also Fig. 1.2 on Page 7)
Plate 3 Geographical description of a resource in ISO 19115 (See also Fig. 1.4 on Page 10)

Plate 4 Textual and cartographical responses to a multicriteria request (See also Fig. 1.5 on Page 12)
Plate 5 Example of a connection to a Postgis database with the free software application Quantum GIS (See also Fig. 1.6 on Page 14)

Plate 6 Australia’s marine jurisdiction (See also Fig. 2.1 on Page 18)
Regional marine planning is being undertaken over a number of regions (See also Fig. 2.2 on Page 21)
Plate 8 Map produced to show port limits under the customs act – Fremantle, Western Australia (See also Fig. 2.4 on Page 24)

Plate 9 Extent of overlapping interests and treaty boundaries in the Timor Sea (See also Fig. 2.5 on Page 25)
Plate 10 Proposed web mapping architecture for AMSIS (See also Fig. 2.6 on Page 26)

Plate 11 Map of Lagos Lagoon with the rivers and creeks (See also Fig. 3.1 on Page 31)
Plate 12 Example of the cartographic differences being identified by SeaZone as follow up to the ICZMap pilot project (See also Fig. 5.1 on Page 53)

Plate 13 Example of the joined marine geographic information created by SeaZone (land data courtesy of Ordnance Survey) (See also Fig. 5.2 on Page 54)

Plate 14 The project logo (a) and a page of the virtual permanent conference (b) (See also Fig. 7.1 on Page 66)
Plate 15 Technical architecture of the marine geospatial data infrastructure (See also Fig. 8.1 on Page 80)

Plate 16 Map generated by the COINAtlantic web mapping application (www.coinatlantic.ca) (See also Fig. 8.2 on Page 81)

Plate 17 Cartography elements and base map (See also Fig. 11.1 on Page 111)
Plate 18 Example of daily map with the oil spill distribution (See also Fig. 11.4 on Page 114)

Plate 19 Position of the existing and planned plants along the Sicilian coasts and the distribution of species and provinces (See also Fig. 12.1 on Page 119)
Plate 20 Detail of plants and biotopes (circled in yellow-green) distributed along the Tyrrhenian coast in the province of Messina (brown in Fig. 12.1.) (See also Fig. 12.2 on Page 124)

Plate 21 Nine examples of coastal geomorphology in Mexico (left to right and top to bottom): Cancún, Quintana Roo; Progreso, Yucatán; Huatulco, Oaxaca; Acapulco, Guerrero; Puerto Vallarta, Jalisco; Manzanillo, Colima; San José de los Cabos, Baja California Sur; Mazatlán, Sinaloa; and Hecelchakán, Campeche (See also Fig. 14.1 on Page 140)
Plate 22 (A) Digital elevation map of the Yucatan Peninsula within Mexico; (B) Proximity, shoreline buffer 20 km offshore and inland; (C) Area below 50 m elevation; (D) Hydrological subwatersheds totally or partially within the 20 km buffer (See also Fig. 14.2 on Page 147)
Plate 23 (A) Shoreline and government administrative boundaries overlaid with climatic regions contained within watershed boundaries; (B) Shoreline and government administrative boundaries overlaid with land uses contained within climatic regions and watershed boundaries; (C) Shoreline and government administrative boundaries overlaid with NDVI values contained within climatic regions and watershed boundaries; (D) Close-up of Carmen climatic region (Aw1), including sub-watersheds; (E) Carmen climatic region showing selected watersheds totally or partially within 20 km SL buffer; (F) Carmen climatic region overlaid with five NDVI classes within watershed boundaries, as well as municipal and state boundaries (See also Fig. 14.3 on Page 148)
Plate 24 (a) An interactive hypermedia animation with several forms of interactivity generated with Erdas Imagine 8.5 using the ParallelGraphics CortonaR VRML Client used to view VRML model. (b) An ArcView 3.3, project using raster Ordnance Survey (OS) map data at a scale of 1:50,000 with hotlinks to 21 ground truth colour photographs at 1280×960 pixels resolution. (c) The third example is a video clip (11.4 MB file size, with a duration of 25 s, comprising 375 frames, at 15 frames per second, using the DivX High Definition Profile, at a resolution of 768×512) generated by the Bryce 5 software (See also Fig. 16.2 on Page 181)
Plate 25 The Wadden Sea area (Trilateral cooperation area) (See also Fig. 18.1 on Page 198)

Plate 26 Salt marsh zones in the Netherlands and Germany. The used geographical and attribute data is directly comparable (Essink et al. 2005) (See also Fig. 18.2 on Page 201)
Plate 27 Salt marsh zones (NLPV 1997) combined with migratory bird count sites (NLWKN 2004) in the Leybucht Lower Saxony, Germany (See also Fig. 18.3 on Page 202)

Plate 28 Distribution of intertidal blue mussel beds in the Wadden Sea. Absolute (ha) and relative (%) of intertidal area covered by blue mussel beds (Essink et al. 2005) (See also Fig. 18.4 on Page 203)
Plate 29 Display of water depth from model input in GIS (After Ng (2004)) (See also Fig. 19.5 on Page 215)

Plate 30 Shipping traffic density distribution through gridding (See also Fig. 21.1 on Page 233)

Plate 31 Fishing versus shipping traffic proportion distribution in Atlantic Canada (See also Fig. 21.2 on Page 233)
Plate 32 Single Kernel density analysis of fishing incidents (See also Fig. 21.3 on Page 236)

Plate 33 Fishing incident rate distribution using Dual Kernel density interpolation (See also Fig. 21.4 on Page 236)

Plate 34 Schematic diagram representing the simplifications used by the carbon deposition model. The sea loch is represented by a rectangular basin with identical physical characteristics to the real system. The tidal current amplitude decreases from U_0 at the mouth to zero at the head, with values at each site, U_S, calculated accordingly. Fish farms are represented by the filled rectangular block, with the areas of impacted seabed denoted by the filled ellipses. All other parameters and variables are described in the text (See also Fig. 22.1 on Page 242)
Plate 35 Area of detail from method three combined zones (See also Fig. 23.2 on Page 250)
Plate 36 Functionality of Marxan compared with user needs for zoning (See also Fig. 23.3 on Page 252)

Plate 37 Coastal zone in Slovenia (See also Fig. 24.1 on Page 256)
Plate 38 Existing legal regimes as decision support tool for managing sensitivity areas for national contingency plan (See also Fig. 24.2 on Page 260)
Plate 39 Spatial representation of land and sea interaction as functional connected areas (See also Fig. 24.3 on Page 261)
Plate 40 Group model of decision stages in the management of coastal geohazards (See also Fig. 25.1 on Page 268)
Plate 41 Study area location (See also Fig. 26.1 on Page 276)

Plate 42 1996 aerial survey after georeferencing (See also Fig. 26.2 on Page 280)
Plate 43 Visual analysis of the 1965 survey (See also Fig. 26.3 on Page 281)

Plate 44 Structure of Matlab analysis tool (See also Fig. 26.4 on Page 282)
Plate 45 Preliminary results of Matlab analysis and overlapping in GIS database (See also Fig. 26.5 on Page 282)

Plate 46 Geological (i.e. lithology, fault lines) characteristics of Paros Island (See also Fig. 27.1 on Page 287)
Plate 47 Geographical and morphological characteristics of Paros Island (See also Fig. 27.2 on Page 288)
Plate 48 Coastal slopes, coastal types and the sectors defined according to effective fetch of incoming wind-generated waves (See also Fig. 27.3 on Page 292)

Plate 49 The morphology of Paros Island at (a) 10,000 yr BP, when sea level was ca. 54 m lower than its present stage (left) and (b) 6,000 yr BP, when sea level was ca. 6 m lower than its present stage (right) (See also Fig. 27.4 on Page 294)
Plate 50 The study area situated in the Central Aegean, showing the rates and direction of motion of Cyclades during the Quaternary and the major submarine fault zones (See also Fig. 28.1 on Page 298)

Plate 51 From left to right: (a) Eroding beachrock in Syros. (b) Submerged Roman fishtanks in Naxos. (c) Eroding Myceanean wall at sea level in the city of Naxos (See also Fig. 28.2 on Page 301)
Plate 52 The topography, the drainage system and the geomorphological units of Meganisi island (See also Fig. 29.1 on Page 306)
Plate 53 (A) The geological map of the Meganisi island (I.G.M.E., 1963, 1994), modified by the authors. (B) The wave energy map. (C) The final coastal hazard risk map of Meganisi island. (D) A rodograme of faults orientation. (E) A rodograme of coast orientation (See also Fig. 29.3 on Page 311)
Plate 54 Location of the study area and aerial photographs of Cascais bay beaches before and after the construction of the marina (See also Fig. 30.1 on Page 316)
Plate 55 Histograms of occurrence for the offshore wave regime parameters: a) direction; b) significant height; and c) period (See also Fig. 30.2 on Page 318)
Plate 56 Variable factor of the resultant wave power, for the situations BM and AM, in front of the beaches: Ribeira, Raínha, N. Srª da Conceição and Moitas (See also Fig. 30.4 on Page 323)
Plate 57 The location of the study area, the development of drainage basin and the Dams of Acheloos basin (See also Fig. 31.1 on Page 326)
Plate 58 The delta plain. Geomorphological and land use changes from 1960 (Fig. 2A) to 2004 (Fig. 2B), based on aerial photos and satellite images interpretation, and field mapping. Fig. 2C: Digital model of the submarine environment (See also Fig. 31.2 on Page 329)
Plate 59 Zooming on geomorphological and land use changes as have been observed by aerial photos and satellite images (1960–2000), in delta plain (See also Fig. 31.3 on Page 330)

Plate 60 Current land use and land cover for the Blakeney-Cley section of the study area (See also Fig. 32.2 on Page 341)
Plate 61 Simulated 2050 land cover/land use for Policy Option 3 and the high sea level rise scenario: same area as Fig. 2 (See also Fig. 32.3 on Page 341)

Plate 62 Sample results from the MCA with different criteria weighting systems (a) and (b). The weighting systems are illustrated in the pie-chart and the resultant scores for each policy shown for two different sea level rise (SLR) scenarios (See also Fig. 32.4 on Page 344)
Plate 63 Conceptual model of the Catalan coastal zone GIS (See also Fig. 34.1 on Page 362)

Plate 64 Conceptual entities and relations of the biogeographic module (See also Fig. 34.2 on Page 364)

Plate 65 Marine hexagon model of anthropogenic impact indicators and fish species resilience of the Catalan coast (See also Fig. 34.4 on Page 367)
Plate 66 Gridded population density of Asia (based on CIESIN, GPW3 2000), showing concentration in river valleys and on megadeltas (See also Fig. 36.1 on Page 380)

Plate 67 The Red River Delta; (a) JERS radar imagery of the delta showing the complexity of land-use, and (b) an interpretation of subaerial delta geomorphology that shows distinct sectors of the delta dominated by different processes (based on Mathers and Zalasiewicz, 1999) (See also Fig. 36.2 on Page 382)
Plate 68 The delta of the Ganges-Brahmaputra-Meghna delta; (a) DTM determined from SRTM, and (b) MODIS image of delta (See also Fig. 36.3 on Page 383)

Plate 69 The delta of the Irrawaddy River, Myanmar; (a) Digital terrain model (DTM) derived from Shuttle Radar Topography Mission (SRTM) data; (b) JERS radar imagery, showing the tide-dominated “Mouths of the Irrawaddy” (See also Fig. 36.4 on Page 384)
Plate 70 DTM of (a) Indus, (b) Pearl, (c) Huanghe, (d) Chao Phraya, (e) Mekong, and (f) Changjiang deltas based on Shuttle Radar Topography Mission (SRTM) data (after Woodroffe et al., 2006) (See also Fig. 36.5 on Page 385)

Plate 71 The Red River Delta; (a) DTM derived from SRTM; (b) gridded population density for 2015 using estimates of population increase (based on GPW3, CIESIN) (See also Fig. 36.6 on Page 387)
Index

A
Acheloos basin
climate in, 327
geographical growth of, 325–326
isopic geological zones, 327
Acheloos delta
area of, 327
evolution of, 327
geomorphological and land use changes in
aerial photos and satellite images of, 330
delta front changes, 331
GIS for studying, 331
mapping of subaerial delta area,
328–329
methodology for assessing, 327–328
pro-delta area, 330–331
Acheloos river
anthropogenic intervention in, 328
extrusions of, 327
Ackefors, H., 119
Ackermann, F., 130
ACZISC, see Atlantic Coastal Zone
Information Steering Committee
(ACZISC)
Ader, R. R., 360
Administrative boundary in marine territory,
144, 147, 148
Aerial photography, 188
archival
constraints of, 161–162
of weedmats, 154, 156–157, 159, 167
of Cascais bay beaches, 316, 320
draping, 167
and GIS for coastal monitoring, 188
high-resolution, 188
of northern part of Sylt, 189–191
recommendations for acquisition of,
164–165
of shoreline evolution, 189–191, 193, 195,
320–321
of shore platform erosion, 131–132, 134
Aerial survey after georeferencing, 280
African Water Vision, 225
Aguilar-Manjarrez, J., 121, 122
Ahrendt, K., 188, 189, 193, 194
Alder, J., 139
Ali, A., 388
Allain, S., 13
Allen, J. R., 29
Allison, M. A., 383
Alluè, C., 365
Altherr, R., 299
AMSIS, see Australian Marine Spatial
Information System (AMSIS)
Andres, F. J., 188
Andrews, J. E., 336
Andriessen, P., 299
Angelier, J., 299
Animation, cartographic, 176
Antrop, M., 164
Aquaculture
environmental implications of, 117–118
in Sicily, see Sicily, aquaculture in
ArcGIS Marine Data Model, 24, 360
ArcGIS®, 108, 375
Ardron, J. A., 247, 249, 251
Arens, S. M., 88
Asian megadeltas
dominant processes in, 381–382
Holocene evolution of deltaic plains
associated with, 380–381
millenial-scale evolution of, 381
physical characteristics of, 380
socio-economic factor variability across
flooding and flood management,
387–388
population densities, 385–387
surface geomorphology of
Ganges-Brahmaputra-Meghna delta,
382–383
Indus, Pearl, Huanghe, Chao Phraya,
Mekong, and Changjiang deltas,
384–385
Irrawaddy delta, 383–384
Athanassoulis, G. A., 290, 291
Atlantic Coastal Zone Information Steering
Committee (ACZISC)
COINAtlantic initiative of, see
COINAtlantic
metadata development work by, 81
Aubouin, J., 306, 327
Australian Customs Service, plans produced
for, 24, 25
Australian fishing zone, locations of ship in
relation to, 21–22
Australian Marine Spatial Information System
(AMSIS)
aim of, 19–20
application development
prototype GIS, 24–25
web mapping architecture, see Web
mapping architecture
data identification
data audit, 23
data capture, 23
data model, 23–24
priority data, 22–23
spatial information, 23
development, Australian government
responsibilities for, 20
Australian Oceanographic Data Centre Joint
Facility, 27
Australia’s marine jurisdiction, 18
Avila, E., 139–150
Axler, R., 119
B
Backhaus, J., 189
Baily, B., 154, 164
Baix Camp zone
geographical and social-environmental
setting, 372
geological and geomorphological setting,
372–373
littoral dynamics, 374
Ball, I. R., 246
Barbosa, J. P., 275–283
Barde, J., 3–15
Barker, N., 271
Barrier-lagoon complex, 30
Bartlett, D. J., 41, 42, 43, 44, 46, 360
Base data
acquisition cost, 43
age of, 44
Baseline mapping, need for, 52
Bathymetric data acquisition, 33, 37, 53
Bathymetry, 142
Beach defences, 90–91
Beach-dune system
index of seasonal human pressure on, 90
See also Coastal dunes
Beach erosion, 90, 94, 286, 353
Beaches
dune in Emilia Romagna, 91, 94, 95
of Emilia Romagna, 91, 94, 95
littoral, 353–354
low sandy
between Adige mouth and Porto Caleri
site, 92–93
in Emilia-Romagna region and Veneto
region, 91–92
macro-tidal
classification of, 277–278
issue in study of, 277
micro-tidal wave-dominated, 277
sandy, 352, 354
between Adige mouth and Porto Caleri
site, 92–93
bathing seasonal activities, 90
in Emilia-Romagna region and Veneto
region, 91–92
use for seasonal tourism, 94
Beach planform evolution, 320–321
Behnam, A., 228
Behrens, A., 193
Belfiore, S., 361
Bellocchio natural protected area, dunes in, 95
Bernal, P., 140
Bloom macro-algae, seasonal succession of,
165
Blue mussel beds
distribution of, 203
methods for monitoring, 202–203
trilateral GIS data on, analysis of, 203
Boak, E. H., 190, 191
Bojar, K., 171–183
Bondesan, M., 91, 352
Bonora, N., 96
Bornovas, J., 306
Bossomaier, T. R. J., 177
Boundaries, see Coastal zone boundaries
Bowen, R. E., 359
Box models, sea lochs assessment, 242
Boyle, S., 208
Bradbury, N. B., 119, 242
Brammer, H., 383
Breman, J., 360, 364
Brenner, J., 359–368
Brown, I., 335–345
Budd, J. T. C., 154
Burbridge, P. R., 361
Burrough, P. A., 36
Butler, M. J. A., 73–85
Byrnes, M. R., 188

C
“Canada’s Oceans Strategy,” 228
Canadian Geospatial Data Infrastructure (CGDI), 85
development of, 75
marine-based initiative linked to, see Marine Geospatial Data Infrastructure (MGDI)
Canessa, R. R., 245–254
Capurro, L., 140
Carbon deposition model, 242
Carmen region, vegetation density and land use in, 149
Carter, R. W. G., 88
Cartographic document, 108
Cartographic interface, 6
compilation and access to result with, 12
interaction between metadata and geographical reference bases via, see Geographical reference bases and metadata, interaction between
RDBMS associated with, 14
Cartography
CORINE, 122
elements and base map, 111
in Mercator projection, 110
multimedia, 182
thematic, 114
Cartwright, W., 176
Cascais bay beaches
before and after construction of marina, 316
orientation of, 321
Casgrain, P., 367
Catalan coastal zone
anthropogenic pressures and coastal fish diversity, relationship between, 366–368
environmental management units of, 366
HEMU definition, 363
land-to-sea pressure indicators of, 363
Catalan coastal zone GIS
conceptual model of, 362
HEMU regionalisation of terrestrial subsystem, 365
human pressure on ichthyofauna, 365–367
implementation of, 364
Cazenave, A., 294
Cendrero, A., 360
CGDI, see Canadian Geospatial Data Infrastructure (CGDI)
Chan, K., 158, 165, 166, 177
Charlier, R. H., 348
Checkland, P. B., 267
Chen, J. C., 209
Christen, K., 229
Christie, P., 5
Chua, T. E., 140
Church, J. A., 294
Cicin-Sain, B., 139, 228
Clark, H., 78
Clearinghouse metadata, 35
Climate change
coasts susceptibility to, 379
impact on coastal landscape
buildings data, 338
elevation data sources evaluation, 337–338
land use/land cover, 338
in North Norfolk coastline, 336–337
tidal and flood events, 338–340
tidal flooding frequency, 336
nearshore wave, 319–320
and water resources, 221
Coastal defences, 347, 348
GIS for management and planning of, 349–352
Coastal dunes
and bathing establishments, coastal conflict between, 93
in Bellocchio natural protected area, 94, 95
classification of, 90, 94
conceptual data model for, 90–91
features of, 89–90
godatabase for, see National geodatabase for coastal dunes
geomorphologic studies on, 88
index of seasonal human pressure on, 90
role in coastal evolution analysis and monitoring, 87
Coastal erosion, 32, 195, 374, 388
mitigation projects, 355
Coastal evolution
from 1972 to 2004, 354
details of, 352
factors conditioning, 91
foredune environments role in, 87
Coastal geohazards, see Geohazards
Coastal geomorphology
in Mexico, 140
of Paros island, 286
calculations of wave’s characteristics, 291
coastal oceanographic conditions, 292–293
data collection, 290
palaeogeographic evolution, 294
rocky coasts, 291–292
sediment flux towards coastline, 291
susceptible to sea level change, 294–295
Coastal hazard risk map of Meganissi island, 308, 310–311
Coastal hazards study, 306–307
Coastal information and data, 266
Coastal landscape, climate change impact on
buildings data, 338
elevation data sources evaluation, 337–338
land use/land cover, 338
in North Norfolk coastline, 336–337
tidal and flood events, 338–340
tidal flooding frequency, 336
Coastal landscape visualization
objectives, 171
using cartography and GIS, 172
See also YthanView project
Coastal management
dunes and bathing establishments, 353
littoral beaches, 353–354
sandy beaches, 352, 354
sedimentological analysis for, 354–355
Coastal management policies
multi-criteria assessment of
CBA/MCA approach for, 340–341
cumulative scores for, 341–343
North Norfolk coastline, 337
Coastal and Ocean Information Network
(COIN), 74
Coastal oceanography
establishing coastal regions by, 146
of Paros island, 289–290, 292–293
Coastal partnerships
information transfers for, 270
role of, 269
Coastal regions
criteria for establishing, 145
biota, 146
climate, 144
coastal oceanography, 146
geomorphology/geology, 146
wastewater disposal management in, 207
Coastal retreat, 192–193
Coastal risk mitigation policies changes, 348
Coastal spatial data
acquisition challenges, 43–44
quality of, 44
standards for, 46–48
web catalogue systems for, 45
Coastal spatial data infrastructure (CSDI), 51
Coastal threats, 229
Coastal zone
actions and policies implemented in, 143–144
damage, 229
environmental indicators of, see Coastal zone environment indicator system
environmental regionalisation, 365
environmental research and state assessment, 360
geomorphological characteristics for, 146
of Ireland, see Irish coastal zone
in Slovenia, 256
strains faced by, 139
tourism and recreational practices impact on, 228
Coastal zone boundaries
criteria for establishing
administrative boundaries, 144, 148
ecotones, 143
hydrogeological basins, 143
infrastructure and socioeconomic activities, 143–144
proximity, 141, 147
topography/bathymetry, 142–143
watersheds, 143, 147
Yucatan Peninsula, 147
Coastal zone environment indicator system
BI module of, 363–364
DPSIR framework of, 361
efficiency in Catalonia, 362
vector data model, 362
Coastal zone management, 41, 43
GIS mapping for, 229
initiatives, international, 227–228
problems in, 286
Coastline retreats, 91
COINAtlantic
and CGDI, 75
caption of, 73–74
geospatial collaborative success factors
and, 82
governance structure, 83
and ICM Community of Practice, 77,
78–79
logic model for, 76–77, 78
OGC compliant web mapping services
relevant to, 79–80
organisational readiness for, 82
progress in establishment of, 75–76
technical architecture for, 79
technical readiness for, 79, 81–82
web mapping application
development, 83–84
map generated by, 81
workshops, 74–76
COIN, see Coastal and Ocean Information
Network (COIN)
Collier, P., 154
Collins, M., 73–85
Commercial marine geographic data service,
52
Commonwealth Fisheries, 24
Community of Practice, GeoConnections
concept of, 75
Conceptual model of thematic and spatial
reference bases, 7–9
Connolly, N., 42
Corbau, C., 87–96
CORINE cartography classification, 122
Corine Land Cover Project, 122
Cottle, R., 337
Coulson, M. G., 154
Courtin, O., 9
Craglia, M., 4, 98
Crober, A. M., 361
CSDI, see Coastal spatial data infrastructure
(CSDI)
Cummins, V., 41–49
Curro, P., 117–125
Custodianship program, 99
Cycladic islands
geoarchaeology during Holocene, 302–303
geotectonic setting of, 299–300
palaeocoastline of, 303
palaeogeographic evolution during
Holocene
data collection, 298
DEMs, 298–299
physical setting of, 297–298

Data
acquisition
geospatial technologies for, 173
methods of, 36
audit, 23
capture, 23
integration, 110–113
Data archiving centres, role of, 62
Database design, 109–110
Data holders, 41
and e-Government initiative, 58
Data models, 23–24
for coastal and marine data, 174
for protected areas management, 174–175
Data-sharing program
for Lagos lagoon management, 38
spatial, see Spatial data-sharing program
David, L. T., 380
Davies, I. M., 241–243
Davis, B. E., 360
Davis, P. E., 360
Day, J. W., 140
Deakin, R., 360
De Fomento, M., 115
Demer, M. N., 207
DEM, see Digital elevation model (DEM)
Denis, J., 4
Dercourt, J., 306
Desconnets, J.-C., 3–15
Descriptor
in graphics mode of geographical Objects,
10
modes for geographical extent in ISO
19115 standard, 6–7
Devoy, R. J. N., 43
DFO GeoPortal, 81
Dickie, I., 342
Digital elevation model (DEM)
comparison of, 136
developments in, 130

Deltic plateau, 297
morphology of, 300–301
sea level drop and, 302
thinner crust of, 300

Cycladic islands
geoarchaeology during Holocene, 302–303
geotectonic setting of, 299–300
palaeocoastline of, 303
palaeogeographic evolution during
Holocene
data collection, 298
DEMs, 298–299
physical setting of, 297–298

Geobeaching, 300
geospatial technologies for, 173
methods of, 36
audit, 23
capture, 23
integration, 110–113
Data archiving centres, role of, 62
Database design, 109–110
Data holders, 41
and e-Government initiative, 58
Data models, 23–24
for coastal and marine data, 174
for protected areas management, 174–175
Data-sharing program
for Lagos lagoon management, 38
spatial, see Spatial data-sharing program
David, L. T., 380
Davies, I. M., 241–243
Davis, B. E., 360
Davis, P. E., 360
Day, J. W., 140
Deakin, R., 360
De Fomento, M., 115
Demer, M. N., 207
DEM, see Digital elevation model (DEM)
Denis, J., 4
Dercourt, J., 306
Desconnets, J.-C., 3–15
Descriptor
in graphics mode of geographical Objects,
10
modes for geographical extent in ISO
19115 standard, 6–7
Devoy, R. J. N., 43
DFO GeoPortal, 81
Dickie, I., 342
Digital elevation model (DEM)
comparison of, 136
developments in, 130

Deltic plateau, 297
morphology of, 300–301
sea level drop and, 302
thinner crust of, 300

Index
for establishing coastal zone boundaries, 142–143
map data over, 167, 180
proximity concept to, applying, 147
Digital marine dataset, 53
Distributed systems, 48
Dolan, R., 190
Dolch, T., 187–195
Doody, J. P., 3, 266
Dornbusch, U., 129–137
Doutsos, T., 327
Doutsos, Th, 300
Douwen, W. J. M., 229
Dublin Core standard, 5
Dubois, D., 308
Dune-beaches system, geoindicators of, 90
Dunes, see Coastal dunes
Dunne, B., 155, 165, 166, 177
Dunne, D., 41
Dwyer, E., 41–49
Dwyer, N., 41, 42, 45

E
Eagan, P. D., 33
ECO-IMAGINE
convened events of, 69–70
objectives of, 66–67, 70
organizations contributed to development of, 67
target audience, 70
working groups, 67–69
Ecotones, 143
Edwards, A. J., 154
Egenhofer, M., 8
Ellis, R. H., 360
Emilia Romagna beaches, dune in, 91, 94, 95
Enell, M., 119
Environmental data, storage, access and processing of, 173–174
Environmental and economic ecosystem processes, interaction between, 360
Environmental impact index, 216
Environmental value, 360
Equilibrium concentration enhancement (ECE) model, 242
Ericson, J. P., 385
ESRI ArcGIS®, 108, 375
Essink, K., 199, 201, 203
Etuán, J., 139–150
European Union (EU), draft directives for marine data, 58–59
EUROSION project, 267, 269

Evmorfopoulou, K., 4

F
Face-to-face communication, 79
Fagade, S. O., 31
Fairfield, J., 360
Farina, M., 347–356
Faust, P., 228
Felleman, J., 267
Fernandes, T. F., 117
Fernandez, L., 251
Ferreira, M., 266
Filipa, S. B. F., 315–324
Findlay, R. H., 119
Fisheries potentials of lagoons, 31
Fishing incidents, Kernel density analysis of, 236
Flemming, N. C., 301
Flooding, 88, 96
and flood management, 387–388
influence on landscape change, 336
analysis using contour method, 339
analysis using GIS packages, 338
analysis using rule-based method, 340
risk in North Norfolk coastline, 336
vulnerability of deltas to, 384
Folke, C., 117
Foredunes role in coastal evolution, 87
Forman, R. T. T., 144
Fornés, A., 360
Forrest, D., 74
Fouache, E., 301
Franklin, F., 266
Franklin, J. F., 140
Froese, R., 367
FRS, see Functional Requirement Study (FRS)
Fuller, R. M., 338
Functionally connected lands
definition, 256
land and sea interaction
legal regimes, 258–260
promotion of, 262
spatial planning, 261–262
Functional Requirement Study (FRS), 247
Fuzzy logic model, coastal hazard risk map using, 310–311

G
Gaki-Papanastassiou, K., 297–303
Game, E. T., 246
Ganges-Brahmaputra-Meghna (GBM) delta, surface geomorphology of, 382–383

Garrett, E., 121

GDB, see Geodatabase (GDB)

GeoConnections program, 75

Geodatabase (GDB)
 for coastal dunes, see National geodatabase for coastal dunes
data storage in, 108
 elements of, 109
 implementation in Emilia Romagna, 349

Geographical extent
 in cartographic mode, 6
 descriptors in ISO 19115 standard, 6–7

Geographical object
 inventory of, 13
 of search, metadata associated with, 11

Geographical reference bases and metadata, interaction between
descriptors in graphics mode, 10
 free client tools, 13–14
 GI inventory tasks, 13
 local geographical specificities, 13
 spatial requests execution, 11–12
 SVG (Scalable Vector Graphics) application, 9
toponyms in text mode, 11

Geographic base data, 37

Geographic Exploration and Mining Services, 45

Geographic information sharing, 266

Geographic information system (GIS), 207, 220
 application to coast and marine environment, 360
 ArcGIS® software, 108–109
 for climate change impact assessment, 389
 coastal, 267
 for coastal defence management and planning, 349–352
database design
 data sets analysis, 110
 prototype tool for oil spills management, 109
 with table relationships, 111
data integration
 cartographic information, 110–111
 groups of tables, 111–112
 satellite data, 112–113
data sets compilation, 109
definition of, 36
environmental information of, 115
geostatistical analysis using, 113–114
 for hydrodynamic modeling, 208
 maritime traffic analysis using
 incident locations, 235
 indirect spatial information, 234–235
 oil spill distribution, 114–115
 for planning aquaculture activity, 121–122
 relational database, 109
 for risk assessment, 375–376
 for salt marsh monitoring, 200–202
 spatial analysis tools of, 376
 spatial data visualization using, 113–114, 175–176
 and sustainable water resources
 master planning efforts, 224–225
 sketch model for, 222
 and TMAP data handling system, 204
 TMAP parameter groups monitoring data storage in, 199–200
 as water assessment tool, 223, 224
 for weedmats monitoring, 153, 155, 159, 161, 163

Geohazards
 coastal erosion, 374
 floods, 375
 rock falls, 374
 soft systems model for management of, 267, 268

Geo-information (GI), 66
 building coastal knowledge and, 68
 coastal resource management and, 68
 management showing human settlements, 375
 technological features of, 69
 waterfront management, 68–69

Georeferencing, 190

Geoscience Australia, 23, 26

Geospatial data in marine/coastal region, 33

Geospatial data providers, 59

Geospatial information, accessibility of, 33–34

Geospatial technologies
 data collection using, 173
 role in marine and coastal management, 173

Geospatial tools in GIS software, 146

Geostatistical analysis, 113–114

Gillespie, R., 73–85

Gillibrand, P. A., 241, 242

Giménez, D. P. Í., 41–49

Ginis, S., 312

GIS clients, 13–14

GIS data
 on blue mussel beds, 203, 204
Index

GIS database
- overlapping in, 281–282
- scenario analysis using, 344
- trilateral intertidal mussel beds, 203
- trilateral salt marsh, 201

GIS-hydrodynamic integrated system
- application for EIA, 215–216
- conceptual diagram of, 210
- data display, 211
- data interpolation methods, 212
 - tempo-spatial and profile-spatial, 212–213
- development of, 210
- dynamic display, 212–213
- mesh grid configuration of, 214
- post-processor of, 214–215
- pre-processor of, 214
- water depth, Pearl river estuary, 215

GIS imagery database
- data acquisition and integration, 279
- data stored in, 278
- image analysis, 282–283
- visual analysis, 279–282

GIS, see Geographic information system (GIS)

GIS software, 173–174
Gorman, M., 178
Gosar, L., 255–263
Gourlay, M. R., 277
Gournelos, Th, 305–314, 325–331
Gowen, R. J., 119, 242
Gragnaniello, S., 347–356
Grantham, H. S., 246
Greathead, C., 241–243
Gregr, E. J., 229
Griggs, G. B., 188
Gruber, T., 8
Gubbins, M. J., 241–243
Gunther, O., 266

H
Hapke, C. J., 188
Hargrave, B. T., 119
Harries, J., 266
Harrison, M., 52
Harris, R., 266
Heidmann, C., 13
Heinke, G. W., 209

Hellweger, F. L., 146
Henocque, Y., 4, 361
Hernandez, A., 140

High-resolution aerial photography of shoreline changes, 189–191, 193, 195
Hildebrand, L., 227
Hilliard, R. C., 231, 234
Holland, G., 140
Holocene delta plains, 380–381
Holwell, S., 267
Hoozemans, F. M. J., 379
Horton, F. W., 267
Hulme, M., 338

Human resources program, 99

Hydrodynamic model, GIS integrated with application for EIA, 215–216
- mesh grid configuration of, 214
- post-processor of, 214–215
- pre-processor of, 214
- using interface integration method, 213

Hydrogeological basins, 143
Hydrogeological flow networks, 143

I
Ibe, A. C., 29
ICM programme
- governance, planning and design phase of, 68
- waterfront management, 68–69

ICM, see Integrated Coastal Management (ICM)
ICOIN (Inland Waters, Coastal and Ocean Information Network), 74

ICZMAP project, 174
ICZM, see Integrated Coastal Zone Management (ICZM)
Idroser, 91, 348
Indonesia
- natural potential of, 97
- spatial data infrastructure of, see Indonesian Spatial Data Infrastructure (ISDI)

Indonesian Spatial Data Infrastructure (ISDI)
- components of, 98–99
- evaluation of, 102
- objectives of, 98
- See also Spatial data infrastructure (SDI)

Information exchange, metadata standard for, 5
Information Science, 267
Information system initiatives, 27
Information-system (IS) architecture, 4–5
Information transfer for coastal partnerships, 270–271
Infrastructure for Spatial Information in Europe (INSPIRE), 58
draft directive for creation of, 58
INSPIRE Directive 2007/03/14 EC, 266
metadata standards of, 47–48
INSPIRE Directive 2007/03/14 EC, 266
INSPIRE, see Infrastructure for Spatial Information in Europe (INSPIRE)
Integrated Coastal Management (ICM)
COINAtlantic initiative for, see COINAtlantic
Community of Practice for, 77–79
data collection, 68
implementation of, 266
program for large areas, 140
regional planning approach to, 140–141
Integrated Coastal Zone Management (ICZM), 65
problematics, 4
role of GIS in, 360
SYSCOLAG pluridisciplinary research programme on, see SYSCOLAG (COastal and LAGoonal SYStems) pluridisciplinary research programme
Integrated Coastal Zone Mapping data research project, 52–53
Integrated spatial information, factoring supporting need for, 19
Interactive web data delivery system, 45
Inter-Agency Committee on Marine Science and Technology (IACMST), 54–55
Internet, 177
Ireland, standards for data in, 46–47
Irish coastal zone
administrative organisations responsible for, 43
MIDA for, see Marine Irish Digital Atlas (MIDA)
Irish Spatial Data Exchange (ISDE), 48
Irish Spatial Data Infrastructure (ISDI), 47–48
Irrawaddy delta, surface geomorphology of, 383–384
ISDE, see Irish Spatial Data Exchange (ISDE)
ISDI, see Irish Spatial Data Infrastructure (ISDI)
Islam, M. S., 229
Island of Sylt
northern part of, 188–189
aerial photographs of, 189–191
comparison between west and, 192
currents and water levels at, 194
shoreline changes in, 190–192, 195
spatial development of, 191–192
sand replenishment carried out on, 193
tidal channels, 189
ISO 19115 standard, 13, 46
descriptors of geographical extent in, 6–7, 10
headings of, 5–6
Italy
coastal dunes, human impact on, 88
coastal management and planning in, 347–348
J
Janssen, R., 340, 343
Jenks, G. F., 365
Jiang, Y., 213
Jiménez, A. C., 139–150
Jiménez, J. A., 359–368, 374
Johnson, R., 82
Jones, A. R., 360, 361
Jongman, R. H. G., 367
Jorge, I., 139–150
K
Kapetsky, J. M., 121
Kapetsky, J. M. C. D., 122
Katranidis, S., 120
Kautsky, N., 117
Kay, D., 5
Kay, J. J., 361
Kay, R., 139
Kelleher, G., 245
Kelly, L. A., 119
Kelly, T. C., 155
Kempton, W., 140
Kenchington, R., 245
Kiefer, D. A., 363
Kiefer, R. W., 146
King, O. H., 360
King, S. D., 173, 178, 179
Kirk, R. M., 130
Klir, G. J., 308
Knecht, R. W., 228
Kokkalas, S., 300
L
Lagos lagoon
activities within
fishing, 31
refuse disposal, 32
sand mining, 31–32
aggregation of information pertaining, 33–34
bathymetric survey of, 37
characteristics of, 29
classification of, 30
geomorphology of, 30
impact of population growth on, 30–31
map of, 31
metadata, 34–35
pollution of, 32
salinity of, 30
SDI for managing, see Spatial data infrastructure (SDI)
vegetation of, 30
Lambeck, K., 294
La Monica, G. B., 88
Landesregierung, S. -H., 193, 195
Landini, B., 88
Land and sea interaction
legal regimes, 258–260
promotion of, 262
spatial planning, 261–262
Land use
changes in Acheloos delta
aerial photos and satellite images, 330
daeta front changes, 331
GIS for studying, 331
mapping of subaerial delta area, 328–329
methodology for assessing, 327–328
pro-delta area, 330–331
planning, 256
sea and, see Sea and land uses
Languedoc-Roussillon (LR) region of France
ICZM in, see Integrated Coastal Zone Management (ICZM)
lagoons in, 13
Leafe, R., 336
LeBlanc, C., 73–85
Ledoux, L., 336, 342
Legendre, L., 367
Legendre, P., 367
Lehfeldt, R., 13
Lewis, A., 155
Lewis, L. J., 251
Liakouris, D., 327
Libourel, T., 3–15
Li, C., 384
Lillesand, T. M., 146
Lin, D., 233
Lindeboom, H., 139
Li, R., 360

Littoral ecosystems
development and evolution of, 371
dynamics, 374
Souther Veneto regions, 88
Littoral sediment transport, 317
Littoral state in Northern Adriatic, 94–95
Li, Y. S., 108
Lobben, A., 181
“Locational Guidelines for the Authorisation of Marine Fish Farms in ScottishWaters,” 241
Longhorn, R. A., 266, 360
Longley, P., 176, 223
Loos, S. A., 245–254
Loubersac, L., 3–15
Lucas, A., 208
Lueerssen, G., 197–205
Luijten, J. C., 221
Lu, Q., 213
Lykousis, V., 300

M
Maccarrone, V., 117–126
Macro-algal weedmat monitoring,
methodology for
aerial photography, 154–155, 157, 159, 164–165
objectives of, 155–157, 161
photo-interpretation key, 159–161
practical constraints in, 161–162
spectral profiles, 161
in Ythan Estuary, 154–155
Macro-tidal beaches
classification of, 277–278
issue in study of, 277
Map servers, 13
Marakis, G., 299
Marina
hydrographic surveys prior to construction of, 316
impact in nearshore hydrodynamics, 315
beach planform evolution, 320–321
nearshore wave climate changes, 319–320
offshore wave regime, 317–319
Marine and Coastal Resources Management Project (MCRMP)
objectives of, 99
technical working groups for development of, 99
problems faced by, 102
results of, 101
tasks of, 100–101
Marine data
 awareness of, 58
 and information partnership program
 benefits, 62
 challenges to, 62–63
 objectives, 61
 outputs, 61–62
 integration, 174
 management approach, unified, 55
 role in decision making, 59
Marine Data and Information Partnership
 (MDIP), 54–55
Marine Data Online, 45
Marine fish farms
 carbon deposition model, 242–243
 enhancement of dissolved inorganic
 nitrogen from, 242
 impact on marine environment, 243
 See also Sea fish-farming
Marine geospatial data infrastructure (MGDI)
 development of, 75
 technical architecture of, 80
Marine hydrodynamics, 146
Marine Irish Digital Atlas (MIDA), 42
 base data acquisition problems faced in, 43
 development of, 45
 main atlas page of, 46
Marine legislation, 19
Marine planning, regional, 21
Marine protected area (MPA)
 classification of, 245–246
 definition of, 245
 Marxan for zoning of, see Marxan
 zoning of, see Zoning
Marine Resource Management (MRM) degree
 programme, 172, 184
Marine spatial data
 cataloguing, 43
 standards for, 46–48
Marine stewardship, 58
Maritime regulation, developments in, 228
Maritime traffic
 analysis using GIS
 incident locations, 235
 indirect spatial information, 234–235
 benefits and risks of, 228–229
 fishing versus shipping, 233–234
 modelling of, 228
 continuous vessels tracks, 231
 de-densification of paths, 232
 feasible vessel destination area,
 231–232
 integration of data sets, 230–231
 recreational boating, 232
 spatial-based analysis of, 234–235
 of spatial distribution, 233
Marxan
 challenges associated with, 246, 251
 functionality of, 252
 settings and configurations testing, 248,
 249
 settings vs. zoning user needs, 251–252
Marxan Good Practices Handbook, 246–247
Mather, P. M., 146
Mathers, S., 382
Matlab algorithm, 281–282
Maurel, P., 3–15
Mazouni, N., 3–15
McCormack, B., 41, 46, 47
McLean, R. F., 379
MCRM, see Marine and Coastal Resources
 Management Project (MCRM)
MDIP, see Marine Data and Information
 Partnership (MDIP)
Meaden, G. J., 121
Meganissi island
 coastal hazard risk of, 308,
 310–311
 coastal zone, 305
 geological map of, 311
 geomorphological evolution of coastal
 zone of, 306
 derivative maps, 308
 fuzzy inference mechanism, 308
 hazard risk map, 308
 structural control of, 307, 310
 topographical data collection for,
 307–308
 physical setting, 305–306
 topography of, 310
Mercier, J. L., 299
Metadata
 accessing, 12
 clearinghouse, 35
 functionality of, 34
 generation for UK coastal zone, 267, 269
 quality, 44
Metadata services
 geographical objects, 12
 reference bases to, 7–9
 for sharing informational resources, 4
Metadata standard
 of ISDI and INSPIRE, 47–48
ISO 19115 standard
descriptors of geographical extent in, 6–7
headings of, 5–6
Metamorphic events, 299
Metaxas, D. A., 289
Micro-tidal wave-dominated beach systems, 277
MIDA, see Marine Irish Digital Atlas (MIDA)
Midlen, A., 121
Millard, K., 266, 267
Miller, M., 112
Milliman, J. D., 387
Mills, P., 42
Miment, R. P., 360
Moore, L. J., 188
Morang, A., 283
Morelli, C., 287
Morgan, C., 188
Morphodynamic classification, 277–278
Morphological analysis, 281
Moses, C., 129–137
MOTIVE project, 175
MPA, see Marine protected area (MPA)
Multicriteria request, textual and cartographical
responses to, 12
Multimedia cartography and GIS, spatial data
visualisation using
Bryce 5 software, 181
interactive hypermedia animation, 180–181
virtual environments, 182–183
Multimedia technology, 175
Multiple use MPAs, zoning in, 246
Munday, B., 117
Mytilus edulis, 202

N
Nairn, A. D., 17–27
Nath, S. S., 121
National geodatabase for coastal dunes
composite core data collection, 89, 91
design of, 89
low sandy beaches
between Adige mouth and Porto Caleri
site, 92–93
in Emilia-Romagna region and Veneto
region, 91–92
objective of, 88
NATURE-GIS project, 175
Nearshore wave climate changes, 319–320
Ng, S. M. N., 207–216
Ng, S. M. Y., 209, 210, 211, 213, 215
Nicholls, R. J., 379, 386, 388
Nicol, A., 154, 166
Nigeria, 219
population projections, 220–221
Nigerian master planning efforts, water
resources, 224–225
Northern Sylt, see Island of Sylt
North Norfolk coastline
characterisation of, 336–337
coastal management policies, 337
Nummendal, D., 30
Nutralaya, P., 388
Nwilo, P. C., 29–39

O
Oceanic parameters, spatial distribution of,
113–114
“Oceans Action Plan”, 228
“Oceans Act” legislation, 228
“Oceans Portal”, 27
Ocean surges in Lagos lagoon, 32
O’Dea, E., 41–49
O’Dea, L., 42, 43, 44
OGC, see Open GIS Consortium (OGC)
OGC specifications
compliant web mapping services for
COINAtlantic, 79–81
interoperability with, 15
recommendations of, 4
specifications and SVG format, 9
web map, 25
Web Services, 47
OGC Web Services, 47
Okeke, I. C., 219–226
Oliveira, R., 317
Olsen, S. B., 361
Ongkosongo, O. S. R., 139
Oni, O. O., 29–39
Onojeghuo, A. O., 29–39
Ontological relationships, 9
Onuoha, A., 31
Open GIS Consortium (OGC)
recommendations of, 4
specifications, see OGC specifications
O Riain, G., 42
Orr, G., 158, 165, 177
Osanwuta, D. A., 29–39
Osborne, M. J., 51–55
O’Sullivan, A. J., 121
Owen, H., 75, 119, 242, 359
Oyebande, L., 223, 224
Index

Pais-Barbosa, J., 275–283
Palaeogeographic evolution of coastal zone of Paros Island, 294 of Cycladic islands during Holocene data collection, 298 DEMs, 298–299
Panagos, A. G., 327, 328
Papanikolaou, D. J., 287, 299 Papazachos, B. C., 287
Parkes, D., 343
Parson, L., 283
Patrikalakis, N. M., 13
Pauly, D., 367

R
Raffaelli, D. G., 154, 155, 161, 162, 163, 165, 166, 177, 178 Rankey, E. C., 188 Redding, T., 121 Red River delta, 382 Reference bases, thematic and spatial, 7–9Regionalization benefits of, 141 to ICZM, 140–141
Regional marine planning, 21
Remote sensing, 36, 115, 143
 airborne and spaceborne, 173, 179
 of macro-algal weedmats, 154, 155
 satellite, 141
Research design, 247
Resource indexation, keywords in, 7–8
Rhind, D. W., 36
Ricketts, P. J., 227, 360
Riddel, K., 300
Riley, C., 359
Rivera-Arriaga, E., 140
River drainage network, 289
Robinson, D. A., 129–137
Robinson, L. A., 130
Roccatagliata, E., 65–71
Rocky coasts, 291
Rodríguez, I., 107–116, 371–377
Rosenthal, W., 120
Rossi, Y., 385–389
Salt marshes
 monitoring using GIS, 201
 in Netherlands and Germany, 201
Sand mining, 31–32
Sand replenishment
 impact on natural system, 194
 at western shoreline, 193, 195
Sandy beaches
 between Adige mouth and Porto Caleri site, 92–93
 bathing seasonal activities, 90
 in Emilia-Romagna region and Veneto region, 91–92
Sardà, R., 359–368
Sayers, P., 266
Schwarze, J., 300
SDI, see Spatial data infrastructure (SDI)
Sea fish-farming
 activity planning
directives, 121
 minimum distances to be observed by off-shore plants, 120
 geographic information systems for planning, 121–122
 impact on environment, 119–120
Sea and land uses
 legal regime term, 257–258
 in narrow coastal belt, 256
 water right and legal acts, 258
Sea-level rise
 animation techniques to model, 182
 coastal zone vulnerability to, 294
 within Holocene, 295
 mapping land inundation from, 338–340
 rates of, 384, 389
Sea level variability in Aegean Sea, 290
Sea lochs, box model for assessing, 242–243
SeaZone
 cartographic differences identified by, 53
 digital marine dataset, 53
 joined marine geographic information created by, 54
 objectives of, 52
Sediment mixing in lagoon, 30
SEP, see Severn Estuary Partnership (SEP)
Severn Estuary Partnership (SEP), 271
Shahrabi, J., 234, 235
Shamsi, U. M., 213
Shepherd, D., 342
Sherin, A. G., 73–85
Shoreline evolution, 280, 316
 assessment methodology
 beach planform evolution, 320–321
 nearshore wave climate changes, 319–320
 offshore wave regime, 317–319
 from different sources, 351
 at east shore of Island of Sylt, 195
 at northern part of Island of Sylt, 190–192
Shore platform erosion, 129
 investigation in chalk coast of Southeast England
 aerial photographs, 131–132
 changes in platform elevation, 135–136
 cliffs and platforms, 131
 data control points, 134
 DEMs, 132–133
 EADEM, 133
 photogrammetric analysis, 132
 methods for measuring
 air photographs, 131
 surveying techniques, 130
Short, A. D., 276, 277, 278, 283
Shuttle Radar Topography Mission (SRTM)
Asian megadeltas investigation using, 382–385
elevation data collection by, 143
Sicily, aquaculture in
development of, 118
impact of, 119–120
minimum distances to be observed for, 120
Silverman, B. W., 235
Skarsoulis, E. K., 290, 291
Small, C., 386
Smits, P. C., 4
Softcopy photogrammetry
developments in, 130
elevation points, shore platforms, 133, 136
See also Shore platform erosion
Sorensen, J., 227
Souther Veneto regions
dunes in, 91
littoral along beaches of, 88
Spatial analysis of ArcGIS, 113–114
Spatial boundaries, 23
Spatial data
acquisition, 36–37, 42
inTEGRation, 174
sharing, 37–38
visualisation using multimedia cartography and GIS
Bryce 5 software, 181
interactive hypermedia animation, 180–181
virtual environments, 182–183
Spatial data infrastructure (SDI)
benefits of, 33
clearinghouse, 35
COINAtlantic, see COINAtlantic
“common ground” identification by, 78
data sources, 33
functionality of, 32–33
geospatial information accessibility in, 33–34
metadata, 34–35
policies and standards, 35–36
recommendations for building national, 103
spatial data
acquisition, 36–37
sharing, 37–38
Spatial data-sharing program
distribution policy for, 38
implementation of recommendations for, 39
objective of, 37
Spatial information
ISO 19115 standard for, see ISO 19115
standard
management of, 14
Spatial planning for coastal aquaculture, 241
Spatial reference bases
conceptual model of, spatial keywords in, 7–8
standards used in, 9
Spatial relationships, 9
Spatial requests, execution of, 11–12
Sporadic waypoints, 231
SRTM, see Shuttle Radar Topography Mission (SRTM)
Stachowicz, S., 42
Stammers, R. L., 135
Stanbury, K. B., 360
Standardization program, 98
Standards
for data and metadata in Ireland, 46–47
geographic information related, 36
ISO 19115, see ISO 19115 standard
Starr, R. M., 360
Steinman, F., 255–263
Stephenson, W. J., 130
Stewart, R. R., 246
Stojanovic, T. A., 265–271
Storm surges in Lagos lagoon, 32
Stove, G. C., 158, 177
Submarine fault tectonism, 300
Sustainable development, 223–224
See also Geographic information system (GIS)
Suwahyuono, 97–103
SVG (Scalable Vector Graphics) application, 9
Sylt, see Island of Sylt
SYSCOLAG (COastal and LAGOonal SYStems) pluridisciplinary research programme, 3
Syvitski, J. P. M., 385, 387, 389

T
Tanabe, S., 381
Tanaka, M., 229
Ta, T. K. O., 382
Taveira Pinto, F., 275–283
Tavera-Torres, C., 234
Technical working groups (TWG), 99
problems faced by, 102
results of, 101
tasks of, 100–101
Tempo-spatial interpolation, 212, 213
Thanh, T. D., 388
Thematic reference bases
 conceptual model of, 8–9
 standards used for, 9
Theocharatos, G. A., 289, 290
Thiede, J., 188, 189, 194
Thieler, E. R., 190
Tidal currents
 in Cascais bay, 317
 in Lagos lagoon, 30
 in northern shore of Sylt, 193
Tidal system, 188
Timor Sea, overlapping interests and treaty boundaries in, 25
Tirel, C., 300, 301
TMAP data handling system and GIS, 204
TMAP, see Trilateral Monitoring and Assessment Program (TMAP)
Topography, 142
Toponyms in text mode, 11
Townend, I. H., 360
Traffic, maritime, see Maritime traffic
Travaglia, C., 121
Trenhaile, A. S., 129
Trigueros, J., 108
Trilateral cooperation, 198
Trilateral Monitoring and Assessment Program (TMAP)
 and GIS data, 199–200
 monitoring parameters of, 199
 role in trilateral cooperation, 198–199
Tsani, I. K., 208
Tselepidaki, I. G., 289, 290
Tsimpis, M., 290
Tso, B., 146
Tsontos, V. M., 363
Tsyban, A., 379
Tucker, C. J., 143
Tulett, D., 241–243
Turner, I. L., 190, 191
Turner, R. K., 342, 361
Turrell, W. R., 242
TWG, see Technical working groups (TWG)

U
UCD, see User centered design (UCD)
Uda, T., 32
Ugwumba, A. O., 31
UK
 coastal zone, metadata generation for, 267, 269
 marine geospatial data potential in, 59

marine spatial data infrastructure
 applications, 60
 benefits, 60
 functionality, 59–60
 implementation, 60–61
 marine stewardship policy, 58
UK GEMINI Standard, 267
Umitsu, M., 383
User centered design (UCD), 84

W
Vafeidis, A. T., 379
Valavanis, V. D., 146
Vallega, A., 360
Valpreda, E., 87–96, 347–356
Veloso Gomes, F., 275–282, 278
Veneto region, dune in, 91
Villa, F., 246, 251
Villalobos, G., 140
Visualization
 data, 174, 175
 tools/techniques
 animation, 176
 GIS, 175–176
 software, 174
 See also Coastal landscape visualization
Vott, A., 328

Wadden Sea, 189
 blue mussel beds in, see Blue mussel beds
 tidal flats of, 188
 trilateral cooperation area, 198
Wadden Sea Plan, 198
 for intertidal blue mussel beds, 202
 for salt marshes, 200
Wai, O. W. H., 207–216
Wassmann, R., 385
Waterfront management and geo-information, 68–69
Water resources management and GIS, 221
Water rights, 258
Watershed concept, 143
Watling, L., 119
Watts, P. A. G., 360
Way, S., 154, 155, 161, 166
Web-based geographic information systems (GIS)
 proprietary software for, 46
 for spatial data sharing, 42
 technological standards for, 47
Webb, C. O., 301
Web catalogue systems, 45
Web GIS, see Web-based geographic information systems (GIS)

Web mapping architecture
for AMSIS, 25–26
functionality requirement for
data download, 26
mapping, 25

Web mapping services (WMS), 84

Web mapping software, 46

Weedmat monitoring, methodology for,
see Macro-algal weedmat monitoring, methodology for

Welch, R., 360
Wenger, E., 77
Wiersma, J., 88
Wildsmith, B., 120
Williamson, I., 36
Williams, R. B. G., 130, 131

Wind field of Paros island, 289
Wise, S. M., 176

WMS, see Web mapping services (WMS)
Wohlenberg, E., 194
Woodroffe, C. D., 381
Wootton, D., 231, 234
Wright, D. J., 24
Wright, L. D., 277, 283
Wu, R. S. S., 119
Wu, Y., 232

X
Xu, Z. H., 207–216

Y
Yager, R. R., 308
Yáñez-Arancibia, A., 140
Young, D. R., 154, 155, 158, 164, 165
Ythan Estuary
baseline database for, 166
benthic macro-algae in, 154–155
datasets for, 177
future studies of, 165–166
location of, 177–178
map of, 156
Sands of Forvie, 178
sediment map of, 159
weedmats in
spatial distribution and location of, 163
See also Macro-algal weedmat monitoring, methodology for

YthanView project
aim of, 179
development of, 172, 184
geospatial datasets
collection, 179–180
visualization using multimedia cartography and GIS, 180–184

Yuan, B., 308

Yucatan Peninsula
coastal management regions for, 149
digital elevation map of, 147

Z
Zacharias, M. A., 229
Zadeh, L. A., 308
Zalasiewicz, J., 382
Zeng, T. Q., 360, 361
Zimmermann, H. J., 308
Zoning
development, 249
GIS-based decision support tools for, 247
in marine environment, 246
MPA, 248
testing methods for developing zones in, 248–251
user needs vs. Marxan settings, 251–252