Index

A
Acid/base properties
acidic and basic probes, 135–139
adsorption enthalpies, 139–140
adsorption experiments, 129–130
calorimetric data, 134
differential microcalorimetry, 134
microcalorimetric technique, 140
NH₃-stereotactic desorption profile, 116, 118
NH₃-TPD technique, 112
QE-TPDA, 117
STPD measurements, 116
thermodynamic parameters, 112
ZSM-5 and Y Zeolites
NH₃-stereotactic desorption profile, 116, 118
coking influence, 159–161
other cations, 156–159
Si/Al ratio and dealumination, 150–156

Acid-catalysed rearrangements
Beckmann rearrangement
catalyst stability and selectivity, 302
epoxide isomerisation
\(\alpha \)-pinene oxide (PinOx) products, 299–300
protonic acid catalysts, steps, 298–300
Fries rearrangement
gas-phase reactions, 303–304
hydroxyacetophenones (HAP), 302–303
liquid-phase reactions, 304–305
skeletal isomerisation, olefins
autocatalytic mechanism, n-butene, 294
bimolecular mechanism, n-butene, 294–295
deactivation rate, 298
formation mechanisms, 294
monomolecular mechanism, n-butene, 296
pore structure, 294
reaction pathway, α-pinene, 296–297
Acidic and basic probe molecules
acetonitrile, 137
carboxylic acids, 139
CO₂ adsorption, 137
differential heat adsorption, 136
Lewis and Brönsted acid sites, 137
Adsorbate self-diffusion, 235
Adsorption calorimetry
limitations, 126–128
TPD technique
adsorption calorimetry measurements, 120–121
Brönsted acid sites, 122
cal-ad method, 125, 126
calorimetric technique, 119
Clausius-Clapeyron equation, 119
flow microcalorimetry (FMC), 125
pulse flow method, 124
static adsorption method, 124
surface acid sites, 125, 126
temperature-programmed methods, 120
thermokinetic parameter, 123
Amines synthesis
aliphatic amines
methylamines (MA), 305–306
reactions, 305–306
reaction temperatures, 307
pyridine synthesis heterocyclic ring
formation
catalyst deactivation, 309
formation, balance equations, 307–308
transformation products yields, comparison, 308
Ammonia adsorption microcalorimetry, 157, 158
Aromatics electrophilic substitution
acylation of
anisole, 283, 285
batch reactor, 283–284
continental process vs. novel process, 285
reaction mechanism, 282–283
alkylation of
44´-DIBPH selective synthesis, 281–282
2,6-DIPN selective synthesis, 281–282
2,6-DMN selective synthesis, 279–281
halogenation of
conditions, 291
exchanged cations influence, 291–292
nuclear-chlorinated aromatics, 290
reaction mechanism, 290
regioselectivity, 291–292
solvent influence, 292
mechanism, 277
nitration of
aromatic acylation, 288
nitration rate/factors, 286
2-nitrotoluene (2NT) conversion, 289
reaction mechanism, 286
selectivity, 287
Attenuation total reflection (ATR), 198

B
Baeyer-Villiger oxidation, 317–318
Beckmann rearrangement
catalyst stability and selectivity, 302
cyclohexanone oxime (COX), 300–301
e-caprolactam (CL), 300–301
mechanism, 301
Bragg’s law, 6
Brönsted acid sites
basic sites, 208–209
vs. Lewis acid sites
acid strength, 207–208
originatation, 207
probe molecules, 207–208
Brönsted acid sites
H/D exchange rate, 94–95
¹H MAS spectra, 93–94
OH groups, 91–92
probe molecules, 91–92
pyridinium ions (PyrH⁺), 92–93
trimethylphosphine (TMP), 92
C
Cal-ad method, 125, 126
Cascade one-pot reactions, bifunctional catalysts
bifunctional molecular sieves, 336
hydrogenation and acid/basic sites
aromatic terminal epoxide, 336–337
hydrogenating sites, 337–338
menthol synthesis, 337
isopulegol epoxide, 335–336
multifunctional molecular sieves and acid/basic sites
catalytic centres, 339
para-methoxybenzaldehyde conversion, 340
oxidation and acid/basic sites
bifunctional features, 338–339
2,5-dimethylfurans conversion, 338–339
linalool conversion, 338–339
Catalytic reaction mechanisms
in situ studies
CO₂ hydrogenation, 214–216
methanol oxidation, 216–217
NOₓ reduction, 212–214
spectroscopic and and catalytic measurements, 212
C₁ building blocks
methane dehydroaromatization
active sites, 254
carbonaceous deposits, 256–257
direct non-oxidative transformation, 251–252
effective activation and catalytic conversion, 251–252
hydrogen production, 257
Mo/H-ZSM-5 catalyst, 255
Pd catalytic membrane technology, 257
reaction mechanism, 253
Re/H-MCM-22 catalyst, 256
surface dealumination, 256
transformation steps, 254
methanol to hydrocarbons (MTHC) background, 258–259
hydrocarbon pool mechanism, 260–261
kinetic model, 262
methanol to gasoline (MTG), 267–268
methanol to olefins (MTO), 262–266
methanol to propene (MTP), 268–269
Mobil’s olefin-to-gasoline and distillate process (MOGD), 270–272
reaction steps, 259–260
TIGAS process, 268–270
C–H bond oxidation, 324–327
Chlorocyclohexane, 211–212
Citronellal cyclisation, 331–332
Clausius-Clapeyron equation, 119
Cluster modeling approach. See also
Quantum chemical methods
chemical bonds, 247
chemical process analysis, 244
dispersive interactions, 245
perturbations, 246
spectroscopic data, 246
CO adsorption microcalorimetry, 158–159
CO₂ hydrogenation
IR band assignments, 215
reaction mechanism, 215–216
Commodities and fine chemicals synthesis
acid-catalysed rearrangements
Beckmann rearrangement, 300–302
epoxide isomerisation, 298–300
Fries rearrangement, 302–305
olefins rearrangement, 294–298
amines synthesis
aliphatic amines, 305–307
pyridine synthesis heterocyclic ring formation, 307–309
aromatics electrophilic substitution
acylation of, 282–285
alkylation of, 278–282
halogenation of, 290–293
mechanism, 277
nitration of, 285–290
cascade one-pot reactions, bifunctional catalysts
bifunctional molecular sieves, 336
hydrogenation and acid/basic sites, 336–338
isopulegol epoxide, 335–336
multifunctional molecular sieves and acid/basic sites, 339–340
oxidation and acid/basic sites, 338–339
Diels-Alder cycloadditions
acidic molecular sieve, 309–310
cyclopentadiene and cis-cyclooctene, 310–311
immobilisation, 311–312
isoprene and methyl acrylate, 310–311
factors, applicability, 276
practical and fundamental reasons, 276
redox reactions
alcohols oxidation, 328–330
ammoniation, 322–323
C–H bond oxidation, 324–327
chiral palladium complex, 313
epoxidation, 319–322
oxidation over redox molecular sieves, 314–319
synthetic pathways, 312–314
stereoselective reactions
diastereoselective synthesis catalysts, 331–332
enantioselective synthesis, catalysts, 333–335
Computational simulation techniques
categories, 223–224
molecular dynamics simulations
applications, 235–237
methodology, 232–235
Monte Carlo simulations
applications, 230–232
methodology, 228–230
quantum chemical methods
applications, 242–247
methodology, 237–242
static lattice methods
applications, 226–228
methodology, 224–226
Configuration interactions (CI) method, 239
Coupled cluster (CC) method, 239
Crystallite size, power diffraction
Bragg’s law, 31–32
Gaussian functions, 35
Lorentzian functions, 34
MTT-type zeolites, 37–38
N parallel planes, 32
plot dependence, 33–34
powder diffraction patterns, 35–36
scanning electron microscopy images, 36–37
scattering radiation, 33
Scherrer equation, 31

D
Dehydration and rehydration, 210
Density functional theory (DFT)
effective core potential (ECP), 241
local density approximation (LDA), 240
N-particle system energy, 239–240
Diels-Alder cycloadditions
acidic molecular sieve, 309–310
cyclopentadiene and cis-cyclooctene, 310–311
immobilisation, 311–312
isoprene and methyl acrylate, 310–311
Diffuse reflectance technique, 198
Diffuse scattering factors, power diffraction
ABAB type, 59
CIT-1 and SSZ-33, 61
hypothetical intergrowth structure, 60–61
one-dimensional disorder, 57
reciprocal space, 57
structure factor, 58
Diffusion. See Molecular dynamics (MD) simulations
Digital imaging systems, 173
4, 4’-Diisopropylbiphenyl selective synthesis, 281–282
2,6-Diisopropynaphthalene selective synthesis, 281–282
2,6-Dimethyl naphthalene (2,6-DMN) selective synthesis
Friedel-Crafts methylation and transmethylation, 279
isomerisation, methyl shift, 281
naphthalene skeleton formation, 279

E
Effective core potential (ECP), 241
Electron energy loss spectrometry (EELS)
vs. EDS, 188
regions, 188
semi-qualitative analysis, 189
spectral edges, 189
Electronic structure. See also Quantum chemical methods
 cluster approach, 241
 configuration interactions (CI) methods, 239
 coupled cluster (CC) methods, 239
density functional theory (DFT)
effective core potential (ECP), 241
local density approximation (LDA), 240
 \(N \)-particle system energy, 239–240
Hartree-Fock (HF) methods, 238–239
quantum chemical embedding schemes, 241–242
Electron microscopy and imaging
 acronyms, 171
characterization studies, 170
digital imaging systems, 173
electron energy loss spectrometry (EELS), 188–189
energy dispersive spectrometry (EDS), 185–188
optical microscope, 172
scanning electron microscopy (SEM)
evolution, 173
schematic view, 174
secondary electron imaging (SEI), 177–179
zeolite sample preparation methods, 176–177
transmission electron microscopy (TEM)
 characterization imaging method, 181–185
improvements, 172
zeolite sample preparation methods, 179–181
 zeolite morphologies, 169
Electrophilic substitution. See Aromatics
electrophilic substitution
Energy dispersive spectrometry (EDS)
 background, 175
characteristic X-ray, 185
quantitative analysis, 186–187
 TEMand STEM analyses, 187–188
ultramicrotomy sample preparation technique, 186
Ewald sphere, 6–8

F
 Faujasite morphology, 179
 Fixed-bed MTG process, 267–268
 Flow microcalorimetry (FMC), 125
 Friedel-Crafts methylation, 279
 Fries rearrangement, acid-catalysed
gas-phase reactions, 303–304
hydroxyacetophenones (HAP), 302–303
liquid-phase reactions, 304–305

G
 Gas-to-olefins (GTO), 266
 Grand-canonical ensemble, 230

H
 Hartree-Fock (HF) methods, 238–239
 High resolution TEM (HRTEM), 182

I
 Infrared and Raman spectroscopy
 adsorbed species
 adsorbed water, 210
conformational molecules, 211–212
\(\pi \)-complex molecules, 210–211
van der Waals interactions, 209
basic sites, 208–209
Brönsted vs. Lewis acid sites
 acid strength, 207–208
originatation, 207
probe molecules, 207–208
catalytic reaction mechanisms
 in situ studies, 212–217
 spectroscopic and and catalytic measurements, 212
framework vibrations
 IR band assignments, 200
isomorphous substitution, 202
perturbation, 202–203
Si/Al range, 201
zeolite formation, 200–201
surface OH groups
 acidic OH groups, 205
band position affecting factors, 205
FCC catalyst, 204
IR band assignments, 203, 205
originatation, 203
Infrared spectroscopy (IR)
categories, 198
sampling techniques, 198–199

K
KBr wafer technique, 198
Kinetic MC (KMC)
approach, 234–235
simulations, 236–237

L
Lattice energy (E_{LAT}), 224–225
Lewis acid sites and base sites, 95–96
Lewis and Brønsted acid sites, 137
Ligand-metal charge transfer (LMCT) absorption, 216
Li-promoted, zeolite-supported Rh catalysts, 214
Lorentz-polarization factor crystallites, 11
Ewald sphere, 10
low-angle peaks, 12–13
polarization component, 9
powder ring distribution, 12
random oriented powder, 11
reciprocal lattice points, 10
single crystal factor, 12
Lowenstein’s rule, 200
Lurgi’s process flow diagram, 269

M
Magic angle spinning (MAS) technique
gas bearing systems, 72
gravity frequency, 73
1H MAS
heterogeneous catalyzed reactions, 87–88
H-form ferrierites (H-FER), 88, 90
hydroxyl groups, 88–89
SiOHAl groups, 90
homogeneous interactions, 73
6Li, 7Li and 133Cs MAS, 85–86
narrowing effects, 73–74
nuclear interactions, 71–72
29Si MAS, 78–82
Markovian master equations, 235
MC algorithm, 228

Methane dehydroaromatization, C$_1$ building blocks
non-oxidative conditions
direct transformation, 251–252
hydrogen production, 257
Pd catalytic membrane technology, 257
reaction conditions, 256
oxidative conditions, 251
Methanol oxidation
IR band assignments, 216
LMCT absorption, 216
reaction mechanism, 216–217
Methanol to gasoline (MTG), 267–268
Methanol to olefins (MTO), C$_1$ building blocks
catalyst deactivation, 263
commercial aspects, 265
economical evaluation, 266
GTO, 266
process flow scheme, 265
process technology, 264–265
reaction conditions, 264
ZSM-5 and SAPO-34 catalysts, 262–263
Methanol to propene (MTP), 268–269
Mobil’s olefin-to-gasoline and distillate process (MOGD)
background, 270
technical process, 272
thermodynamic considerations, 271–272
ZSM-5 catalyst process, 270–271
Molecular adsorption. See Monte Carlo simulations
Molecular dynamics (MD) simulations
applications
adsorbate self-diffusion, 235
KMC simulations, 236–237
MFI lattice topology, 236
methodology
KMC approach, 234–235
Markovian master equations, 235
potential energy and diffusivity, 234
thermodynamic property, 233
transition state theory (TST), 235
Molecular sieves. See also Cascade one-pot reactions, bifunctional catalysts
bifunctional, classes, 336
hydrogenation and acid/basic sites
aromatic terminal epoxide, 336–337
hydrogenating sites, 337–338
menthol synthesis, 337
multifunctional and acid/basic sites
catalytic centres, 339
para-methoxybenzaldehyde
conversion, 340
oxidation and acid/basic sites
bifunctional features, 338–339
2,5-dimethylfurans conversion,
338–339
linalool conversion, 338–339
Monte Carlo simulations
applications
adsorption isotherms, 230–231
templates-zeolite interaction, 232
methodology
drawbacks, 230
Grand-canonical ensemble, 230
importance sampling, 229
MC algorithm steps, 228
Multifunctional molecular sieves and acid/
basic sites
catalytic centres, 339
para-methoxybenzaldehyde conversion,
340

N
Naphthalene skeleton formation, 279–280
NH$_3$-STPD profiles, 116, 118
NH$_3$-TPD technique, 112
NiNa-mordenite catalyst, 212–213
Nitration of aromatics electrophilic
substitution
aromatic acylation, 288
nitration rate/factors, 286
2-nitrotoluene (2NT) conversion, 289
reaction mechanism, 286
selectivity, 287
NO$_x$ reduction
IR band assignments, 213
reaction mechanism, 214

O
Olefins-skeletal isomerisation
autocatalytic mechanism, n-butene, 294
bimolecular mechanism, n-butene,
294–295
deactivation rate, 298
formation mechanisms, 294
monomolecular mechanism, n-butene,
296
pore structure, 294
reaction pathway, α-pinene, 296–297
Oxidation over redox molecular sieves,
314–319

P
Pd catalytic membrane technology, 257
Photoacoustic FT-IR technique, 198
Photo-activated FeAlPO$_4$-5 (AFI), 216
Power diffraction
absorption, 40–42
asymmetric unit, 3
background effects, 54
Bragg-Brentano geometry, 22–23
crystal diffraction, 8–9
crystal structure, 3–4
diffuse scattering factors
ABAB type, 59
CIT-1 and SSZ-33, 61
hypothetical intergrowth structure,
60–61
one-dimensional disorder, 57
reciprocal space, 57
structure factor, 58
direct methods
electron density, 48
Fourier transform, 49
phase probabilities, 50
Sayre equation, 50
structure factor, 48–49
symmetry-equivalent pairs, 49
tangent formula, 50–51
triplet reflections, 49
factors affecting peak profiles
crystallite size, 31–38
instrumental broadening and
displacement, 39–40
stress, 38–39
intensity data
hkl reflection, 9
Lorentz-polarization factor, 9–13
structure factor, 13–15
mass absorption coefficient, 42
Miller plane, 4
neutrons, 19–21
orientation effects, 21–22
patterson methods, 51–52
peak profile shapes, 54–55
phase identification, unit cell refinement and lattice substitution
Bragg equation, 27–28
LeBail method, 29–31
linear correlations, 28–29
low-silica preparations, 26–27
MTT-type zeolites, 27
neutron and temperature dependence, 28, 30
preferred orientation and graininess
peak intensities, 42
UTD-1 membrane, 43–44
ZSM-5 and SEM image, 44–45
primitive unit cell, 3
reciprocal space fundamentals
Ewald sphere, 6–8
parallel planes, 4–5
refinement steps, 55–56
rietveld structure refinement, 56–57
structure refinement, 53–54
structure solution, 52–53
systematic hkl absences, 25–26
unit cell determination
CuKα diffractometer, 46–47
hkl assignments, 48
Ito algorithm, 46
ITQ-22, 47
lattice setting, 48
synchrotron radiation, 45
unit cell parameters, 3
X-ray diffraction (XRD)
angular dependence, 15–16
structure factor calculation, 16–19
XRD patterns, 1–2
Prediction of structure. See Static lattice methods
Probe molecules
pyridine, 207–208
zeolite acidity, 207
Pyridine, 207–208
extra-framework species location, 243
local defects, 242
methodology
basic hierarchical structure, 238
electronic structure, 238–242
Quasi-equilibrated temperature
programmed desorption and adsorption (QE-TPDA), 117
R
Raman spectroscopy. See Infrared and Raman spectroscopy
Reactivity and chemical properties. See Quantum chemical methods
Redox reactions
alcohols oxidation
chemoselectivity, 329
intermediate species, 328
MCM-41 molecular sieve, 329–330
ammoniation
catalyst deactivation, 323
paracetamol synthesis, 322–323
C–H bond oxidation
aliphatic C–H, 326–327
aromatic C–H, 324–326
Rhodia vanillin process, 325
chiral palladium complex, 313
epoxidation
mechanism, 319–320
reaction, 320
Ti-MMM catalyst, 321
oxidation over redox molecular sieves
Baeyer-Villiger oxidation, 317–318
δ-decalactone, 318
main catalysts, 316–319
oxidants, 314–315
reaction mechanisms, 315–316
synthetic pathways, 312–314
S
SAPO-34 catalyst, 262–263
Scanning electron microscopy (SEM)
schematic view, 174
secondary electron imaging (SEI)
dispersion and dilution sample technique, 178
faujasite morphology, 179
zeolite sample preparation methods
Q
Quantum chemical methods
applications
activation barriers, 243
cluster modeling approach, 244–247
dispersion method, 176
thin metal coating method, 176–177
Secondary electron imaging (SEI)
dispersion and dilution sample technique, 178
faujasite morphology, 179
Si/Al ratio and dealumination
H-ZSM-5 zeolite, 155
Lewis and Brønsted sites, 152
microcalorimetric curves, 150–151
NH₃-TPD profiles, 154–155
topological density theory, 153
Solid-state nuclear magnetic resonance (NMR) spectroscopy
²⁷Al, 82–84
applications, 67
basics, 68
Bronsted acid sites
H/D exchange rate, 94–95
¹H MAS spectra, 93–94
OH groups, 91–92
probe molecules, 91–92
pyridinium ions (PyrH⁺), 92–93
trimethylphosphine (TMP), 92
double-oriented rotation (DOR), 74–76
¹H MAS
heterogeneous catalyzed reactions, 87–88
H-form ferrierites (H-FER), 88, 90
hydroxyl groups, 88–89
SiOHAl groups, 90
hydroxyl protons, 90–91
isotopes, 66–67
Lewis acid sites and base sites, 95–96
⁶Li, ⁷Li and ¹³³Cs MAS, 85–86
line broadening mechanisms
chemical shift tensor, 70
Hamiltonian, 69–70
Larmor frequency, 70
quadrupole coupling constant, 71
second moment M₂, 68–69
second-order quadrupolar frequency shift, 70–71
static line width, 69
magic angle spinning (MAS)
gas bearing systems, 72
gravity frequency, 73
homogeneous interactions, 73
narrowing effects, 73–74
nuclear interactions, 71–72
multiple-quantum MAS (MQMAS), 74–76
²³Na, 86–87
pulse sequences, 76–78
³⁹Si MAS, 78–82
Static lattice methods
applications
aluminum distribution, 227
interaction potential, 226–227
structures prediction, 228
methodology
interatomic potential (Vᵢᵢ), 225
lattice energy (E_LAT), 224–225
molecular mechanics potentials, 226
Stepwise temperature programmed desorption (STPD), 116
Stereoselective reactions
diastereoselective synthesis catalysts, 331–332
enantioselective synthesis, catalysts, 333–335
Synthetic pathways, Redox reactions, 312–314

T
Temperature programmed desorption (TPD)
ammonia TPD spectra, 114
complex temperature programme, 118
curve deconvolution techniques, 110
experimental parameters, 111
factors, 113
IRMS–TPD method, 115
linear heating rate, 112
NH₃-STPD profiles, 116, 118
NH₃-TPD technique, 112
QE-TPDA, 117
STPD measurements, 116
thermal conductivity cells, 110
thermodynamic parameters, 112
zeolites types, 115–116
Thermogravimetric analysis (TGA), 116
TIGAS process
flow diagram, 269
process economics, 269–270
Time-resolved FT-IR technique, 198–199
Topological density theory, 153
TPD. See Temperature programmed desorption
Transition state theory (TST), 235
Transmission electron microscopy (TEM) characterization imaging method aspects, 181
bright field TEM image, 183–184
high resolution TEM (HRTEM), 182
STEM image, 184–185
zeolite sample preparation methods
dispersion sample preparation methods, 180
ultramicrotomy technique, 181

U
Ultramicrotomy sample preparation technique
energy dispersive spectrometry (EDS), 186
transmission electron microscopy (TEM), 181
UOP/Norsk Hydro MTO process economical scenarios, 266
process flow scheme, 265

V
van der Waals interactions, 209

X
X-ray diffraction (XRD). See also Power diffraction
angular dependence, 15–16
structure factor calculation
asymmetric unit, 17
Lorentz-polarization factor, 17
Na, O and Si atoms, 18–19
sodalite (SOD), 16

Z
Zeolite morphologies, 169
Zeolite sample preparation methods
scanning electron microscopy (SEM) dispersion method, 176
thin metal coating method, 176–177
transmission electron microscopy (TEM) dispersion sample preparation methods, 180
ultramicrotomy technique, 181
ZSM-5 and Y Zeolites, acid/base properties adsorption/desorption temperature
ammonia and pyridine heat adsorption, 144–145
Brönsted and Lewis sites, 145
calorimetric measurements, 142
microcalorimetry, 142
NH₃-TPD spectra, 145
coking influence
calorimetric measurements, 160–161
carbonaceous residues, 159–160
microcalorimetric ammonia adsorption, 160
NH₃-TPD, 161
other cations
alkali-metal ion, 157
ammonia adsorption microcalorimetry, 157, 158
CO adsorption microcalorimetry, 158–159
n-butylamine desorption, 156
pretreatment influences
ammonia TPD curves, 146–148
high-temperature calcination method, 146
NH₃ adsorption, 146, 147
proton exchange level
ammonia desorption profiles, 149, 150
mordenite zeolites, 148–149
pyridine adsorption, 148
temperature-programmed desorption (TPD), 149
Si/Al ratio and dealumination
faujasite type zeolites, 153
H-ZSM-5 zeolite, 155
Lewis and Brönsted sites, 152
microcalorimetric curves, 150–151
microporous adsorbents, 151
NH₃-TPD profiles, 154–155
topological density theory, 153
ZSM-5 catalyst
MTG, 267
MTO, 262–263