Appendix 1
Presentations without Paper

Concurrent and Sequential Multi-Scale Simulations of Friction and Contact Mechanics
M. Müser

Molecular Dynamics Simulations of the Mechanical Properties of Nanotube-Reinforced Composite Materials
M. Griebel

Nanotube and Nanocomposite Mechanics
H.D. Wagner

On Issues in Multi-Scale Modeling of Damage in Heterogeneous Solids
R. Talreja

Surface/Edge Induced Intrinsic Size-Dependent Properties of Nanowires
T-Y. Zhang, M. Luo and W.K. Cha

QM/MM Hybrid Simulation of Bio-Nanosystem Immobilization on Various Substrates
Y-P. Zhao, Z. Yang and J. Yin

Search for a Source of Cavitation in Plasticity of Crystalline Polymers
A. Galeski, A. Pawlak and A. Rozanski

Transforming Nanoparticles – Experiments and Modeling
F.D. Fischer and D. Vollath

Atomistic Description of Nanoisland Growth: Co on Single Crystal Cu Surfaces
L. Diekhöner, N.N. Negulyaev, V.S. Stepanyuk, P. Bruno, P. Wahl and K. Kern

Understanding Brittle Fracture in Nanostructured Silicon Carbide by Atomistic Simulations
L. Colombo

Deformation and Failure Modes of a Single Nanofiber
C.T. Lim

Multiscale Modeling of Interface Fracture
A. Siddiq and S. Schmauder

Molecular Simulations of Deformation, Flow and Physical Aging in Glassy Solids
J. Rottler
Appendix 2
Scientific Programme

Monday 19 May, 2008

K.Y. Volokh – Multiscale failure modeling: From atomic bonds to hyperelasticity with softening
R.K. Kalia, A. Nakano and P. Vashishta – Multimilion-to-bilion atom molecular dynamics simulations of deformation, fracture and nanoductility in silica glass
M. Müser – Concurrent and sequential multi-scale simulations of friction and contact mechanics
M. Griebel – Molecular dynamics simulations of the mechanical properties of nanotube-reinforced composite materials
H.D. Wagner – Nanotube and nanocomposite mechanics
Ł. Figiel, F.P.E. Dunne and C.P. Buckley – Multiscale modelling of layered silicate/PET nanocomposites during solid-state processing
R. Talreja – On issues in multi-scale modeling of damage in heterogeneous solids
K. Jolley and S.P.A. Gill – Modelling transient heat conduction at multiple length and time scales: A coupled non-equilibrium molecular dynamics/continuum approach
V.B.C. Tan, M. Deng, T.E. Tay and K.M. Lim – Multiscale modeling of amorphous materials with adaptivity
P.K. Valavala and G.M. Odegard – Thermodynamically-consistent multiscale constitutive modeling of glassy polymer materials
L.C. Zhang – Effective wall thickness of single-walled carbon nanotubes for multiscale analysis: the problems and a possible solution
T-Y. Zhang, M. Luo and W.K. Chan – Surface/edge induced intrinsic size-dependent properties of nanowires
R. Pyrz and B. Bochenek – Discrete-continuum transition in modelling nanomaterials

Tuesday 20 May, 2008

B. Palosz – Looking beyond limitations of diffraction methods of structural analysis of nanocrystalline materials
G. Winther – Multiscale modeling of mechanical anisotropy in deformed metals

© Springer Science+Business Media B.V. 2009

J.M. Hill – Geometry and mechanics of carbon nanotubes and gigahertz nanoooscillators

V.A. Eremeyev and H. Altenbach – On the eigenfrequencies of an ordered system of nano-objects

H.L. Duan, J. Weissmuller, Y. Wang and X. Yi – Monitoring of molecule absorption and stress evolutions by in situ microcantilever systems

Y-P. Zhao, Z. Yang and J. Yin – QM/MM hybrid simulation of bio-nanosystem immobilization on various substrates

E.R. Hernandez – Using thermal gradients for actuation at the nanoscale

O. Sigmund – Systematic design of nano-photonic crystals and meta-materials

J. Chen and S.J. Bull – Modelling of indentation and scratch damage in multilayer coatings and bulk materials

F.D. Fischer and D. Vollath – Transforming nanoparticles – experiments and modelling

L. Diekhöner, N.N. Negulyaev, V.S. Stepanyuk, P. Bruno, P. Wahl and K. Kern – Atomistic description of nanoisland growth: Co on single crystal Cu surfaces

Wednesday 21 May, 2008

L. Colombo – Understanding brittle fracture in nanostructured silicon carbide by atomistic simulations

I.N. Remediakis – Atomistic models for the mechanical response of nanomaterials

C.T. Lim – Deformation and failure modes of a single nanofiber

H.J. Chu, H.L. Duan, J. Wang and B.L. Karihaloo – Elastic fields in quantum dot structures with arbitrary shapes and interface effects

J. Yvonnet, H. Le Quang and Q.-C. He – Thermo-mechanical numerical modelling of nano-inclusions with arbitrary shapes

H.L. Duan, B.L. Karihaloo and J. Wang – Thermo-elastic size-dependent properties of nanocomposites with imperfect interfaces

R.J. Young, S. Cui, I. Kinloch, Ch.C. Kao, S. Eichhorn and P. Kannan – Modelling the stress transfer between carbon nanotubes and a polymer matrix

A. Siddiq and S. Schmauder – Multiscale modeling of interface fracture

P. Olsson, C. Persson and S. Melin-Petersson – A study of the elastic properties of iron nanowires

T. Burczynski, W. Kus and A. Mrozek – Advanced continuum-atomistic model of materials based on coupled boundary element and molecular approaches

J.Y.H. Chia – Finite element modeling nanocomposites and interface effects on mechanical properties

I. Goldhirsch – Small scale and/or high resolution elasticity

M. Fermeglia – Enthalpic and entropic effects of nanoparticles in polymer matrices: Industrial applications
Thursday 22 May, 2008

O.B. Naimark – Structural-scaling transitions in mesodefect ensembles and properties of bulk nanostructural materials – Modeling and experimental study

J. Rottler – Molecular simulations of deformation, flow and physical aging in glassy solids

T.A. Kowalewski, S. Barral and T. Kowalczyk – Modeling electrospinning of nanofibres

J. Jancar – Use of reptation dynamics in modeling molecular interphase in polymer nanocomposite

A. Rozanski, A. Galeski and J. Golebiewski – Low density polyethylene-montmorillonite nanocomposites for film blowing
Appendix 3
List of Participants

Bogdan Bochenek
Cracow University of Technology
Poland
bochenek@mech.pk.edu.pl

Steve Bull
University of Newcastle
United Kingdom
s.j.bull@ncl.ac.uk

Tadeusz Burczynski
Silesian University of Technology
Poland
tadeusz.burczynski@polsl.pl

O. Castelnau
Université Paris 13, Institut Galilée
France
oc@lpmtm.univ-paris13.fr

Julian Y.H. Chia
Institute of Materials Research and Engineering
Singapore
julian-chia@imre.a-star.edu.sg

Luciano Colombo
University of Cagliari
Italy
luciano.colombo@dsf.unica.it

Huiling Duan
Forschungszentrum Karlsruhe GmbH
Germany
huiling.duan@int.fzk.de

© Springer Science+Business Media B.V. 2009
L. Diekhöner
Aalborg University
Denmark
ld@physics.aau.dk

Victor A. Eremeyev
RaSci South Federeral University
Russia
eremeyev.victor@gmail.com

Maurizio Fermeglia
University of Trieste
Italy
mauf@dicamp.units.it

Ł. Figiel
University of Oxford
United Kingdom
Lukasz.Figiel@eng.ox.ac.uk

F.D. Fischer
Montan universität Leoben
Austria
fischer@unileoben.ac.at

A. Galeski
Polish Academy of Sciences
Poland
andgal@cbmm.lodz.pl

E. Piorkowska-Galeska
Polish Academy of Sciences
Poland
epiorkow@cbmm.lodz.pl

S.P.A. Gill
University of Leicester
United Kingdom
spg3@leicester.ac.uk

Isaac Goldhirsch
Tel-Aviv University
Israel
isaac@eng.tau.ac.il
List of Participants

Michael Griebel
University of Bonn
Germany
griebel@ins.uni-bonn.de

P. Hansson
Lund Institute of Technology
Sweden
per.hansson@mek.lth.se

E. Hernandez
Institut de Ciencia de Materials de Barcelona
Spain
ehe@icmab.es

James Hill
University of Wollongong
Australia
jhill@uow.edu.au

Josef Jančář
Brno University of Technology
Czech Republic
jancar@fch.vutbr.cz

L.R. Jensen
Aalborg University
Denmark
lrj@ime.aau.dk

Rajiv K. Kalia
University of Southern California
USA
rkalia@usc.edu

T.E. Karakasidis
University of Thessaly
Greece
thkarak@uth.gr

Bhushan L. Karihaloo
Cardiff University
United Kingdom
karihaloo@cardiff.ac.uk
L. Kolmorgen
Aalborg University
Denmark
lhk@ime.aau.dk

Tomasz Kowalewski
Polish Academy of Sciences
Poland
tkowale@ippt.gov.pl

C.T. Lim
National University of Singapore
Singapore
ctlim@nus.edu.sg

Martin Müser
University of Western Ontario
Canada
mmuser@uwo.ca

Oleg Naimark
Russian Academy of Sciences
Russia
naimark@icmm.ru

G.M. Odegard
Michigan Technological University
USA
gmodegar@mtu.edu

N. Olhoff
Aalborg University
Denmark
no@ime.aau.dk

P. Olsson
Lund Institute of Technology
Sweden
par.olsson@mek.lth.se

Bogdan Palosz
Institute of High Pressure Physics PAN
Poland
palosz@unipress.waw.pl
K. Pedersen
Aalborg University
Denmark
kj@physics.aau.dk

Ch. Persson
Lund Institute of Technology
Sweden
christer.persson@lmaterial.lth.se

S. Melin Petersson
Lund Institute of Technology
Sweden
solveig.melin@mek.lth.se

R. Pyrz
Aalborg University
Denmark
rp@ime.aau.dk

J.Chr. Rauhe
Aalborg University
Denmark
jmr@ime.aau.dk

Ioannis N. Remediakis
University of Crete
Greece
remed@physics.uoc.gr

Jörg Rottler
University of British Columbia
Canada
jrottler@phas.ubc.ca

A. Rozanski
Polish Academy of Sciences
Poland
rozanski@bilbo.cbmm.lodz.pl

J. Schjødt-Thomsen
Aalborg University
Denmark
jst@ime.aau.dk
Siegfried Schmauder
University of Stuttgart
Germany
siegfried.schmauder@mpa.uni-stuttgart.de

Ole Sigmund
Technical University of Denmark
Denmark
sigmund@mek.dtu.dk

Ramesh Talreja
Texas A&M University
USA
talreja@aeromail.tamu.edu

Vincent B.C. Tan
National University of Singapore
Singapore
mpetanbc@nus.edu.sg

K.Y. Volokh
Technion – Israel Institute of Technology
Israel
cvolokh@tx.technion.ac.il

Daniel Wagner
The Weizmann Institute of Science
Israel
Daniel.wagner@weizmann.ac.il

Jianxiang Wang
Peking University
China
jxwang@pku.edu.cn

Grethe Winther
Technical University of Denmark – Risø
Denmark
grethe.winther@risoe.dk

Robert J. Young
The University of Manchester
United Kingdom
robert.young@manchester.ac.uk
J. Yvonnet
Université Paris-Est
France
jyvonnet@univ-mlv.fr

Liangchi Zhang
The University of Sydney
Australia
zhang@aeromech.usyd.edu.au

Tong-Yi Zhang
Hong Kong University of Science and Technology
China
mezhangt@ust.hk

Ya-Pu Zhao
Chinese Academy of Sciences
China
yzhao@imech.ac.cn
Crack Initiation, Kinkind and Nanoscale Damage in Silica Glass: Multimillion-Atom Molecular Dynamics Simulation

Fig. 1 Nucleation of nanocavities and crack nanocolumns in a tensile-stress region around the pre-crack tip. The inset shows the setup of the simulation. The white rectangular plate is a rigid indenter, the light blue parallelepiped is the silica glass of dimensions 120 × 120 × 15 nm3, and the dark blue region denotes a pre-crack of length 40 nm and width 15 nm. Dotted line indicates the direction along which the nanocavities nucleate. Damage nanocavities (red, orange, yellow, green) and nanocolumns (blue) in the tensile stress region. The impact loading speed is 0.05v_R, where v_R is the Rayleigh wave speed.
Fig. 2 Formation of a wing crack via growth and coalescence of nano-columns and nanocavities at an impact loading speed of $0.05v_R$. (a) A snapshot taken after 19 ps shows cavities (red, orange, yellow, green and dark blue) around nanocolumns (blue). (b) In the next couple of picoseconds, nanocolumns merge and coalesce with nanocavities to form a wing crack.

Fig. 3 Second healing of the wing crack at the loading speed of $0.05v_R$. (Right) A snapshot of the wing and primary cracks (blue) just after healing begins. The wing-crack tip is split up into two nanocolumns and there are a few damage cavities (green and red) near the tip. (Middle) In 4 ps the wing crack has receded considerably and left several cavities (red, yellow, green and blue). (Left) A snapshot of the wing crack and cavities after the crack stops healing. The residual length of the wing crack is slightly less than half of the maximum length.
Multiscale Modelling of Layered-Silicate/PET Nanocomposites during Solid-State Processing

Fig. 1 Simulated stress-strain curves – effect of silicate loading; $T = 95^\circ$C.

Fig. 2 Simulated deformation and contour plots representing onset of crystallization at applied strains: (A) 0.5, (B) 1; temperature: 95$^\circ$C; applied strain rate: 1s^{-1}; legend: 1 – lock-up of viscous flow due to crystallization at all integration points of a finite element, 0 – no lock-up.
Fig. 3 Strain amplification factor at different volume fractions; $T = 95^\circ$C; applied strain rate: 1 s^{-1}.

Fig. 4 Effect of processing temperature on the nanocomposite morphology; (A) $T = 100^\circ$C, (B) $T = 110^\circ$C; strain rate: 1 s^{-1}.
Multiscale Modeling of Amorphous Materials with Adaptivity

Fig. 1 Strain contours from multiscale simulation just before crack propagation.

Fig. 2 Strain contours at the end of multiscale simulation.
Thermodynamically-Consistent Multiscale Constitutive Modeling of Glassy Polymer Materials

Fig. 1 Molecular RVEs of two polymer systems.

Polyimide
Polycarbonate
Discrete-Continuum Transition in Modelling Nanomaterials

Fig. 4 Non-homogeneity measure for three shear deformation levels of the diamond sheet.

Fig. 5 Non-homogeneity measure for the real structure and the structure deformed in an affine manner (a); colour code slip vector module that indicates displacement difference between non-affine (real) and affine displacement field (b).
Fig. 6 Colour code atomic shear strain components for three shear deformation levels.

Fig. 8 Non-homogeneity measure at different strain levels.

Fig. 9 Colour code atomic tensile strain components at different deformation levels.
Multiscale Modelling of Mechanical Anisotropy of Metals
G. Winther, pp. 89–98.

Micromechanical Modeling of the Elastic Behavior of Multilayer Thin Films; Comparison with In Situ Data from X-Ray Diffraction

Fig. 4 Predicted GNB planes based on two models (see text) and experimental data for grain the orientation space of rolling.

Fig. 3 Typical bilayer periodic microstructure and Finite Element mesh used for generating full-field reference solutions. The top and thick layer is soft and made of anisotropic grains (“Cu-like” behaviour). The thin bottom layer is made of isotropic W grains.
Fig. 4 Distribution of equivalent elastic strain in (top) the soft “Cu-like” layer, and (bottom) the stiff W layer. The applied macroscopic axial stress is 100 MPa. Results generated for $a = 100$. Note the different color scales for both figures.
Monitoring of Molecule Adsorption and Stress Evolutions by In-Situ Microcantilever Systems
H.L. Duan, Y. Wang and X. Yi, pp. 133–140.

Fig. 4 Variation of curvature κ with island coverage q and island size L ($\varphi = 10^\circ$, $t_f = 1.4$ nm, $t_s = 0.5$ μm).

Using Thermal Gradients for Actuation in the Nanoscale

Fig. 1 Schematic picture of the mobile element of the nanofabricated device. The long inner nanotube (shown in yellow) is suspended between the two electrodes; the gold platelet is attached to the outer nanotube (shown in red), which can slide down and rotate around the inner nanotube due to the low friction contact between nanotube walls.
Fig. 2 Displacements of the centre of mass of the outer (17,14) nanotube along the inner (12,9) tube, under three different thermal gradients.

Fig. 3 Displacements of the centre of mass of a C$_{60}$ cluster encapsulated inside a (10,10) nanotube subject to different thermal gradients.
Fig. 4 The left panel shows the dispersion relation for the low energy phonon bands of a (10,10) SWCNT calculated with the Brenner [12] potential. The lowest optical band, shown in red, was used to construct the phonon wave packet shown on the right panel.

Systematic Design of Metamaterials by Topology Optimization
O. Sigmund, pp. 151–159.

Fig. 1 The inverse homogenization problem. White arrows indicate the conventional forward homogenization approach, and black arrow indicate the inverse homogenization approach.
Fig. 3 Left: Topology optimized negative Poisson’s ratio materials (from [12]). Right: Topology optimized negative thermal expansion material (from [21, 22]).

Fig. 4 Top: Irreducible Brillouin zone and band diagram for periodic wave propagation problems. Bottom: Composite pictures showing topology optimized maximum band gap materials as well as the geometrically optimized partitions (from [19]).
Thermo-Elastic Size-Dependent Properties of Nano-Composites with Imperfect Interfaces
H.L. Duan, B.L. Karihaloo and J. Wang, pp. 201–209.

Modeling the Stress Transfer between Carbon Nanotubes and a Polymer Matrix during Cyclic Deformation
C.C. Kao and R.J. Young, pp. 211–220.
Finite Element Modelling Clay Nanocomposites and Interface Effects on Mechanical Properties

Fig. 1 The position vectors and position system of two obliquely positioned clay particles.

Fig. 2 The position vectors and position system of two coplanar clay particles.
Fig. 4 The predicted hydrostatic stress-strain curve of a clay/epoxy nanocomposite; the corresponding damage state in a single clay particle compared with the damage state of the entire nanocomposite; the contour plots of the growing plastic zones in the epoxy matrix and damage evolving in the clay particles.
Multiscale Molecular Modelling of Dispersion of Nanoparticles in Polymer Systems of Industrial Interest
M. Fermeglia and S. Pricl, pp. 261–270.

Fig. 2 Coarse grained modeling from atomistic model.

Fig. 3 From mesoscale morphology to FEM analysis.
Fig. 4 Distribution of a (or B) covered nanoparticles in diblock copolymers: nanoparticles are located in the center of each domain; left: distribution of the nanoparticles with respect to the copolymer domains; right: position of the center of mass of the nanoparticles.

Fig. 5 Distribution of A and B equal coverage nanoparticles in diblock copolymers: nanoparticles are located at the interface of the domains; left: distribution of the nanoparticles with respect to the copolymer domains; right: 3D representation of the nanoparticles at the interface.
Modeling Electrospinning of Nanofibers

Fig. 2 Idealized electrostatic configuration: the potential is prescribed between the tip of the needle and a grounded infinite plane. The needle electrode is modeled as a point electrode, the charge of which is computed such as to always maintain the prescribed potential at the needle tip. Image charges are used to implement the potential condition $\phi = 0$ on the infinite plane.
Fig. 3 Illustration of the clustering method used in our treecode implementation: neighbor charges are recursively grouped two-by-two and the smallest enclosing spheres are calculated at each clustering level, until all charges are contained in a binary tree which root is a sphere that contains all charges.
Fig. 4 Simulated jet paths at $U_g = 10$ kV (upper row) and 15 kV (bottom row), for two charge densities 10 C/m3 (left) and 20 C/m3 (right).
Author Index

Altenbach, H., 123
Bachtold, A., 141
Baowan, D., 109
Barral, S., 279
Barreiro, A., 141
Bochenek, B., 63
Buckley, C.P., 19
Bull, S.J., 161
Burczyński, T., 231
Castelnau, O., 99
Chen, J., 161
Chen, Y.C., 13
Chia, J.Y.H., 241
Chu, H.J., 181
Cox, B.J., 109
Deng, M., 37
Duan, H.L., 133, 181, 201
Dunne, F.P.E., 19
Dziatkiewicz, G., 231
Eremeyev, V.A., 123
Fermeglia, M., 261
Figiel, Ł., 19
Gelébart, L., 99
Górski, R., 231
Geandier, G., 99
Gierlotka, S., 75
Gill, S.P.A., 27
Goldenberg, C., 249
Goldhirsch, I., 249
Goudeau, Ph., 99
Grzanka, E., 75
He, Q.-C., 191
Hernández, E.R., 141
Hill, J.M., 109
Jancar, J., 293
Jolley, K., 27
Kalia, R., 13
Kao, C.C., 211
Karihaloo, B.L., 181, 201
Kelires, P.C., 171
Kopidakis, G., 171
Kowalczyk, T., 279
Kowalewski, T.A., 279
Kuś, W., 231
Le Bourhis, E., 99
Le Quang, H., 191
Lim, K.M., 37
Lu, Z., 13
Melin, S., 221
Monteiro, E., 191
Mrozek, A., 231
Naimark, O.B., 271
Nakano, A., 13
Nomura, K., 13
Odegard, G.M., 43
Olsson, P.A.T., 221
Palosz, B., 75
Palosz, W., 75
Plekhov, O.A., 271
Pricl, S., 261
Proffen, T., 75
Pyrz, R., 63
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remediakis, I.N.</td>
<td>171</td>
</tr>
<tr>
<td>Renault, P.-O.</td>
<td>99</td>
</tr>
<tr>
<td>Rich, R.</td>
<td>75</td>
</tr>
<tr>
<td>Rurali, R.</td>
<td>141</td>
</tr>
<tr>
<td>Sigmund, O.</td>
<td>151</td>
</tr>
<tr>
<td>Stelmakh, S.</td>
<td>75</td>
</tr>
<tr>
<td>Takahashi, T.</td>
<td>141</td>
</tr>
<tr>
<td>Tan, V.B.C.</td>
<td>37</td>
</tr>
<tr>
<td>Tay, T.E.</td>
<td>37</td>
</tr>
<tr>
<td>Thamwattana, N.</td>
<td>109</td>
</tr>
<tr>
<td>Thiaudière, D.</td>
<td>99</td>
</tr>
<tr>
<td>Valavala, P.K.</td>
<td>43</td>
</tr>
<tr>
<td>Vashishta, P.</td>
<td>13</td>
</tr>
<tr>
<td>Volokh, K.Y.</td>
<td>1</td>
</tr>
<tr>
<td>Wang, C.Y.</td>
<td>53</td>
</tr>
<tr>
<td>Wang, J.</td>
<td>181, 201</td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>133</td>
</tr>
<tr>
<td>Watanabe, K.</td>
<td>141</td>
</tr>
<tr>
<td>Winther, G.</td>
<td>89</td>
</tr>
<tr>
<td>Wojdyr, M.</td>
<td>75</td>
</tr>
<tr>
<td>Yamamoto, T.</td>
<td>141</td>
</tr>
<tr>
<td>Yi, X.</td>
<td>133</td>
</tr>
<tr>
<td>Young, R.J.</td>
<td>211</td>
</tr>
<tr>
<td>Yvonnet, J.</td>
<td>191</td>
</tr>
<tr>
<td>Zhang, L.C.</td>
<td>53</td>
</tr>
</tbody>
</table>