References

63. ____, *Stable, scalable, fair congestion control and AQM schemes that achieve high utilization in the internet*, IEEE Transactions on Automatic Control (2003), To appear.
Index

active queue management 64
adaptive virtual queue 30
additive increase, multiplicative
decrease 59
AIDM 59
AQM 64
asymptotic stability 46
AVQ 30

Brownian motion 148
concave function 17
congestion avoidance phase 52
congestion control 1
connection-level models 135
convex function 17
convex optimization 17
convex set 17
delay-differential equation 76
diffusion approximation 148
distributed admission control 141
droptail 67, 69
dual algorithm 27

e-RED 108
ECN 65
elastic users 141
exact penalty functions 29
explicit congestion notification 65

fairness 13
FAST 66
feedback delay 67, 83, 109
geneneral increase/decrease algorithm 94
global asymptotic stability 46
global stability with delay 109
gradient algorithm 26
high-speed TCP 66
high-throughput TCP 65
inelastic users 141
jacobson's algorithm 50
Karush-Kuhn-Tucker theorem 20
Lagrange multiplier 20
Laplace transform 68
LaSalle invariance principle 34
law of large numbers 133
layered architecture 50
link price 25
local stability 83
Lyapunov stability theory 46
max-min fairness 10
minimum potential delay fairness 10
multicast 37
multipath routing 36
multivariable Nyquist criterion 108
network stability with delays 83
Nyquist criterion 80, 108
one-bit feedback 4, 34, 35
path price 25
PI controller 74
Pricing 43
primal algorithm 23
primal-dual algorithm 32
priority service 139
proportional fairness 9
random early detection 63
random early marking 35
Razumikhin theorem 111
real-time traffic 141
RED 63
REM 35
round-trip time 49
RTT 49
scalable TCP 66
slow-start phase 52
smoothed rate feedback 90
stability 46
stochastic models 117
stochastic stability 137
TCP modelling 59, 67
TCP-NewReno 52
TCP-Reno 52
TCP-SACK 52
TCP-Tahoe 52
utility function 8, 13
variance of individual flows 125
window flow control 49