American Society of Metals, Metals Park, Ohio 44073.
Buehler Ltd. (1973) Petrographic sample preparation. Lake Bluff, IL.
References

References

References

Index

A
Aceterin, J. D., 72
Acrylic resins, 51, 56–61
Aerosols, 39
Afzelius, B. A., 301
Albrecht, R. N., 82
Albright, R. M., 233
Ambient-temperature wet chemical methods, 212–213
Analytical signal
accelerating voltage, 187
beam current, 187
Antibody–antigen interaction, 219
Araldite, 52
Auto carbon coater, for thin films production, 269

B
Backscattered electrons, 1, 137, 185, 186, 208
annular detectors, 190
detectors, 14
imaging procedure, 190
secondary electron, 209
signals, 185, 188
Bakelite, 49–50
Barnard, T., 233
Beam damage, image artifacts, 301
Beam energy, 248
Bell jar
clean, diagram of, 271, 272
flushing, 275
Biological organisms and materials, 5–6
Biological samples, 11
Blades, suitable for preparing samples for SEM, 71
Bousfield, B., 48
Bowling, A. Y., 58
Boyde, A., 87, 294
Bozzola, J. J., 38, 301
Bradley, S. A., 102
Breton, B. C., 85
BSE. See Backscattered electrons
Bulk conductive stained rat mitochondria, 256
Bulk conductive staining techniques
advantages/disadvantages, 257
SEM, 258
thermal conductivity, 255
Bulk conductivity preparative techniques, high-resolution images, 256
Burley tobacco leaves, elemental concentrations of, 229

C
Carbon, contaminating layer of, 241
Carbon film thickness, estimation of, 292
Carde, D., 284
Carlemalm, E., 132
Cathodoluminescence, 186, 194–196
beam scatters, 194
emission spectra, 195
molecules/macromolecules, 194–196
semiconductors, 195
Cell coated, 219
Charge-coupled device (CCD) camera, 14
Charging samples, contamination, 247
Chemical dehydration, 106
Chemical stabilization
general features of, 220
immunocytochemical localization, 220
low temperature methods, 221
Chen, Y., 285
Chlorosulfonic acid, 141
Chromium plasma sputter, 274
CL. See Cathodoluminescence
Clay, C. S., 290
Clean plant specimens, 245
Coating material, removing, 293
Coating thickness
film thickness
calculation of, 288
evaporative coating, 286
quartz thin film monitor, 289
SE images, 287
sputter coating, 288
SEM, 286
x-ray microanalysis, 286
Colloidal gold probes, 220
Conducting materials, 33
Conducting tapes, 43
Conductive material, thin layers of, 258
Continuous thin film, progressive steps for formation of, 262
Copper-based microelectronic material, high resolution SEM images, 242
Corrosion
 casts, 82
 surface layers of, 204
CPD. See Critical point drying
Crag, R. F. E., 301
Crissman, R. S., 294
Critical point drying, 106–112
 disadvantages
 chemical integrity, 112–113
 low temperature drying, 113–114
 structural integrity, 112
Cryosem system, 222
Cytoplasmic streaming, 211

D
Davies, W., 232
Davis, T. W., 233
De Harven, E., 102
Diallyl phthalates, 50
Diaminobenzidine (DAB), 199
2,2-Dimethoxypropane (DMP), 106
Douchet, R. G., 102
Dry inorganic samples, 204
Dry natural organic materials, 4–5
 SEM analysis, principal approaches for, 205
Dry nitrogen gas lines, vacuum pump lines, 267
Dry seeds, carbohydrates, 206
Dual beam microscopes, 298
Dual beam microscopy, 90–92
Dvorak, A. M., 156

E
Ebonite, 141–142
EBSD. See Electron backscattered diffraction
Echlin, P., 121, 164, 194, 228, 285, 290
EDS. See Energy dispersive spectrometer
EDS spectrum
 detecting charging, 251
 detecting charging on, 251
 silver specimen, 238
Electrolytic grinding, 75
Electron backscattered diffraction, 186
 BCC iron, 191
 crystallographic, 190–191
 phase information, 190–191
 SEM, 190
Electron beam, 301
 instruments
 bulk samples, 211
isolated cells, 212
 thick sections, 212
Electro polishing, 78
Ellis, E. A., 56
Embedding, for biological samples, 48
Embedding material, criteria governing suitability of, 49
Energy dispersive analysis, frozen leaves, 228
Energy dispersive spectrometer, 192
 lower beam current, 193
Energy dispersive x-ray detectors, 14
Enzyme ATPase, plant/animal material, 215
Enzyme histochemistry, 200
Epon, 55
Epoxy resins, 50, 51
 standard infiltration schedule for, 52
 types of, 52
Erlandsen, S., 188, 219
Evaporative coating
 contamination, 295
 film adhesion, 295
 problems, 268
 thermal radiation, 294

F
Face centered cubic (FCC) metal, 68
Faulty secondary electron images, of polymers, 300
Fischione automatic sample preparation system, 241
Fizeau method, 291
Flame photometry, 214
Flood, P. R., 290
Focused ion beam (FIB) instrument, 87–88
Focused ion beam (FIB) microscope, 84
Freeze-drying, 231
 consequences of, 114–115
 damage and artifacts associated with
 analytical artifacts, 123
 molecular artifacts, 122
 structural artifacts, 122–123
 equipment for, 118–120
 guidelines for practical, 117
 liquid nitrogen cooled, 120–121
 from non-aqueous solvents, 121–122
 protocols for, 117–118
 SEM images, 222
 theoretical basis of, 115–117
Freeze-fractured root cells, SEM images of, 226
Freeze substitution, 223, 231
 advantages and disadvantages of, 131–132
 general outline of procedures used for
 specimen cooling, 126
 specimen destination, 127
 specimen stabilization, 125–126
 specimen substitution, 126
 general principles of, 124–125
low temperature refrigerators for, 127–129
practical procedures for, 129–130
acetone, 130
diethyl ether, 130
methanol, 131
specimen handling procedures in, 131
Friel, J. J., 192, 193
Frozen hydrated image, brewers yeast, 227
Frozen hydrated samples, beam damage, 229
Frozen hydrated specimens, 224
Frozen hydrated tea leaves, chromium sputter coating, 285

G
Gamliel, H., 256
Gas plasma, earth magnet, 271
Gastro-digestive system, 245
Gatan MiniCl cathodoluminescence imaging system, 194
Gerrits, P. O., 57
Giannuzzi, L. A., 277
Giberson, R. T., 157
Glang, R., 262, 289
Glass bell jar, 267
Glass transition temperature, 285
Glauert, A. M., 48, 51, 52, 60, 154
Glues, for dry samples, 42–43
Glycol methacrylate (GMA)
dehydration schedule using, 57
embedding schedule for, 58
Goat anti-mouse IgG antibody, gold-conjugated, 282
Gold evaporative coating, polished mineral, 284
Gold–palladium coating, thin layers of, 273
Gold particles, secondary electron image of, 188
Goldstein, J., 2, 101, 138, 185, 188, 193, 199, 256, 274, 298
Goodhew, P. J., 79, 81
Goose Bay iron meteorite, 189
Grained igneous rock, polished sample of, 193
Green tobacco leaf mesophyll cells, 229
Grinding, 74–78

H
Hariharan, H., 13
Hawes, P., 162
Hayat, M. A., 38, 48, 301
Hayles, M. F., 90
HeLa tissue culture cells, 199
Hemicelluloses, 207
Hermann, R. J., 279, 290
High energy electrons, 2
High-vacuum evaporation, generic protocol, 266
Hirschberg, R. M., 82
Histochemical staining, 217
Hobot, J. A., 58
Hohenberg, H., 41
Holt, D. H., 49
Horobin, R. W., 57
Human astrocoma tissue, BSE image of, 283
Hunziker, E. B., 60
Hydration shell, 114
Hydrazine, 256
I
IFSM. See International Federation of Societies of Microscopy
Immunocytochemical analysis
freeze substitution for, 224
generic preparation technique, 222
stabilization procedure, 223
Immunocytochemistry, macromolecules, 199
Immunogold-labelled cell, bacteria E. faecalis, 219
Impermeable specimens
embedding and mounting of
cold methods, 50–51
hot methods, 49–50
Incident beam energy, 249
Industrial methods, electroplating/anodization, 259
Inert gases, nature of, 270
Infrared camera, 14
Ingram, P., 102
International Federation of Societies of Microscopy, 307
Ion beam etching, 86, 205
Ion beam guns, 85–86
dedicated ion milling instruments, 86–87
dual secondary electron and ion beam instruments, 89–90
focused ion beam instrument, 87–88
Ion beam milling, 86, 203
Ion beam thinning devices, 203
Isothermal desorption, 115
J
Jacks, T. J., 106
Johansen, B. V., 290
Joy, C. S., 252
Joy, D. A., 252
Joy, D. C., 49
K
Kellenberger, E., 72
Klomparens, K. L., 301
Knoll, M., 247
Krishna, S., 277
L
Lamb, J. C., 102
Lane, W. C., 98
Lee, W. E., 49
Leipins, A., 102
Lewis, P. R., 48, 51, 60, 154
Lewis, R., 233
Lichlerberg, A. J., 86
Lieberman, M. A., 86
Liquid embedding material, 47
Liquid plastic, 41
Liquid resins, 50
Liquid suspensions, 39
Login, G. R., 156
London resins, 57
Lowicryl resin, 57, 59
composition of, 60
dehydration and embedding procedure for, 61
low temperature polymerization procedure for, 61
polymerization of, 60
LR Gold resins, 57
embedding procedure for, 59
LR White resins, 57
embedding procedure for, 59
thermal polymerization of, 58
Luft, J. H., 55
Lyman, C. E., 193

M
Macromolecular analysis, immunocytochemistry, 218
Maisall, L. I., 289
Marshall, A. T., 284
Maunsbach, A. B., 301
McCann, P., 294
McGeoch, J. E. M., 90
Mechanical grinding, 74
Mechanical polishing, 75
Metal tubes, 40–41
Michael, J. R., 191
Millipore filters, 39
Morgan, A. J., 215, 224, 227, 232, 233
Muller, L. L., 106
Muller, M., 285
Murakami, T., 256
Murakami, T. H., 255
Murphy, J. A., 255, 256

N
Namork, E., 290
Natural abrasives, 76
Negative surface charging, 250
Newman, G. R., 58
Non-conducting materials, 33
Non-conductive materials coating, physical properties of, 266
Non-conductive samples coating, evaporation techniques for, 260
Non-magnetic metals, 34
Non-metallic materials, 34

O
ODO. See Osmium–dimethylsulfoxide–osmium
OH. See Osmium–hydrazine
Organic based adhesive glue, 42
Organic filters, 39
Organic polymers, 50
synthetic, 5
Osawa, T., 281, 282
Osmium–dimethylsulfoxide–osmium, 256
Osmium–hydrazine, 256
Osmium metal coating layer, grain size, 281, 282
Osmium metal sputter coating, 280
Osmium plasma coater, 280, 282
Osmium tetroxide, 142–143
Osmium–thiocarbohydrazide–osmium (OTO)
method, 255
Oxygen plasma etching, 83

P
Paints, for dry samples, 43
Paulson, G. G., 286
Peace, G. W., 290
Penning-ion beam sputter coater, diagram of, 278
Permeable specimens
embedding and mounting of
acrylic resins, 56–61
epoxy resins, 51–56
Peters, K.-R., 290, 296
Petzow, G., 48
Phosphotungstic acid, 145
Pierce, R. W., 286
Planar quartz crystal, thin-film measurement for, 290
Plasma etching, 83, 238
Plasma magnetron coaters, 273
Plasma magnetron sputter coaters, 271, 290, 291, 293
Plastic film, 37
Platinum films, 265
Platinum–iridium–carbon mixture, 266
PMMA. See Poly(methylmethacrylate)
Polyclonal antibodies, heterogeneous, 219
Polyethylene terephthalate (PET) fiber, 67
Poly-L-arginine, 38
Poly(methylmethacrylate), 302
Polyvinylpyrrolidone (PVP), 164
Porous minerals, 47
Postek, M. T., 256
Prewett, P. D., 298
PTA. See Phosphotungstic acid

Q
Quamme, G. A., 232
Quantum dots
diagrammatic representation of, 197
elements and molecules, 196–197
Quartz thin film, 289
practical use of, 290

R
Radioactive labeling methods, 197
Rainforth, W. M., 49
Randle, L., 191
Rat bone marrow tissue, secondary/backscattered images of, 218
Reactive ion beam etching (RIBE), 86
Reactive ion etching (RIE), 86
Richter, T., 72
Rosenberg, M., 57
Russell, L. D., 38, 43, 301
Ruthenium tetroxide, 143–144
Ryazantsev, S. N., 263

S
Sample artifacts
faulty secondary electron images, 300
operational pathway, 306
organic polymers/biological samples, 301
SE images, 303, 304
Sample cleaning
hard dry inorganic materials, 239–242
cutting process, 239
hydrocarbons, 240
microscope vacuum system, 240
ultrasonic cleaner, 240
hard dry organic specimens, 242
high spatial resolution imaging, 235
metallic samples, 237
metals/alloys/metallic materials, 237–239
metal surface, 239
complicated method, 239
plastics and polymers, 242–245
SEM, 235
types of
contact cleaning, 236
non-contact cleaning, 236
ways of, 237–238
wet and moist samples, 245
Sample contamination, visual indicators of, 243
Sample damage, 299
faulty secondary electron images, 300
organic polymers/biological samples, 301
Samples/specimens, used for SEM evaluation
categories of
biological organisms and materials, 5–6
hard, dry, inorganic materials, 3–4
hard or firm, dry natural organic materials, 4–5
metals, alloys, and metallic materials, 3
synthetic organic polymer materials, 5
wet and liquid samples, 7–9
collection of, 11–12
dehydration procedures for, 97, 134–135
biological organisms and materials, 136
hard and firm, dry natural organic material, 135
hard, dry, inorganic materials, 135
metals, alloys, and metallic materials, 135
synthetic organic polymer material, 135–136
wet and liquid materials, 136
embedding and mounting procedures for
biological organisms and materials, 63
hard and firm, dry natural organic material, 62
hard, dry, inorganic materials, 62
metals, alloys, and metallic materials, 61–62
synthetic organic polymer material, 62
wet and liquid materials, 63
embedding media for, 47
gentle mechanical and physical methods for exposure and cleaning
gas-borne particle abrasion, 78–79
mechanical thinning, 79–80
high energy particles for exposure and cleaning
combined plasma etching and ion beam etching, 92–93
ion beam etching, 83–84
plasma etching, 83
methods for removal of liquids in
air drying, 101–103
chemical dehydration, 104–106
critical point drying, 106–113
freeze-drying, 114–123
freeze substitution, 124–130
isothermal freeze stabilization, 133–134
low temperature dehydration, 132–133
low temperature drying, 113–114
methods using chemicals for exposure and cleaning
chemical polishing, 81
chemical thinning, 80–81
electrochemical polishing, 81–82
surface replicas and corrosion casts, 82
mounting of, 47
parameters governing selection of
internal dimensions of SEM specimen chamber, 12–17
large specimens, 17
microscope operating conditions, 17
sample shape, 18
sample size, 17
sample view, 18
small specimens, 17–18
preparation tools and associated perquisites for,
procedure for labeling, 18
storage, 29
Samples/specimens, used for SEM evaluation
(Continued)
rigorous mechanical and physical methods
for exposure and cleaning
by breaking, cleaving, snapping, and pulling, 66
lapping, 74–78
sample cutting, 71–73
surface chipping, 70
surface fracturing, 66–70
sources of, 19
suggested procedures for exposing, 94–95
support, functions and categories of, 31
primary supports, 32–33
secondary supports (see Secondary supports,
for samples)
self-support, 32
tools for
cleaning, 26
exposing, 22–23
holding large samples, 25–26
manipulating, 24–25
Sample stabilization, 185
chemical analysis, preparing samples for, 230–232
chemical composition of, 200–201
chemical intervention prior to analysis
histochemistry procedures, 199
immunocytochemistry, 199–200
quantum dots, 196–197
radioactive labeling methods, 197
staining, 198–199
chemically analyze samples
backscattered electrons, 185
sample parameters, 187
signals different, comparison of, 186
x-ray photons, 185
chemicals added, prior to analysis
backscattered electron imaging, 187–190
cathodoluminescence, 194–196
EBSD, 190–191
secondary electron imaging, 187
x-ray spectroscopy, 191–194
general rules, 200
ambient-temperature wet chemical, 213–221
environmental SEM, 212–213
hard, dry inorganic samples, 204
immunocytochemical methods, 205
immunocytochemistry, 207
ion beam milling, 203–204
judging criteria, 202–203
low temperature methods, 221–229
mechanical polishing, 203
microelectronic devices, 205
oxide/corrosion, surface layers, 204
sample preparation, strategy, 201–202
staining/histochemistry, 206–207
synthetic organic polymer materials, 208–211
x-ray microanalysis, 206
Saws, suitable for preparing samples for SEM, 73
Sawyer, L. C., 140, 141, 210
Scanning electron microscopes
acceleration voltage of, 190
auto Carbon Coater, 269
autoradiography, 197
cathodoluminescence image, 195
granite, polished piece of, 195
chemical differentiation, 207
chemical procedures for sample stabilization
for imaging in
biological organisms and materials, 146–157
hard, dry, inorganic materials, 139
hard, dry, natural organic materials, 139–140
metals, alloys, and metallized specimens,
138–139
synthetic organic polymer materials, 140–141
wet and liquid samples, 157–158
coating thickness for, 286–296
depends on, 198
dried milk powder, 276
EBSD, 190
electron beam, 298
environmental, 212–213
enzyme histochemistry, 200
equipment to facilitate sample preparation for, 22
Everhart-Thornley (E-T) detector, 187, 188
focused ion beams (FIB), 276
freeze dried, 222–223
frozen-hydrated, 226
Gatan MiniCl cathodoluminescence imaging
system, 194
hard inorganic materials, 240
high resolution, 242
high resolution field emission, 298
high vacuum evaporation coater, 265
image aberration/damage, 300
imaging system, 1
inside of chamber, 250
ion beam sputtering, 277
low-temperature, 213
methods for examining wet, moist, liquid
samples in, 98–101
mica, 247
microscopy and analysis, journals, 309
nanotechnology, 297
non-biological material, 195
non-chemical procedures for sample stabilization
for imaging in, 159–160
quench cooling, 164–172
oil diffusion pumped vacuum system, 236
organic polymer materials, synthetic, 208
polymer images, 209
Index

principal approaches, 205, 208
for producing magnified images, 1
quantum dots, 196
sample preparation, sources of, 310–315
scrupulously clean, 235
SE signal, 187
signals analysis, 219
specimen preparation laboratories for
general, 21–22
types of, 19
specimen sizes suitable for, 20–21
thermal conductivity, 254
thermal conductivity/electrical resistance, 254
verbal information
courses and workshops, 308
international societies, 307
scientific societies, 307–308
written information, 308–309
x-ray microanalysis, 194, 204, 248, 264, 284
x-ray photons, 192
Schenk, R. K., 60
Scott, R. D., 69
Secondary electron image, 199
frozen hydrated fracture face, 228
Secondary electrons signals, 1, 137, 185
Secondary supports, for samples
attachments with primary supports
adhesive tapes, 43–44
bio-organic materials, 44–45
chemical, 42
glues for dry samples, 42–43
mechanical, 42
paints for dry samples, 43
composition and form of, 33
fine hollow metal needles, 41
light microscope glass slides, 38
metal foil wrappings, 41
metal tubes, 40–41
mineral and plastic discs, 40
organic and metallic filters and meshes, 38–40
polymerized plastics, 41–42
thin metal foils, 34
thin supporting films for grids, 35–38
transmission electron microscope grids, 34–35
SE images
of artifacts, 303
for badly charging sample, 251
beam damage, effect of, 302
polycarbonate grooved optical disc, 303
Sela, J., 294
SEM. See Scanning electron microscopes
SE signals. See Secondary electrons signals
Silicon, photo-resist layer, 283
Silicon substrate, high resolution images for, 241
Silver film, TEM images for, 263
Silver nitrate-photographic fixer, 256
Sims, P. A., 82
Smith, D. L., 262, 289
SNP. See Silver nitrate-photographic fixer
Solid embedding material, 47
Spurr’s resin, 55
infiltration schedule for, 56
Sputter coating
argon gas inlet, 275
artifacts and damage
contamination, 296
decoration artifacts, 296
film adhesion, 296
surface etching, 296
thermal damage, 295–296
ceramic matrix, 297
final stages of, 275–276
generic protocol, 274, 275
ion beam sputtering, 276
focused ion sputtering, 276
turbo-molecular pumped, 276
plasma magnetron, advantage of, 276
Stabilization protocols, precipitating reactions, 215
Staining
heavy metal
osmium tetroxide, 210
phosphotungstic acid, 210
polymer analysis, 211
polymer functional groups, 210
ruthenium tetroxide, 210
uranyl acetate, 210
histochemistry procedures, 199
of polymers, 208
positive/negative staining, 198
Stevie, F. A., 277
Stewart, A. D. G., 276
Stokroos, L., 273
Stöttinger, B., 82
Surface charge elimination, 247
chemical nature of, 253
hard dry organic materials, 257–258
soft, porous biological material, 254–256
EDS spectrum, 251
electrical resistivity of, 248
E2 values of, 249
general ways, 252
image artifacts and spurious x-ray, 301
insulators, 249
microscope modification, 252–253
SE image, 251
SEM, 248
surface coating
analytical studies, 283–285
choice of, 265–266
high-vacuum evaporation methods, 264–265
Surface charge elimination (Continued)
low temperature microscopy analysis, 285–286
preparing equipment, 266–270
SEM/X-ray microanalysis, 286–296
sputtering, 270–283
vacuum evaporation, 262–264
surface conductivity, 258–262
x-ray microanalysis, 250
Surface coating, vacuum evaporation, 262
Sylvester-Bradley, C. C., 294

T
Tanaka, K., 255, 256
Tannic acid–osmium–thiocarbohydrazide
(TAOTH), 256
Taylor, A. P., 228
Tea plant leaves, location of aluminum
in, 226–228
TEM. See Transmission electron microscopy
Thermal conduction, electrical resistivity in, 258
Thermosetting materials, 49
Thin coating layer, procedures, 262
Thin films
formation of, 259
making of, 36
Thin layers platinum, 273
Thomas, R. S., 233
Thornley, R. F. M., 98
Tiedemann, J., 163
Tobacco sheet materials, 304
Transmission electron microscopy, 12, 201
Transmitted electron (TE) images, 305
Turbomolecular pumped sputter coater, 272

V
Vacuum evaporation
coaters
diagram of, 264
high-resolution, 279
thin conductive coating layers, SEM, 265
coating methods, 269
final stages of, 268
Van der Voort, G. F., 48
Vaughn, K. C., 58
Volatile organic liquids, 103

W
Walter, P., 72, 285
Wandrol, P., 188
Wang, Z. L., 297
Warley, A., 216, 232
Water based adhesive glue, 42
Wavelength dispersive spectrometer (WDS), 192
Wepf, R., 291
Wet chemical histochemistry, 230
Wet chemical staining, 230
Wet/liquid samples
microdroplets, 232
selective solubilization, 232
type of, 231–232
Wheat arabinoxylm, immunolabeling of, 221
Wilder’s silver stain, 199

X
X-ray emission lines, 217
X-ray microanalysis, 208
artificially added elements, 206
compositional information, 185
elements, binding states of, 191
Everhart-Thornley (E-T) detector, 188
freeze substitution, 224
stabilization procedures, 225
impact of, 236
microincineration, 232–233
naturally occurring light elements, 206
for producing magnified images, 1
rock sample, 237
SE signal, 187
tobacco leaves, 228
topographic information, 185
X-ray photons, 1, 185, 192, 200
X-ray spectroscopy, binding states of, 191
X-ray spectrum, 190
XRP. See X-ray photons

Y
Yeast samples, tea tree oil, 225

Z
Zhou, W., 297