Glossary

Abaxial located on the side furthest from the axis, e.g., the lower side of a leaf
Abiotic not directly caused or induced by organisms
Absorbance fraction of radiation incident on a surface that is absorbed
Abscisic acid, ABA phytohormone (15-carbon compound that resembles the terminal portion of some carotenoid molecules) involved in stress responses; its name is derived from its involvement in leaf abscission; it reduces cell expansion and causes stomatal closure
Acclimation Increased tolerance to stress and/or improved plant performance as a result of structural and physiological adjustment by individual plants to specific environmental conditions (see also plasticity)
Accumulation build-up of storage products resulting from an excess of supply over demand; also termed interim deposition
Acidifuge avoiding acid soils; with a preference for a substrate that does not have a low pH
Active (or reactive) oxygen species (ROS) hydrogen peroxide (H$_2$O$_2$), superoxide radicals (O$_2^{−}$), and hydroxyl radicals (OH), the compounds can cause cell damage, but are also involved in signal transduction
Active transport transport of molecules across a membrane against an electrochemical gradient through expenditure of metabolic energy
Acyanogenic not releasing cyanide
Adaptation evolutionary adjustment of the genetic basis of a trait that enhances the performance in a specific environment
Adaxial located on the side nearest to the axis, e.g., the upper side of a leaf
Adsorption binding of ions or molecules to a surface (e.g., of a soil particle or a root)
Advection net horizontal transfer of gases
Aerenchyma tissue with large air spaces that facilitate transport of gases in plants
Agglutinin synonym for lectin
Albedo fraction of the incident short-wave radiation reflected by a surface (typically plant cover or bare soil or rock)
Alkaloid secondary plant compound (often toxic), characterized by its alkaline reaction and a heterocyclic ring (e.g., nicotine, caffeine, and colchicine)
Allelochemical secondary metabolite, released by living plants or decomposing plant litter that (either negatively or positively) affects other organisms
Allelopathy suppression of growth of one plant by another of a different species due to the release of toxic substances
Allocation proportional distribution of products or newly acquired resources among different organs or functions in a plant
Alternative oxidase mitochondrial enzyme catalyzing the transfer of electrons from ubiquinol (the reduced form of ubiquinone) to O$_2$
Alternative pathway (of respiration) nonphosphorylating electron-transport pathway in the inner membrane of plant mitochondria, transporting electrons from ubiquinol (the reduced form of ubiquinone) to O₂, catalyzed by the alternative oxidase

Amphistomatous with stomata at both the adaxial (upper) and abaxial (lower) sides of a leaf

Amylase starch-hydrolyzing enzyme

Anion negatively charged ion

Anisotropic not equal in all directions; for example, the longitudinal walls of anisotropic cells have different chemical and biophysical properties from those of the radial walls

Anoxia absence of oxygen in (part of) a plant’s environment

Annual species with a life cycle of less then a year; the short life cycle can be environmentally or developmentally determined

Antiport Co-transport of one compound in one direction coupled to transport of another compound (mostly H⁺) in the opposite direction

Apatite Ca₅(PO₄)₃(OH,F); it accounts for 95% of the total P in igneous rock, and it constitutes a major substrate for weathering, which releases inorganic phosphate for plants and microorganisms

Apoenzyme Enzymatic protein that requires a coenzyme to function

Apoplast (=apoplasm) space in a plant’s tissue outside the space enclosed by plasma membranes (symplast); it includes the cell walls and the dead tissues of the xylem

Apoplastic (=apoplasmic) phloem loading transport of assimilates from mesophyll to the sieve tubes of the phloem occurring partly through the apoplast

Aquaporin water-channel protein in a membrane

Arbuscular mycorrhiza a type of mycorrhiza that forms arbuscules (highly branched exchange structures) within cortical cells of the root

Assimilation incorporation of an inorganic resource (e.g., CO₂ or NH₄⁺) into organic compounds (in the case of CO₂ assimilation also used as a synonym for photosynthesis)

ATPase enzyme catalyzing the hydrolysis of ATP, producing ADP and Pᵢ; the energy from this hydrolysis is used to pump protons across a membrane (e.g., plasma membrane, tonoplast), thus generating an electrochemical gradient

ATPase/ATP synthase enzyme complex in the inner membrane of mitochondria and the thylakoid membrane of chloroplasts catalyzing the formation of ATP, driven by the proton-motive force (pmf)

Autotoxicity deleterious effect of a chemical compound released by plants of the same species

Autotrophic growth increment in mass, volume, length, or area of plants or parts thereof which depend on carbon fixed in photosynthesis by the growing organism itself (see also heterotrophic growth)

Autotrophic respiration respiration by autotrophic plants and their associated mycorrhizas and symbiotic N₂-fixing structures (see also heterotrophic respiration)

Auxin phytohormone (indole-3-acetic acid) involved in growth promotion and meristem differentiation; the name literally means enhancing and is derived from its growth-promoting action; there are also synthetic auxins

Avoidance plant strategy of resisting adverse conditions by preventing deleterious effects of these conditions, e.g., winter seed dormancy

Bacteroid state of rhizobia after they have penetrated the root and the symbiosis has been established

Bark Tissue with both a protective (outer bark) and transport (inner bark) function; inner bark consists of secondary phloem that carries sugars, amino acids, and minerals from a source to a sink

Biennial species whose individuals typically live for two growing seasons, vegetative growth in the first year and continued growth and seed production in the second year; several species known as biennials can, however, have an extended vegetative period (monocarpic perennial), others are strictly biennial

Biomass Mass of plants (and other living organisms)

Biomass density dry mass of plant tissue per unit of fresh mass or volume (in the first case, the presence of intercellular air spaces is not taken into account)

Biotic caused or induced by organisms

Biotic filter biotic interactions, which eliminate species that would otherwise have survived the abiotic environment of a site

Blue-light receptors two classes of photoreceptors, cryptochromes and phototropins, that absorb in the blue region of the spectrum; the receptors are involved, e.g., in the perception of irradiance and the directional component of light and thus affect photomorphogenesis

Bolting rapid extension of the flowering stalk

Boundary layer thin layer of air, water, or soil around the leaf or root with reduced mass
transport and increased reliance on diffusion for transport processes, conditions differ from those further away

Boundary layer conductance/resistance conductance/resistance for transport of CO₂, water vapor, or heat between the leaf surface and the atmosphere measured across the boundary layer

Bowen ratio the ratio between sensible heat loss and heat loss due to transpiration

Bulk density mass of dry soil per unit volume

Bulk soil soil beyond the immediate influence of plant roots (see boundary layer)

Bundle sheath cells cells surrounding the vascular bundle of a leaf

C₃ photosynthesis photosynthetic pathway in which the first step of CO₂ assimilation is the carboxylation of ribulose 1,5-bisphosphate (RuBP) by Rubisco; the first product is phosphoglyceric acid (PGA), a three-carbon intermediate

C₄ photosynthesis photosynthetic pathway in which the first step of CO₂ assimilation is the carboxylation of phosphoenolpyruvate (PEP) by PEP carboxylase during the day; the first product is oxaloacetic acid (OAA) a four-carbon intermediate

Calcicole species with a preference for calcareous soils and is absent from calcareous or high-pH soils

Calcifuge species that typically occupies acidic soils and is absent from calcareous or high-pH soils

Callose β-(1-3)-polymer of glucose, synthesized in sieve tube elements of the phloem in response to damage, sealing of the sieve tubes; callose is also produced in other cells upon microbial attack, thus providing a physical barrier

Calmodulin ubiquitous Ca²⁺-binding protein whose binding to other proteins depends on the intracellular Ca²⁺ concentration; component of signal-transduction pathways

Calvin cycle (Calvin—Benson cycle, carbon reduction cycle) pathway of photosynthetic CO₂ assimilation beginning with carboxylation of RuBP by Rubisco

Canopy conductance/resistance conductance/resistance for transport of CO₂, water vapor, or heat between the plant canopy and the atmosphere measured across the boundary layer of the canopy

Carbamylase reaction between CO₂ and an amino group; in many species, Rubisco is activated by carbamylation, catalyzed by Rubisco activase

Carbonic anhydrase enzyme catalyzing the interconversion of HCO₃⁻ and CO₂

Carboxylate organic acid minus its protons

Carboxylation binding of a CO₂ molecule to a CO₂-acceptor molecule

Carboxylation efficiency initial slope of the CO₂-response curve of photosynthesis

Carotenoid accessory photosynthetic pigment; carotenoids of the xanthophyll cycle play a role in dissipation of excess energy

Carrier protein involved in ion transport across a membrane

Caruncle (=strophiole) an outgrowth of a seed coat, near the hilum; preformed weak site in the seed coat

Casparian band/strip waxy suberin impregnation on the radial and transverse wall of endodermis and exodermis cells that renders the wall impermeable to water

Cation positively charged ion

Cavitation breakage of a water column in a xylem conduit due to air seeding

Cellulose structural polymer of glucose; major component of plant cell walls giving tensile strength

Cell wall structural matrix surrounding plant cells; part of the apoplast

Cell-wall elasticity reversible change in cell-wall dimensions

Cell-wall extensibility irreversible extension of cell walls, due to structural changes

Chaperones group of stress proteins that are encoded by a multigene family in the nucleus; chaperones bind to and stabilize an otherwise unstable conformation and, thus, mediate the correct assembly of other proteins

Chelate compound that combines reversibly, usually with high affinity, with a metal ion (e.g., iron, copper, or calcium)

Chelator cation-binding organic molecule, such as citric acid, malic acid, and phytosiderophores

Chemiosmotic model theory accounting for the synthesis of ATP driven by a proton-motive force

Chilling injury/tolerance injury caused by exposure of plants or tissues to low temperatures (> 0°C); tolerance of such temperatures

Chitin polymer of N-acetylgalactosamine; component of the exoskeleton of arthropods and the cell wall of fungi, but not of plants

Chitinase chitin-hydrolyzing enzyme that breaks down fungal cell walls

Chlorenchyma tissue containing chloroplasts

Chlorophyll green pigment in the photosynthetic membrane (thylakoid) involved in light capture as the first step in photosynthesis
Chloroplast organelle (plastid) in which photosynthesis occurs

Chromophore light-absorbing constituent of a macromolecule (photoreceptor) that is responsible for light absorption

Citric acid cycle Tricarboxylic acid cycle

Climax species species that are confined to later stages of succession in a plant community; as opposed to pioneer

Clonal growth asexual production of physiologically complete plants; a form of vegetative reproduction

Cluster roots bottle-brush-like or Christmas-tree-like structures in roots with a dense packing of root hairs, releasing carboxylates into the rhizosphere, thus solubilizing poorly available nutrients (e.g., phosphate) in the soil

CO₂-compensation point CO₂ concentration at which the rate of CO₂ assimilation by photosynthesis is balanced by the rate of CO₂ production by respiration

Coenzyme a nonproteinaceous organic substance that combines with a specific protein, the apoenzyme

Coevolution evolution of two (or more) species of which at least one depends on the other as a result of selection by mutual interactions

Cofactor inorganic ion or coenzyme required for an enzyme’s activity

Cohesion theory accounts for the ascent of sap in the xylem due to the cohesive forces between ascending water molecules under high tension and the adhesive forces between water and capillaries in the wall of xylem conduits

Companion cell cell type in the phloem, adjacent to sieve element, involved in phloem loading

Compartmentation restriction of compounds or processes to specific cells, or parts of a cell, such as storage of secondary metabolites in vacuoles

Compatible interaction response of a susceptible host to a virulent pathogen; positive interaction between pollen and pistil allowing guidance of the sperm cells toward the ovule

Compatible solute solute that has no deleterious effect on metabolism at high concentrations

Compensation point conditions (temperature, [CO₂], light) where net CO₂ exchange by a leaf or plant is zero (i.e., photosynthesis equals respiration)

Competition interaction among organisms (of the same or different species), which utilize common resources that are in short supply (resource competition), or which harm one another in the process of seeking a resource, even if the resource is not in short supply (interference competition)

Competitive ability probability of winning in competition with another species in a particular environment

Conductance flux per unit driving force (e.g., concentration gradient); inverse of resistance

Constitutive produced in constant amount (as opposed to regulated) (e.g., genes can be expressed constitutively)

Constitutive defense background level of plant defense in the absence of induction by herbivores or pathogens

Construction cost carbon and nutrients required to produce new tissue, including the respiration associated with the biosynthetic pathways

Contractile roots mature roots that decrease in length, while increasing in diameter, thus pulling the plant deeper in the soil, as in geophytes

Convective heat transfer direct transfer of heat (e.g., from leaf to air) and further transport by turbulent movement

Convergent evolution process whereby, in organisms that are not closely related, similar traits evolve independently as a result of adaptation to similar environments or ecological niches

Coupling factor ATP synthetase in thylakoid membrane of chloroplasts and inner membrane of mitochondria

Crassulacean acid metabolism photosynthetic pathway in which the first step of CO₂ assimilation is the carboxylation of phosphoenolpyruvate (PEP) by PEP carboxylase; the first product is oxaloacetic acid (OAA)—a four-carbon intermediate; in contrast to C₄ photosynthesis, the CO₂ assimilation occurs predominantly during the night with open stomata

Crista fold of the inner mitochondrial membrane

Critical daylength length of the night triggering flowering

Cross-resistance The phenomenon in which an organism that has acquired resistance to one pathogen or herbivore through direct exposure simultaneously has acquired resistance to other pathogens or herbivores to which it has not been exposed. Cross-resistance arises because the biological mechanism of resistance is the same and arises through identical genetic mutations

Cross-talk Communication between different signal transduction pathways

Cryptochrome blue-light-absorbing photoreceptor, involved in photomorphogenesis

Cuticle waxy coating of external plant surfaces
Cuticular conductance/resistance conduction/resistance for transport of CO₂ or water vapor movement through the cuticle

Cutin waxy substances that are part of the cuticle; polymer consisting of many long-chain hydroxy fatty acids that are attached to each other by ester linkages, forming a rigid three-dimensional network

Cyanogenic releasing cyanide

Cytochrome colored, heme-containing protein that transfers electrons in the respiratory and photosynthetic electron transport chain

Cytochrome oxidase mitochondrial enzyme catalyzing the final step in the transfer of electrons from organic molecules to O₂

Cytochrome P450 element in the synthesis of anthocyanins and in the detoxification of xenobiotics

Cytochrome pathway phosphorylating electron-transport pathway in the inner membrane of plant mitochondria, transporting electrons from NAD(P)H or FADH₂ to O₂, with cytochrome oxidase being the terminal oxidase

Cytokinin(s) a class of phytohormones, involved, e.g., in the delay of leaf senescence, cell division, cell extension, release of dormancy of buds, and chloroplast differentiation

Cytoplasm contents of a cell that are contained within its plasma membrane, but outside the vacuole and the nucleus

Cytosol cellular matrix in which cytoplasmic organelles are suspended

Dark reaction carbon fixation during photosynthesis; does not directly require light but uses the products of the light reaction (see also Calvin cycle)

Dark respiration processes in the cytosol, plastids, and mitochondria that break down carbon-containing compounds and generate ATP; it produces CO₂ and consumes O₂ when aerobic; when referring to gas exchange, all decarboxylation and O₂-consuming processes are included, apart from photorespiration

Deciduous Having leaves that fall off or are shed seasonally in response to specific environmental cues, such as that occurs during or preceding unfavorable seasons (see also evergreen)

Decomposition breakdown of organic matter through fragmentation, microbial and chemical alteration, and leaching

Defense compound secondary metabolite conferring some degree of protection from pathogens or herbivores

Dehydrins immunologically distinct family of proteins (Lea D11 family) that typically accumulate in plants during the late stages of embryogenesis or in response to any environmental influence that has a dehydrating effect

Delayed greening pattern of leaf development typical of shade-tolerant rain-forest species; leaves are initially white, red, blue, or light-green during the stage of leaf expansion, reflecting their low concentration of chlorophyll and associated photosynthetic proteins

Demand requirement; the term is used in the context of the control of the rate of a process (e.g., nutrient uptake, CO₂ assimilation) by the amount needed

Demand function dependence of net CO₂ assimilation rate on the intercellular or chloroplast CO₂ concentration, irrespective of the supply of CO₂ at ambient atmospheric CO₂ concentration

Denitrification microbial conversion of nitrate to gaseous nitrogen (N₂ and N₂O); nitrate is used as an electron acceptor

Desiccation tolerance tolerance of extreme water stress, with recovery of normal rates of metabolism shortly following rehydration

Desorption the reverse of adsorption

Diapheliotropism solar tracking in which the leaf or flower remains perpendicular to incident radiation

Differentiation cellular specialization

Diffuse porous wood in which wide and narrow xylem vessels are randomly distributed throughout each annual growth ring

Diffusion net movement of a substance along a concentration gradient due to random kinetic activity of molecules

Diffusion shell zone of nutrient depletion around individual roots caused by active nutrient uptake at the root surface and diffusion to the root from the surrounding soil (see also boundary layer)

Disulfide bond covalent linkage between two sulfhydryl groups on cysteines

Divergent evolution naturally selected changes in related species that once shared a common characteristic, but have come to be different during the course of their evolution

Dormancy state of seeds or buds that fail to grow when exposed to an environment that would otherwise have favored germination or growth

Dorsiventral having structurally different upper and lower surfaces (see also isobilateral)

Down-regulation decrease of the normal rate of a process, sometimes involving suppression of
genes encoding enzymes involved in that process

Ecophysiology study of the physiological mechanisms by which organisms cope with their environment

Ecosystem ecological system that consists of all the organisms in an area and the physical environment with which they interact

Ecosystem respiration sum of plant and heterotrophic respiration

Ecotone environmental gradient

Ecotype genetically differentiated population that is restricted to a specific habitat

Ectomycorrhiza mycorrhizal association in some trees in which a large part of the fungal tissue is found outside the root

Efficiency rate of a process per unit plant resource

Elastic modulus force needed to achieve a certain reversible change in cell volume

Embolism see cavitation

Emissivity coefficient that describes the thermal radiation emitted by a body at a particular temperature relative to the radiation emitted by an ideal black body

Endocytosis uptake of material into a cell by an invagination of the plasma membrane and its internalization in a membrane-bound vesicle

Endodermis innermost layer of root cortical cells that surrounds the vascular tissue; these cells are surrounded by a suberized Casparian strip that blocks apoplastic transport

Exodermis outer cortical cell layer in roots, immediately below the epidermis; these cells are surrounded by a suberized Casparian strip that blocks apoplastic transport

Extrusion ion transport from root cells to the external medium, dependent on respiratory metabolism

Exudate compounds released by plants (mostly by roots); also xylem or phloem fluid that appears when the stem is severed from the roots or a cut is made in the stem

Exudation release of exudates, or the appearance of fluid from cut roots or stems

Facilitation positive effect of one plant on another

Facultative CAM plants plants that photosynthesize by Crassulacean Acid Metabolism (CAM) during dry periods and by C₃ or C₄ photosynthesis at other times

Feedback influence of a product of a later step in a chain on an earlier step; fluctuations in rate of the process or concentration of metabolites are minimized with negative feedbacks or amplified with positive feedbacks

Feedforward response in which the rate of a process is affected before any deleterious effect of that process has occurred; for example, the decline in stomatal conductance before the water potential in leaf cells has been affected

Fermentation anaerobic conversion of glucose to organic acids or alcohol

Field capacity water content that a soil can hold against the force of gravity

Flavanols, flavines, flavones families of flavonoids

Flavonoid one of the largest classes of plant phenolics, in which two aromatic rings are connected by a carbon link to a third phenyl ring; representatives of this class play a role in the symbiosis between rhizobia and legumes, as phytoalexins, as antioxidants, in the colors of flowers and as defense compounds
Fluence response response to a dosage of light
Fluorescence photons emitted when excited electrons return to the ground state
Frost hardening acclimation of a plant as a result of exposure to low temperatures that make it frost tolerant (e.g., hardening in autumn)
Frost hardness/tolerance physiological condition that allows exposure to subzero temperatures without cellular damage

Geotropism growth response of plant organs with respect to gravity
Germination (of a seed) emergence of a part of the embryo through the seed coat, normally the radicle
Gibberellin class of phytohormones; the first gibberellin was found in the fungus Gibberella fujikura, from which these phytohormones derive their name; gibberellins are involved, e.g., in the promotion of seed germination, stem extension, and bolting
Giga- prefix denoting 10⁹
Glass Solidlike liquid with an extremely high viscosity; examples of a glass are macaroni and “glass” as we know it from everyday life (which is not a solid, but a fluid, as apparent from the gradually changing properties of glass when it gets old); glass formation, rather than the formation of ice crystals, is essential to prevent damage incurred by the formation of ice crystals
Glaucousness shiny appearance (of leaves), due to the presence of specific wax compounds
Glucoside (or glycoside) compound in which a side chain is attached to glucose by an acetal bond
Glucosinolate secondary sulfur-containing metabolite in Brassicaceae (cabbage family) which gives these plants a distinct sharp smell and taste
Glutathione tripeptide (γ-glutamyl-cysteinyl-glycine) that acts as a reducing agent, protecting the cell against oxidative stress, and guards against chemical toxicity, via modification of (modified) xenobiotics
Glycolipid membrane lipid molecule with a short carbohydrate chain attached to a hydrophobic tail
Glycolysis ubiquitous metabolic pathway in the cytosol in which sugars are metabolized to pyruvate and/or malate with production of ATP and NADH (when pyruvate is the end product)
Glycoyte species restricted to nonsaline soils
Glycoprotein any protein with one or more covalently linked oligosaccharide chains
Glycoside (or glucoside) compound in which a side chain is attached to a sugar by an acetal bond
G protein intracellular membrane-associated proteins activated by several receptors
Grana stacked region of photosynthetic membranes (thylakoids) in chloroplasts that contains photosystem II with its light-harvesting complex
Gross photosynthesis amount of carbon dioxide assimilated in chloroplasts; it is measured as net photosynthesis plus dark respiration
Growth increment in mass, volume, length, or area of plants or parts thereof
Growth respiration amount of respiration required per unit increment in biomass; it is not a rate
Guard cells specialized epidermal cells that surround the stomata and regulate the size of the stomatal pore
Guttation water exuded by leaves due to root pressure
Halophyte species that typically grows on saline soils
Hartig net hyphal network of ectomycorrhizal fungi that have penetrated intercellularly into the cortex of a higher plant
Haustorium organ that functions in attachment, penetration, and transfer of water and solutes from a host to a parasitic plant
Heartwood central mass of xylem in tree trunks not functioning in water transport; it often contains substances that prevent decay and has a darker color than the surrounding sapwood
Heat-shock protein protein produced upon heat or other stresses
Heavy metal metal with a mass density exceeding 5 g mL⁻¹
Heliotropism solar tracking; movement of a leaf or flower that follows the angle of incident radiation
Heme cyclic organic molecule that contains an iron atom in the center which binds O₂ in leghemoglobin and carries an electron in cytochromes
Hemicellulose heterogeneous mixture of neutral and acidic polysaccharides, which consist predominantly of galacturonic acid and some rhamnose; these cell-wall polymers coat the surface of cellulose microfibrils and run parallel to them
Heterodimer protein complex composed of two different polypeptide chains
Heterotrophic growth growth of plants or parts thereof which depend on carbon supplied by another organism or organ of the plant (see also autotrophic growth)

Heterotrophic respiration respiration by nonautotrophic organisms (see also autotrophic respiration)

Hexokinase enzyme catalyzing the phosphorylation of hexose sugars while hydrolyzing ATP; a specific hexokinase is involved in sugar sensing

Hilum Seed scar where the funiculus (the stalk of the ovule) was once attached

Historical filter historical factors that prevent a species from arriving at a site

Homeostasis tendency to maintain constant internal conditions in the face of a varying external environment

Homodimer protein complex composed of two identical polypeptide chains

Hormone organic compound produced in one part of a plant and transported to another, where it acts in low concentrations to control processes (phytohormone)

Humic substances high-molecular-weight polymers with abundant phenolic rings and variable side chains found in humus

Humus amorphous soil organic matter

Hydraulic lift upward movement of water from deep moist soils to dry surface soils through roots along a water potential gradient

Hydrenchyma water-storing tissue; during dehydration of a plant, water is predominantly lost from the cells in the hydrenchyma, while other cells lose relatively less water

Hydrolysis cleavage of a covalent bond with accompanying addition of water, —H being added to one product and —OH to the other

Hydrophyte plant that grows partly or wholly in water, whether rooted in the mud, as a lotus, or floating without anchorage, as the water hyacinth

Hygrophyte species typically occurring on permanently moist sites; see also mesophyte and xerophyte

Hydrotropism morphogenetic response (of roots) to a moisture gradient

Hyponasty Upward bending of a plant organ (see also epinasty)

Hypostomatic with stomates at the abaxial (lower) side of the leaf only

Hypoxia low oxygen concentration in (part of) a plant’s environment

Immobilization nutrient absorption from the soil solution and sequestering by soil microorganisms

Incompatible interaction response of a resistant host to a virulent pathogen; interaction between pollen and pistil preventing sperm cells from reaching the ovule

Induced defense increased levels of plant secondary metabolites in response to herbivory or pathogen attack

Infiltration movement of water into the soil

Infrared radiation radiation with wavelengths between approximately 740 nm and 1 mm; short-wave infrared is emitted by the sun (<3 μm), long-wave infrared is emitted at Earth temperatures (>3 μm)

Interception acquisition of nutrients by roots as a result of growing through soil; the nutrients contained in the soil volume displaced by the growing root; precipitation water remaining in a plant canopy that does not reach the soil

Intercrop one crop plant grown in combination with at least one other crop on the same plot at the same time (e.g., an annual crop grown between trees)

Interference competition competition mediated by production of allelochemicals by a plant

Intermediary cell phloem cell in plants with a symplastic pathway of phloem loading; sucrose moves from the mesophyll into these cells, where it is processed to form oligosaccharides that move to the sieve tube

Internal conductance/resistance conductance/resistance for transport of CO₂ between the substomatal spaces and its carboxylation at the site of Rubisco in the chloroplast

Ion channel/ion-selective channel pore in a membrane made by a protein, through which ions enter single file; channels are specific and either open or closed, depending on membrane potential or the presence of regulatory molecules

Isobilateral having structurally similar upper and lower surfaces (see also dorsiventral)

Isohydric maintaining a constant water status

Isoprene small unsaturated hydrocarbon, containing five carbon atoms (2-methyl-1,3-buta-diene); volatile compound, synthesized from mevalonic acid and precursor of other isoprenoids; can be produced in large amounts by photosynthesizing tissue at high temperatures

Isotope discrimination alteration of the isotopic composition of an element via processes of diffusion, evaporation, and chemical transformation,
due to small differences in physical and chemical properties of isotopes; typically discrimination against the rare (heavy) isotope

Isotope effect end result of various processes that have different rate constants for different isotopes of the same element

Isotope fractionation process that occurs when different isotopes of the same element have different rate constants for the same reaction or process, or chain of reactions or processes

Isotropic similar in all directions

Jasmonic acid secondary plant compound [3-oxo-2-(2'-cis-pentenyl)-cyclopropane-1-acetic acid], named after its scent from jasmine; stress signaling molecule in plants as well as between plants

Juvenile phase stage in the life cycle of a plant between the seedling and reproductive phases; the vegetative phase in herbaceous plants; typically a period of rapid biomass accumulation

k_{cat} catalytic constant of an enzyme: rate of the catalyzed reaction expressed in moles per mole catalytic sites of an enzyme (rather than per unit protein, as in V_{max})

K_i concentration of an inhibitor that reduces the activity of an enzyme to half the rate of that in the absence of that inhibitor

K_m substrate concentration at which a reaction proceeds at half the maximum rate

K strategy suite of traits that enable a plant to persist in a climax community

Kranz anatomy specialized leaf anatomy of C_{4} species with photosynthetic bundle sheath cells surrounding vascular bundles

Krebs cycle tricarboxylic acid cycle; metabolic pathway in the matrix of the mitochondrion oxidizing acetyl groups derived from imported substrates to CO_{2} and H_{2}O

Latent heat energy consumed or released by evaporation or condensation, respectively, of water (enthalpy of transformation); it results in respectively loss and gain of heat

Law of the minimum obsolete concept that plant growth is always limited at any point in time by one single resource; it is not valid in this strict sense

Leaf area index total leaf area per unit area of ground

Leaf area ratio (LAR) ratio between total leaf area and total plant biomass

Leaf conductance/resistance conductance/resistance for transport of CO_{2} or H_{2}O (vapor) of a leaf (it includes the conductance/resistance for the stomatal and the boundary layer pathways in the case of H_{2}O, and additionally for the internal mesophyll pathway in the case of CO_{2})

Leaf-mass density leaf dry mass per unit of fresh mass or volume (in the first case, the presence of intercellular air spaces is not taken into account)

Leaf mass per unit leaf area (LMA) leaf mass expressed per unit leaf area

Leaf mass ratio (LMR), or leaf mass fraction (LMF) ratio of leaf and whole plant biomass

Leaf turnover replacement of senescing leaves by new ones, not accounting for a change in leaf area

Lectin protein with noncatalytic sugar-binding domains; lectins are involved in defense and cellular interactions

Leghemoglobin Hemoglobin-like protein in nodules that associates with O_{2} by means of a bound heme group

Light-compensation point irradiance level at which the rate of CO_{2} assimilation in photosynthesis is balanced by the rate of CO_{2} production in respiration

Light-harvesting complex complex of molecules of chlorophyll, accessory pigments, and proteins in the thylakoid membrane that absorbs quanta and transfers the excitation energy to the reaction center of one of the photosystems

Light reaction transfer of energy from absorbed light to ATP and NADP(H) in the photosynthetic membrane (thylakoid)

Light saturation (of photosynthesis) range of irradiances over which the rate of CO_{2} assimilation is maximal and insensitive to level of irradiance

Lignan phenolic compound with antifungal, antifeeding, and antitumor activity; minor component in most plants and tissues, but quantitatively more important in the wood of some tree species (e.g., redwood)

Lignin large amorphous polyphenolic polymer that confers woodiness to stems

Litter dead plant material that is sufficiently intact to be recognizable

Litter quality chemical properties of litter that determine its susceptibility to decomposition, largely determined by concentrations of secondary metabolites and nutrients
Lockhart equation equation that describes cell expansion in terms of turgor pressure and cell-wall properties.

Long-day plant plant whose flowering is induced by exposure to short nights.

Long-wave infrared radiation with wavelengths larger than approximately 3 μm emitted at Earth temperatures.

Lumen cavity, such as the space surrounded by the thylakoid membrane or the trap of Utricularia surrounded by cells.

Luxury consumption uptake of nutrients above the rate that enhances plant growth rate.

Lysigenous aerenchyma Gas-transport tissue in plants that is formed from spatially selective death of expanded cells (see also schizogenous aerenchyma).

Macronutrients inorganic nutrients that a plant requires in relatively large quantities: K, Ca, Mg, N, S, P.

Macrosymbiont larger partner (i.e., higher plant) in a symbiosis with a microorganism.

Maintenance respiration respiration required to maintain the status quo of plant tissues.

Mass flow movement of substances at equal rates as the fluid or gas in which they occur (e.g., transport of solutes in flowing water and CO₂ in flowing air).

Matric potential component of the water potential that is due to the interaction of water with capillaries in large molecules (e.g., clay particles in soil).

Matrix a substance in which other structures or organelles are embedded; used for the compartment inside chloroplasts or mitochondria, not including the membrane system; also used for the substance in which cell-wall macromolecules are embedded.

Mean residence time (of a nutrient in a plant) time a nutrient remains in the plant, between uptake by the roots and loss (e.g., due to leaf shedding, consumption by a herbivore).

Mega- prefix (M) denoting 10⁶.

Membrane (phospholipid) bilayer that surrounds cells (plasmalemma), cell organelles, and other cell compartments.

Membrane channel transmembrane protein complex that allows inorganic ions, small molecules, or water to move passively across the lipid bilayer of a membrane.

Membrane fluidity loose term to describe the extent of disorder and the molecular motion within a lipid bilayer; fluidity is the inverse of viscosity.

Mesophyll photosynthetic cells in a leaf; in a dorsiventral leaf often differentiated in palisade and spongy parenchyma cells.

Mesophyte plant that typically grows without severe moisture stresses (see also hygrophyte and xerophyte).

Metallophyte species that typically grows in areas with high concentrations of certain heavy metals in the soil.

Micro- prefix (μ) denoting 10⁻⁶.

Microclimate local atmospheric zone where the climate differs from the surrounding atmosphere. (e.g., near a leaf, within a forest and near a body of water).

Microfibril structural component in cell walls, consisting of bundles of around 50 cellulose molecules, that provides the tensile strength of the wall.

Metallothionein low-molecular-mass metal-binding protein.

Micronutrients inorganic nutrients that a plant requires in relatively small quantities: Mo, Cu, Zn, Fe, Mn, B, Cl (see macronutrients).

Microsymbiont smaller partner (i.e., microorganism) in a symbiosis with a higher plant.

Mimicry resemblance of an organism to another organism or object in the environment, evolved to deceive predators, prey, pollinators, etc.

Mineralization breakdown of organic matter releasing inorganic nutrients in the process.

Mistletoe xylem-tapping stem parasite.

Mitochondrion organelle in which part of the respiratory process (tricarboxylic acid cycle, respiratory electron transport) occurs.

Monocarpic life cycle that ends after a single seed production event; the plant flowers only once during its lifetime, which can be after several years or even decades of vegetative growth.

Mycorrhiza (plural is mycorrhizae or mycorrhizas) structure arising from a symbiotic association between a mycorrhizal fungus and the root of a higher plant (from the Greek words for fungus and root, respectively).

Mycorrhizal dependency (of plant growth) the ratio of dry mass of mycorrhizal plants to that of plants of the same genotype grown without mycorrhizal fungus under the same environmental conditions.

Nano- prefix (n) denoting 10⁻⁹.

Net assimilation rate (NAR) rate of plant biomass increment per unit leaf area; synonym is unit leaf rate (ULR).
Net ecosystem carbon balance (NECB) net change in ecosystem carbon content due to all processes, including photosynthesis, respiration, loss of biomass, leaching, and lateral movements and transfers

Net ecosystem production (NEP) organic carbon accumulation that equals gross photosynthesis minus ecosystem respiration or net primary production minus heterotrophic respiration

Net primary production (NPP) quantity of new plant material produced annually per unit ground area including lost plant parts; equals gross photosynthesis minus autotrophic respiration

Nitrification microbial process that transforms ammonia, via nitrite, into nitrate

Nitrogen assimilation incorporation of inorganic nitrogen (nitrate, ammonium) into organic compounds

Nitrogen fixation reduction of dinitrogen gas to ammonium by specialized microorganisms

Nod factor product of nod genes required for successful nodulation in the legume—rhizobium symbiosis

Nod gene rhizobial gene involved in the process of nodulation

Nodulation formation of nodules in symbiotic N2-fixing plants

Nodulins class of plant proteins that are synthesized in legumes upon infection by rhizobia

Normalized difference vegetation index (NDVI) greenness index used to estimate above-ground net primary production from satellites, based on reflectance in the visible and near infrared

Nuclear magnetic resonance (NMR) spectroscopy technique used to make a spectrum of molecules with a permanent magnetic moment, due to nuclear spin; the spectra are made in a strong magnetic field that lines up the nuclear spin in all the molecules; it can, for instance, be used to measure the pH in different cellular compartments in vivo because the site of the peak in a spectrum depends on the pH around the molecule

Nutrient productivity rate of plant biomass increment per unit nutrient in the plant

Nutrient resorption withdrawal of nutrients from a plant part during senescence before shedding

Nutrient-use efficiency growth per unit of absorbed plant nutrient which equals nutrient productivity times mean residence time of the nutrient; ecosystem nutrient-use efficiency is the ratio of litterfall mass to litterfall nutrient content (i.e., the amount of litter produced per unit of nutrient lost in senescence)

Opportunity costs diminished growth resulting from diversion of resources from alternative functions that might have yielded greater growth

Osmoregulation adjustment of the concentration of osmotic solutes in plant cells in response to changes in soil water potential

Osmosensor system involved in sensing a change in the concentration of solutes in cells; osmosensors were first extensively studied in yeasts and subsequently also identified in plants

Osmotic potential component of the water potential that is due to the presence of osmotic solutes; its magnitude depends on solute concentration

Oxidative pentose phosphate pathway metabolic pathway that oxidizes glucose and generates NADPH for biosynthesis

Oxidative phosphorylation formation of ATP (from ADP and P_i) coupled to a respiratory electron-transport chain in mitochondria and driven by a proton-motive force

Oxygenation the binding of O2 to a substrate, without changing the redox state of O (e.g., ribulose-1,5-bisphosphate by Rubisco); it also refers to the addition of O2 to a medium (e.g., water)

Palisade mesophyll transversally oriented elongated photosynthetic cells at the adaxial side of a dorsiventral leaf

PAR photosynthetically active radiation (400—700 nm)

Paraheliotropism leaf movement that positions the leaf more or less parallel to the incident radiation throughout the day

Parent material rock and other substrates that generate soils through weathering

Pectin cell-wall polymer rich in galacturonic acid

Perennial species whose individuals typically live more than 2 years; the length of the life cycle can be indeterminate or end after a single seed production event (monocarpic)

Peribacteroid membrane plant-derived membrane that surrounds one or more bacteroids in root nodules

Pericarp matured ovulary wall in a seed

Pericycle layer of outermost stelar cells, adjacent to the endodermis
Permanent wilting point soil water potential at which a plant can no longer absorb water from the soil; it is species specific but is generally taken to be −1.5 MPa

Peta- prefix (P) denoting 10^15

Phenol compound that contains a hydroxyl group on an aromatic ring

Phenolics aromatic hydrocarbons, many of which have antimicrobial and anti-herbivore properties

Phenology time course of periodic developmental events in an organism that are typically seasonal (e.g., budbreak or flowering)

Phenotypic plasticity range of variation of a trait in a genotype as a result of growth in contrasting environmental conditions

Phenylalanine ammonia lyase enzyme that catalyzes the first step in the conversion of the amino acid phenylalanine into phenolics

Phloem long-distance transport system in plants for mass flow of carbohydrates and other solutes

Phosphatase enzyme hydrolyzing organic phosphate-containing molecules

Phospholipid major category of membrane lipids, generally composed of two fatty acids linked through glycerol phosphate to one of a variety of polar groups

Phosphorylation process involving the covalent binding of a phosphate molecule; many enzymes change their catalytic properties when phosphorylated

Photodamage/photodestruction damage to/ destruction of components of the photosynthetic apparatus as a result of exposure to high irradiance, frequently in combination with other stress factors; the result is photoinhibition

Photoinhibition decline in photosynthetic efficiency upon exposure to high irradiance; the decline can be transient (less than 24 hours), which is related to protection of the photosynthetic apparatus, or it can be longer lasting, which implies photodamage

Photomorphogenesis Plant development affected by light; generally under control of photoreceptors

Photon discrete unit of light that describes its particle-like properties (quantum); light also has wavelike properties

Photon flux density (PFD) A measure of the level of irradiance in the (near) visible spectral region; it is expressed as photons incident on a (horizontal) plane per unit of time; photosynthetic photon flux density (PPFD) refers to the photosynthetically active part of the spectrum; see also quantum flux density

Photoperiod length of the daylight period each day

Photoperiodic responding to the length of the night

Photoreceptor A protein with chromophore that absorbs light in a specific spectral region; it is typically the start of a signal-transduction pathway leading to photomorphogenetic events

Photorespiration production of CO₂ in the metabolic pathway that metabolizes the products of the oxygenation reaction catalyzed by Rubisco; see also respiration

Photosynthesis process in which light energy is used to reduce CO₂ to organic compounds; occurs in chloroplasts in higher plants and algae

Photosynthetic efficiency efficiency of the use of light for photosynthesis (quantum yield); mostly used in conjunction with chlorophyll fluorescence

Photosynthetic nitrogen-use efficiency rate of photosynthesis expressed per unit (organic) nitrogen in the photosynthesizing tissue

Photosynthetic quotient ratio between CO₂ uptake and O₂ release in photosynthesis

Photosynthetic water-use efficiency ratio between photosynthetic carbon gain and transpirational water loss

Photosynthetically active radiation (PAR) radiation used to drive photosynthesis (400—700 nm); the spectral region is similar to that of visible light, but the spectral sensitivity is different from that of the human eye

Photosystem unit comprising pigments and proteins where the excitation energy derived from absorbed photons is transferred to an electron; there are two types of photosystems (I and II) that are embedded in the photosynthetic membrane (thylakoid)

Phototropism growth of plant organs in response to the directional component of light perceived by the blue-light photoreceptor phototropin

Phreatophyte plant species that accesses deep layers of water

Phyllosphere immediate surroundings of a leaf

Phylogenetic constraint genetic constitution of a population or taxon that restricts evolutionary change; it can prevent the development of particular traits

Physiological filter physiological limitations due to intolerance of the physical environment, which prevent survivorship of plant species that arrive at a site

Phytate calcium salt of myo-inositol hexakisphosphate; organic P-storage compound in seeds and endodermis of some plant species and major fraction of organic P in soils
Phytoalexin plant defense compound against microorganism, whose synthesis is triggered by components of microbial origin

Phytoanticipin constitutively produced plant defense compound against microorganism

Phytochrome photoreceptor absorbing red or far-red radiation (depending on its configuration); this pigment is involved in the perception of the presence of light, light quality, and daylength

Phytohormone plant compound produced in one part of the plant and having its effect in another part at minute concentrations (nanomolar and picomolar range)

Phytomining use of green plants to remove, contain, or render harmless environmental contaminants

Phytosiderophore iron-chelating organic molecule in grasses

Pico- prefix (p) denoting 10^{-12}

Pioneer species that is a major component of a vegetation at early stages of succession; used in contrast to climax species

Pit narrow channel through the thick secondary walls of vessel elements in xylem

Pit membrane relatively thin structure in each pit which is formed from the primary cell wall and consists of a dense network of hydrophilic cellulose polymers

Plasmalemma plasma membrane; external membrane surrounding the cytoplasm

Plasmodesma(s) minute membrane-lined channels that traverse the plant cell wall to provide a cytoplasmic pathway for transport of substances between adjacent cells

Plasmolysis separation of the cytoplasm from the cell wall due to water loss; only happens in water, not in air

Plasticity the ability of an organism to adjust depending on the external environment

Pneumatophore specialized portion of the root that emerges from water-logged soils, believed to be used for gas exchange

Poikilohydric plants or plant parts (seeds, pollen) that can dry out without losing their capacity to function upon rehydration

Post-illumination CO$_2$ fixation CO$_2$ fixation that occurs briefly after a light pulse

ppb part per billion; $1\ \text{nmol mol}^{-1}$; $1\ \text{ng g}^{-1}$; $\mu\text{l l}^{-1}$ (not an acceptable SI unit)

Pressure chamber chamber in which a plant or part thereof can be pressurized; it is, among others, a part of the equipment used to determine the water potential in the xylem of plant stems

Pressure potential pressure component of the water potential; it is positive in nonplasmolyzed living plant cells (turgor) and negative in the xylem of transpiring plants (suction)

Pressure probe microcapillary that is injected into a living cell to measure cell turgor

Protease/protease protein-hydrolyzing enzyme

Protein turnover breakdown and synthesis of proteins that does not account for a change in protein concentration

Proteoid root (=cluster root) cluster root; a short-haired dense package of root hairs that exudes nutrient solubilizing compounds; the name stems from the family of the Proteaceae

Protocarnivory capability of plants to digest arthropods or other organic items that are trapped on sticky surfaces or in “tank” traps and absorb the breakdown products of the trapped material

Proton co-transport transport mechanism that allows movement of a compound against the electrochemical gradient for that molecule, using the proton-motive force

Proton-motive force driving force across cell membranes due to a membrane potential and/or proton gradient

Protoplasmic streaming flow of the cytoplasm, mediated by the cytoskeleton

Protoplast cell membrane with cytoplasm and cell organelles inside; it is isolated after enzymatic removal of the cell wall

Pulvinus “joint” in a petiole that allows the movement of a leaf, due to transport of ions between cells in the pulvinus, followed by changes in turgor (e.g., in many legumes)

Q$_{10}$ change in rate of a reaction in response to a 10°C change in temperature

Qualitative defense compound highly toxic secondary plant metabolite that protects against attack by herbivores at low concentration

Qualitative long-day plant plant that will not flower unless the length of the night gets below a critical value

Qualitative short-day plant plant that will not flower unless the length of the night gets above a critical value
Quantitative defense compound secondary plant metabolite that gives some protection against attack against a broad range of herbivores when present in large amounts.

Quantitative long-day plant plant whose flower induction is promoted by exposure to short nights.

Quantitative short-day plant plant whose flower induction is promoted by exposure to long nights.

Quantum flux density a measure of the level of irradiance; it is expressed as quanta incident on a (horizontal) plane per unit of time; see also photon flux density.

Quantum yield moles of CO₂ fixed or O₂ evolved in photosynthesis, or electrons transported in the photosynthetic membrane, per mole of quanta absorbed; in the context of gas exchange often restricted to the linear, light-limited part of the photosynthesis—irradiance curve; when measuring chlorophyll fluorescence, it refers to the full range of photosynthetic irradiance.

Recalcitrant organic matter soil organic matter that takes a long time to be decomposed.

Recalcitrant seeds seeds that do not tolerate desiccation and are consequently difficult to store for longer periods; they typically germinate shortly after dispersal without first going through a phase of dormancy.

Receptor protein with a high affinity and specificity for a signaling molecule (e.g., a phytohormone), which is the start of a signal-transduction pathway.

Reductive pentose phosphate pathway metabolic pathway that utilizes NADPH produced in the light reaction of photosynthesis and produces triose-phosphate.

Reflectance fraction of radiation incident on a surface that is reflected (e.g., a leaf, or the Earth surface).

Relative humidity water vapor concentration of air relative to the maximum water vapor concentration at that temperature.

Relative water content water content of a plant tissue relative to the water content at full hydration.

Reserve formation build-up of storage products that result from diversion of plant resources to storage from alternative allocations, such as growth.

Resistance (against stress) plant capacity to minimize the impact of stress factors in the environment, either by the presence of tolerance mechanisms or by avoidance of the stress.

Resorption translocation of nutrients and soluble organic compounds from senescing tissues prior to abscission.

Resource competition use of the same pool of growth-limiting resources by two or more plants.

Respiratory quotient ratio between CO₂ release and O₂ consumption in dark respiration.

Resurrection plant plant that withstands complete dehydration and resumes functioning upon rehydration.

Rhizobia collective term for bacteria that fix N₂ in symbiosis with legumes or Parasponia of the genera Rhizobium, Bradyrhizobium, Sinorhizobium, Mesorhizobium, and Azorhizobium.

Rhizosphere zone of soil influenced by the presence of a root.

Ring porous wood in which xylem vessels produced early in the growing season are longer and wider than those produced in late wood, adding to the distinction of annual growth rings.

Rock phosphate Inorganic phosphate compound with very low solubility.

Root density total root length per unit soil volume.

Root-mass density see biomass density.

Root-mass ratio (RMR) ratio between root biomass and total plant biomass, synonym is root mass fraction (RMF).

Root pressure positive water potential in the xylem due to ion transport into the xylem of roots and subsequent osmotic uptake of water.

Root shoot ratio ratio between root biomass and shoot biomass.

Root turnover replacement of (old) roots by new ones, not accounting for a change in the total amount of roots.

Roughness unevenness of a surface that creates turbulence and enhances convective exchange between the surface and the atmosphere.

Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase; enzyme catalyzing the primary step in the Calvin-cycle, the attachment of CO₂ to the CO₂-acceptor molecule ribulose 1,5-bisphosphate (RuBP); also catalyzes the oxygenation of RuBP.

Rubisco activase protein catalyzing the carbamylation of Rubisco that regulates its activity; chaperone protein protecting the catalytic sites of Rubisco at extreme temperatures and in darkness.
Ruderal species species that flourish on disturbed sites and complete their life cycle relatively rapidly
Runoff gravitational water loss from an ecosystem; the difference between precipitation and evapotranspiration (surface and groundwater runoff)
Saline soils soils with high salt concentration
Salt gland group of cells involved in salt excretion
Saponin secondary plant compound with soap-like properties
Sapwood most recent wood in the xylem of a tree trunk, with open xylem conduits that still function in water transport; it has often a lighter color than the innermost heartwood
Scarification breaking, scratching, or softening the seed coat to allow moisture penetration
Schizogenous aerenchyma Gas-transport tissue in plants that is the outcome of highly regulated and species-specific patterns of cell separation and differential cell expansion that creates spaces between cells (see also lysigenous aerenchyma)
Sclerenchyma tissue that can consist of two types of cells: sclereids and fibers, which both have thick secondary walls and are frequently dead at maturity
Scleromorph containing a relatively large amount of sclerenchyma
Sclerophyllous leaves that are scleromorph; they are thick, tough and have a thick cuticle
Secondary metabolites compounds produced by plants that are not essential for normal growth and development; they are frequently involved in the interaction with a plant’s biotic and abiotic environment
Seedling phase recently germinated plants that still have their cotyledons attached
Self-thinning reduction in plant density due to increased mortality as a result of competition
Senescence programmed series of metabolic events that involve metabolic breakdown of cellular constituents and transport of the breakdown products out of the senescing organ that ultimately dies
Serotinous state of cones on a tree that remain closed with release of seeds delayed or occurring gradually
Serpentine soil soils that naturally contain high levels of various heavy metals and magnesium, but low concentrations of calcium, nitrogen, and phosphate
Short-day plant plants whose flowering is induced by exposure to long nights
Signal-transduction pathway chain of events by which a chemical messenger (e.g., a phytohormone or other signaling molecule) or physical (e.g., radiation) signal is sensed and relayed into a chain of molecular events that lead to a response; it can operate at the cellular or whole-plant level, involving long-distance transport of the signal
Sink part of the plant that shows a net import of a compound (e.g., a root is a sink for carbohydrates and a leaf is a sink for inorganic nutrients); see also source
Soil texture particle size distribution in a soil, e.g., the relative proportions of sand, silt, and clay
Solar tracking movement of a leaf or flower that positions this organ at a more or less constant angle relative to the incident radiation throughout the entire day
Source part of a plant that shows a net export of a compound (e.g., a leaf is a source for carbohydrates and a root is a source for inorganic nutrients); see also sink
Specific leaf area (SLA) leaf area per unit leaf dry mass
Specific leaf mass leaf dry mass per unit leaf area (LMA)
Specific root length (SRL) root length per unit root dry mass
Spongy mesophyll loosely packed photosynthetic cells at the abaxial side of a dorsiventral leaf
Stomata structures in the leaf epidermis formed by specialized epidermal cells; mostly the term refers to the pores, as well as to the stomatal apparatus
Stomatal pore opening in the leaf epidermis between two guard cells of stomata
Starch polymer of glucose; storage compound in plastids
Stomatal conductance/resistance conductance/resistance for transport of CO₂ or water vapor through the stomata
Storage build-up of a metabolically inactive pool of compounds that can subsequently serve to support growth or other physiological functions; see reserve formation
Strategy complex suite of traits allowing adaptation to a particular environment
Stratification breaking of seed dormancy by exposure of moist seeds to low temperatures
Stress environmental factor that reduces plant performance
Stress protein protein that is produced only or in greater quantities upon exposure to stress

Stress response the immediate detrimental effect of stress on a plant process causing reduced plant performance

Stroma matrix within the chloroplast containing Calvin-cycle enzymes and in which the thylakoid membrane system is suspended

Strophiole (= caruncle) an outgrowth of a seed coat, near the hilum; preformed weak site in the seed coat that allows entry of water when sufficiently weathered

Suberin polymer containing long-chain acids, hydroxy acids, alcohols, dicarboxylic acid, and phenols; the exact structure is not fully understood; cell-wall component in many locations (e.g., Casparian strip, corky periderm)

Subsidiary cell epidermal cell type around many stomata, located distally and laterally to a guard cell

Succession directional change in plant species composition resulting from biotically driven changes in resource supply

Succulence thick fleshy state of herbaceous tissues due to high water content; it is quantified as the volume of water in the leaf at a relative water content of 100% divided by the leaf area

Succulent plant with tissue of high degree of succulence

Sugar sensing the perception of internal sugar concentrations that is at the start of a signal-transduction pathway

Summer annual species whose seeds germinate after winter and completes its life cycle before the start of the next winter

Sunfleck short period of high irradiance that interrupts the background of low diffuse radiation in and under leaf canopies caused by direct sunlight that penetrates small holes in the canopy

Supercooling refers to the noncrystalline state of water at sub-zero temperatures

Supply function equation describing CO₂ diffusion from the atmosphere into the leaf, supplying substrate for photosynthesis

Symbiosis intimate association between two organisms of different species (in this text, the term is used when both symbionts derive a long-term selective advantage)

Symbiosome membrane-surrounded space containing one or more rhizobia in an infected cell of a root nodule in a legume

Symplast space comprising all the cells of a plant’s tissues connected by plasmodesmata and surrounded by a plasma membrane

Symplastic phloem loading occurs in plants in which photosynthates moves from the cytoplasm of the mesophyll cells of the leaves, via plasmodesmata, to intermediary cells; after chemical transformation into oligosaccharides, these move, again via plasmodesmata, to the sieve tubes

Symport Co-transport of one compound in one direction coupled to transport of another compound (mostly H⁺) in the same (uniport) or opposite (antiport) direction

Systemic resistance resistance that is induced by a herbivore or a microorganism at a location that differs from the plant part that has been primarily affected; the organisms that induce the resistance may be parasitic or have a growth-promoting effect

Tannin class of protein-precipitating polymeric phenolic secondary plant compound; typically a quantitative defense compound

TCA cycle Tricarboxylic acid cycle

Terpenoid class of secondary plant compounds containing C and H, produced from the precursor mevalonic acid

Testa seed coat

Thermogenic respiration respiration that increases the temperature of an organ, such as the flowers of Arum lilies

Thigmomorphogenesis altered growth of plant organs in response to a physical force (touch, wind, vibrations, rain, turbulent water flow)

Thylakoid photosynthetic membrane suspended in the stroma in chloroplasts; it encloses a lumen and contains the photosynthetic pigments, electron-transport chain components and ATP-synthase

Tissue-mass density dry mass per unit volume of a tissue

Tissue tension result of differences in turgor and/or cell-wall elasticity between different cells in a tissue or organ; the tension is relaxed when the organ is cut, resulting in deformation; tissue tension plays an important role in the closing mechanism of the carnivorous Venus fly trap (Dionaea)

Tolerance endurance of unfavorable environmental conditions

Tracheid cell type in the xylem
Trade-off balancing of investment in mutually exclusive traits (e.g., protective structures vs. photosynthetic machinery in leaves)

Transfer cell cell involved in transport that has a proliferation of the plasma membrane causing surface enlargement (e.g., in the phloem of plants using the apoplastic phloem-loading pathway, in the epidermis of aquatic plants using bicarbonate)

Translocation transport of solutes through the phloem

Transmittance fraction of radiation incident on a body that passes through the body; mostly used with reference to leaves

Transpiration water loss from leaves or whole plants due to evaporation from within a leaf or other plant parts

Tricarboxylic acid cycle (TCA cycle) conversion of malate or pyruvate to CO₂ within the mitochondria

Trichome epidermal hair on a leaf or stem

Trypsin protein-hydrolyzing enzyme (in animals)

Turgor positive hydrostatic pressure in live plant cells

Uncoupler chemical compound that enhances the membrane conductance for protons and so uncouples electron transport from phosphorylation

Unit leaf rate (ULR) synonym for net assimilation rate (NAR)

Up-regulation increase in the normal rate of a process, sometimes involving increased transcription of genes encoding enzymes involved in that process

\(V_{\text{max}} \) substrate-saturated rate of a chemical conversion catalyzed by an enzyme (expressed per unit protein, rather than per mole catalytic sites as in \(k_{\text{cat}} \))

Vacuole membrane-bound cell compartment filled with water and solutes; among others used for storage of sugars, nutrients, and secondary metabolites

Vapor pressure deficit (VPD) difference in actual vapor pressure and the vapor pressure in air of the same temperature and pressure that is saturated with water vapor

Vapor pressure difference (Δ\(w \)) difference in vapor pressure between the intercellular spaces and the atmosphere

Vegetative reproduction asexual reproduction of plants through detachment of a part that develops into a complete plant; clonal growth

Vegetative storage protein proteins accumulating in vegetative plant parts (leaves and hypocotyls) at a high supply of nitrogen (e.g., in Glycine max)

Vernalization induction of flowering by exposure to low temperatures (from the Latin word ver = spring)

Vessel water-conducting element of the xylem

Viscoelastic creep mixture of viscous and elastic processes during cell-wall expansion; also unsavory character met in dark alleys

Viviparous seeds seeds that germinate prior to abscission from the maternal plant (e.g., mangrove species)

Wall loosening refers to the process during which covalent or noncovalent bonds between cellulose microfibrils and other macromolecules are broken, so that the cell under turgor can expand

Water channel pore for water transport in membranes consisting of a specialized protein (aquaporin); water moves single file

Water potential chemical potential of water divided by the molar volume of water, relative to that of pure water at standard temperature and pressure

Water status loose term referring to aspects of the plant’s relative water content, turgor, water potential, etc.

Water stress stress due to shortage of water

Water-use efficiency ratio between the gain of (above-ground) biomass in growth or CO₂ in photosynthesis and transpirational water loss

Wilting point water potential at which turgor pressure is zero

Winter annual species whose seeds germinate before or in winter and completes its life cycle before the start of the next summer; typically found in Mediterranean-type climates

Xanthophyll cycle chemical transformations of a number of carotenoid molecules in the chloroplast that avoid serious damage by excess radiation

Xenobiotic potentially toxic chemical that is found in an organism where it is normally not occurring; can be restricted to synthetic compounds, but is also used in a wider sense
Xerophyte — plant that typically grows in dry environments, see also mesophyte and hygrophyte

Yield coefficient — a proportionality constant in the Lockhart equation that refers to the plasticity of cell walls

Yield threshold — minimum turgor pressure for cell expansion

Zeatin — a phytohormone belonging to the cytokinins, the name stems from Zea mays (corn), from which it was first isolated
Index

A
Abscisic acid (ABA), 54, 197, 238, 325, 326–327, 340, 348, 384
Absorbance/Absorptance, 13, 27, 29–30, 32, 33, 41–42, 228, 229
Absorbed photosynthetically active radiation (APAR), 560
Acclimation
elevated [CO₂], 89–90, 361–362
See also Temperature
Acetaldehyde, 119
Acetic acid, 238, 326, 434
Acetylene, 431, 434
Acid growth, 76–79
Acidic soils, 535, 549
Acidification
cell wall, 324–327, 333, 348, 367, 538
soil, 415
Acid rain, 257, 284, 307, 550
Action potential, 537–539, 541
Activation energy, 20, 60, 61, 225, 346
Acyanogenic, 455–456
Adaptation
shade, 28, 51, 164, 237, 340–343, 364, 386–391, 508, 509, 558
See also Temperature
Adult
Foliage, 388, 390, 398
Adventitious roots
as affected by flooding, 358–360
Aerenchyma
Lysigenous, 356, 357
Schizogenous, 587
Aflatoxin, 458
Agglutinin
nonmycorrhizal plants, 523–524
Albedo, 561, 562, 565–566, 569
Alcohol dehydrogenase, 119
Alkaline soils, 271, 289, 310
Alkaloid
UV tolerance, 239
Allelopathic compound, 445–447, 449
Allelopathy, 8, 445–448, 505
See also Biomass; Carbon; Nitrogen; Nutrient
Allomone, 395

plant/species, 6, 63, 226, 232, 240, 268, 332, 336, 360

Alternative oxidase, expression in cluster roots, 117
regulation, 110–112
oxidation/reduction, 103–105, 107, 111, 114–117, 124, 126, 131
α-keto acids, 108, 110–111

Alternative (respiratory) path (way)
activity in leaves, 122–123
activity in roots, 102–103
competition with cytochrome path, 109, 110
ecophysiological significance, 112–113
energy overflow hypothesis, 114–117
photosynthesis under high-light conditions, 126
thermogenesis, 112
when cytochrome path is restricted, 118

Aluminum
Resistance, 129
specification as dependent on pH, 129–130
toxicity, 275

Amide, 337, 339, 350, 425, 429, 431

Amine
pollination, 112

Amino acid
uptake by roots, 159, 163, 165
Aminocyclopropan-carboxylic acid (ACC), 326–327
Ammonium (NH$_4^+$), 257, 266, 269, 275–276, 284, 291, 416, 432

Amylase
inhibitor of, 459

Anaerobic soil, 121
An-Ci curve, 43, 68
Absorptance, 27, 29, 41, 42, 228

Annual plant, 506

Anoxia, 120

Antheraxanthin, see xanthophyll cycle

Anthocyanin, 63, 213, 390–391, 471, 495

Antifreeze proteins, 214
Antifungal, 391, 523
Antimetabolite, 454
Antioxidant, 240, 459
Antiport, 159
Ant plant, 470

Aphid
cross resistance, 487–488
phloem feeding, 160
Apical dominance, 326, 343
Apoplast, 85, 140, 154–157, 159, 171, 175, 179, 180, 197, 199, 214, 243, 244, 287, 294, 299, 337, 415, 418, 422, 426, 434, 437, 471, 495, 501

Aquaporin
effects of cytosolic acidosis, 120–121
expression in seed coat, 157, 159
mesophyll conductance, 25
role in water uptake, 180

Arbuscular mycorrhiza (AM)
litter decomposition, 546
Arbuscule, 404, 408–409, 416

Arctic
Environment, 558
plant/species, 63, 127, 261, 270, 395

Arginine
transport in AM hyphae, 416–417
Arms race, 451, 465, 481, 483
Ascomycota, 408, 410, 436
Ascorbic acid/ascorbate (vitamin C), 41, 42, 239, 240, 459, 472

Ash content, 138

Asparagine, 337, 429, 431, 496

Aspirin, 449, 457, 485

Atmospheric deposition
of N, 257
of P, 257

Atropine, 451, 457, 458
Attractant, 425, 448, 465–466

Autoregulation
mycorrhiza formation, 416
nodule formation, 435

Autotoxicity, 447

Auxin (IAA), 326
Avoidance, 4, 52, 211, 216, 244, 288, 291, 329, 330, 359, 385, 436, 455, 464, 468, 518
Azorhizobium, 423, 424
Azospirillum, 422, 433

Bacteroid, 425, 427, 429–430
Basidiomycota, 408, 409, 410
Benefits, 6, 7, 121, 253, 275, 403, 418, 419, 421, 469, 508, 521, 533, 543
Benzoazinoid, 446
Benzyladenine, 350, 351
Betaine, 424
Bicarbonate, 75, 83, 130, 411
Biennial, 63, 336, 338–339, 383, 385, 387, 393, 394
Big-leaf model, 249, 251, 253
Biodiversity, 421, 443, 566
Biomass density, 480, 556
Biotic filter, 2, 3, 6
Blue-light receptor, 199, 203, 325
Bodyguards, 464–466, 472

Boron
tolerance to deficiency, 157, 286–287

Boundary layer
Bradyrhizobium, 423–424, 430
Branching factor, 408, 493
Bulliform cell, 207
Bundl shear cells, 65, 67, 70, 72, 152, 154, 155–156

C

C$_3$–C$_4$ intermediate, 70–73
C$_3$-CAM intermediates, 81–82, 85, 86, 90

C$_4$-plant/species, 22–24, 39, 58, 64, 65, 67–76, 79–81, 83, 85, 89–90, 182, 205, 207, 304, 354, 362, 514, 519–520
Cadmium (Cd), 275, 289, 290, 292
Caffeine, 460
Calcareous soils, 276, 278, 288–289, 413
Calcicole, 288–289, 310
Calcifuge, 152, 284, 288–289, 310, 521
Calcium (Ca)
Deficiency, 324–327
effect on Na+ influx, 264–265, 297
phloem, 153–154, 159
second messenger, 199, 289, 361
Calcium-pectate complexes, 325
Callose
Phloem, 153–154
Calmodulin, 287, 361
Calvin (Benson) cycle, 12, 14, 15, 16, 18, 32–33, 36, 43–48, 51, 62, 65, 67, 73, 76, 78, 94, 140, 291
CAM, 81–82, 85, 86, 90
CAM cycling, 80
CAM idling, 80
CAM plant, 24, 75–82, 117, 182, 207, 210, 366, 367
CAM plant/species, 11, 24, 73, 75–82, 90, 117, 182, 207, 210, 366, 367
Canopy
cell conductance/resistance, 249
growth, 252
smooth, 251, 252
Canopy height, 508, 558
Canopy roughness, 567
Capillaroid roots, 273
Capillary forces, 185, 186, 213
Carbamylation, 43
Carbohydrate status, 51, 123, 125, 251
Carbon
allocation, 16, 47, 51, 122, 205, 235, 279
balance, 7, 8, 47, 87, 101, 127, 132–143, 160, 210, 228, 346, 525, 561
budget, 127, 132, 134, 322, 333, 391, 500, 535, 545
global, 545
concentration, 83, 322, 323, 334, 362, 500
isotope (13C), 87
loss, 27, 120, 390, 391
reduction (photosynthetic), 12, 14–16, 33
sequestration, 545, 547, 549, 566
use, 7, 122, 131–133, 139, 321–323, 333, 366, 418
Carbon dioxide
carbon, 16, 235, 279
carbon balance, 7, 8, 47, 87, 101, 127, 132–143, 160, 210, 228, 346, 525, 561
budget, 127, 132, 134, 322, 333, 391, 500, 535, 545
global, 545
concentration, 83, 322, 323, 334, 362, 500
isotope (13C), 87
loss, 27, 120, 390, 391
reduction (photosynthetic), 12, 14–16, 33
sequestration, 545, 547, 549, 566
use, 7, 122, 131–133, 139, 321–323, 333, 366, 418
Carbon dioxide
carbon, 16, 235, 279
carbon balance, 7, 8, 47, 87, 101, 127, 132–143, 160, 210, 228, 346, 525, 561
budget, 127, 132, 134, 322, 333, 391, 500, 535, 545
global, 545
concentration, 83, 322, 323, 334, 362, 500
isotope (13C), 87
loss, 27, 120, 390, 391
reduction (photosynthetic), 12, 14–16, 33
sequestration, 545, 547, 549, 566
Carbon dioxide
carbon, 16, 235, 279
carbon balance, 7, 8, 47, 87, 101, 127, 132–143, 160, 210, 228, 346, 525, 561
budget, 127, 132, 134, 322, 333, 391, 500, 535, 545
global, 545
concentration, 83, 322, 323, 334, 362, 500
isotope (13C), 87
loss, 27, 120, 390, 391
reduction (photosynthetic), 12, 14–16, 33
sequestration, 545, 547, 549, 566
Carbon dioxide
carbon, 16, 235, 279
carbon balance, 7, 8, 47, 87, 101, 127, 132–143, 160, 210, 228, 346, 525, 561
budget, 127, 132, 134, 322, 333, 391, 500, 535, 545
global, 545
concentration, 83, 322, 323, 334, 362, 500
isotope (13C), 87
loss, 27, 120, 390, 391
reduction (photosynthetic), 12, 14–16, 33
sequestration, 545, 547, 549, 566
Carbon dioxide
carbon, 16, 235, 279
carbon balance, 7, 8, 47, 87, 101, 127, 132–143, 160, 210, 228, 346, 525, 561
budget, 127, 132, 134, 322, 333, 391, 500, 535, 545
global, 545
concentration, 83, 322, 323, 334, 362, 500
isotope (13C), 87
loss, 27, 120, 390, 391
reduction (photosynthetic), 12, 14–16, 33
sequestration, 545, 547, 549, 566
Carbon dioxide
carbon, 16, 235, 279
carbon balance, 7, 8, 47, 87, 101, 127, 132–143, 160, 210, 228, 346, 525, 561
budget, 127, 132, 134, 322, 333, 391, 500, 535, 545
global, 545
concentration, 83, 322, 323, 334, 362, 500
isotope (13C), 87
loss, 27, 120, 390, 391
reduction (photosynthetic), 12, 14–16, 33
sequestration, 545, 547, 549, 566
Climax species, 333
Climbing plant/species, 160
Clonal growth, 389
Cluster roots, proteoid roots, 117, 257, 271, 273, 335, 412, 413, 415, 517
C/N ratio, 338
CO2-compensation point, 16, 18, 20, 68, 70, 72, 83, 265, 491
CO2 response
 Growth, 52–53
 photosynthesis, 16–21
Coevolution, 408
Cohesion theory, 185, 186
Coils, 406, 409
Cold
 Dehardening, 63, 243
 Hardening, 63, 243, 345
 hydrophilic proteins, 243
 short days, 243, 345
 stress, 242–243
Colonization, 363, 408–410, 412, 413, 415–416, 418, 421, 479, 524, 558
Communication, 409, 462–466, 468, 472, 510
Companion cell, 151–152, 154–156, 158, 160
Compartmentation, 71, 77, 242, 291, 292, 301, 455, 470, 471
Compatible response, 485
Compatible solute, 71, 75, 114, 122, 123, 175, 210, 216, 301, 303, 499
Competitive strategy, 183, 367, 385, 508, 509
Complex I, 103–104, 107, 119, 485
Complex II, 104
Complex III, 104
Complex IV, 104–105
Constitutive defense, 462, 468, 480
Construction cost
 biochemical composition, 136, 138
 carbon and ash content, 138
 elemental composition, 138
 heat of combustion, 138
Contractile roots, 182
Convection, convective heat transfer, 184, 225, 226, 230–232
Convergent evolution, 6, 73, 332, 542
Copper, 260, 275, 276, 289, 295
Coralloid roots, 260, 275, 276, 289, 295
Coupling factor, 14, 33, 34, 104, 112, 425, 487
Coupling (between plants and atmosphere), 566–567
Crassulacean acid metabolism, see CAM
Critical daylength, 391
Crop plant/species, 121, 186, 192, 267, 271, 273, 288, 297, 310, 342, 393, 397, 419, 456, 458, 459, 466, 472, 485
Cross-resistance, 480, 487–488
Cross-talk, 241, 485–487
Cryoprotectin, 241, 485–487
Cryoprotection, 243, 244
Cryoprotective, 241, 485–487
Cryoprotection, 243, 244
Cryptochrome, 35, 329, 344, 509
Crystal, 214, 228, 243, 289, 454
Cuticle, 299, 307, 359, 479, 546
Decomposition, 8, 75, 257, 259, 279, 284, 306, 308, 352, 416, 433, 447, 545–552
De-etiolation, 329, 330, 385
Defense
 constitutive, 462, 468, 480
Cutin, 203
Cyanide (HCN), 101, 103, 105, 114, 115, 395, 431, 455
Cyanide-resistant respiration, 112, 118, 129, 482
Cyanobacteria, 69, 83, 403, 422–423, 425
Cyanogenic glucoside, 449, 457
Cyanogenic lipid, 118, 455
Cycling, 7, 80, 280, 349–350, 382, 397, 413, 421, 447, 499, 550, 563, 565
Cyclobutane-pyrimidine dimer, 238
Cysteine, 292, 455, 480
Cytochrome oxidase, 110, 114–115, 116, 124, 129–130, 301, 448, 455–456
Cytochrome P–450, 471
Cytosolic acidosis, 119–120
D
Dark reaction (of photosynthesis), 11, 12, 55, 244
Dark respiration
 Photosynthesis, 19, 27, 34, 132, 251
Dauciform roots, 273
Daylength, 329, 341, 345, 391–393, 398
Day-neutral plants, 391
Day respiration, 19
Decomposition, 8, 75, 257, 259, 279, 284, 306, 308, 352, 416, 433, 447, 545–552
De-etiolation, 329, 330, 385
Defense
 constitutive, 462, 468, 480
Drosophila, 241, 536
Drought deciduous, 196, 211
Drought effects, 211–214
Dual-affinity transport system, 265
Dulcitol, 152
Dutch elm disease, 191
Dwarf, 25, 30, 32, 137, 327, 360, 422, 491, 492, 547, 550

E
Early-successional species, 385, 515, 520, 524–526
Ecological amplitude, 2, 4, 255, 284, 310
Ecosystem, 181, 260, 308–309, 545–552, 555–556
Ecosystem respiration, 561–562
Ecotone, 578
Ecotype, 26, 291, 295–299, 341, 345, 360, 392
Ectomycorrhiza, 291, 404, 406, 410, 413–414, 416, 418, 421, 517
litter decomposition, 546, 548–551
Eddy covariance, 251
EGTA, 215, 537
Elastic modulus, 176–178, 212
Electron transport
in chloroplasts, 18, 21, 32–33, 39, 68–69, 117–118, 242, 259
in mitochondria, 107, 115, 485
Elevated [CO2]
effects on N2 fixation, 435
effects on photosynthesis, 561–562
effects on root exudation, 279–280
Elicitation, 428, 463, 486–487
Elicitor, 131, 428, 465, 483, 487, 488
Embolsism, cavitation, 188–192
Embryo, 155, 157, 159, 213–214, 243–244, 375–376, 378, 384, 540
Emission
isoprene, 241–242
long-wave radiation, 230
Emissivity, 239
Domatia, 469

Drought transport, 154–155
root nodules, 428–429
Endodermis, 179–181, 267, 346, 409
Endophyte, 434, 436–437
Endosymbiont, 423, 436–437
Energy budget, 225–235
Energy demand, 101, 124, 131, 134, 232, 451, 545, 549
effect on glycolysis, 107–108
Ephemeral, 578
Epicuticular wax, 365
UV tolerance, 239
Epidermis, 12, 82, 159, 179, 181, 209, 239–240, 267, 280, 301, 338, 359, 424, 427, 537–539
Epiphyte, 80, 177
Ericoid mycorrhiza, 406, 413, 416, 517, 548, 550
litter decomposition, 546
Essential element, 2, 304
Ethanol, 49, 101, 119–120
Ethylene
aerenchyma formation, 356–357
as affected by ABA, 353
as affected by flooding, 358–359
as affected by soil compaction, 355–356
leaf senescence, 357–358
Etiolation, 329
Evapotranspiration, 183, 250, 297, 558, 567–569
Evolution, 73–75, 157, 178, 435
Exclusion, 123, 285, 288, 291, 294, 297, 298–299, 301, 509
Excretion, 129, 140, 271, 273, 276, 288, 298–299, 301, 310, 403, 404, 433, 526
Exodermis, 121, 179–181, 346
Expansin, 324–325, 347, 348, 356–357, 360
Extensin, 327
Extinction coefficient, 26, 31, 248
Extrafloral nectaries, 469
Extrusion, 14, 83, 104–105, 109, 112, 115, 263, 275, 325, 395

F
Facilitation, 505, 521, 524
Facultative CAM plants, 76, 79–80, 367
False host, 493
Fast- and slow-growing species (comparison), 362–363
Feedback, 48–49, 51, 55, 58, 61, 62, 436
inhibition of photosynthesis, 47
Feedforward, 196, 198, 203, 340–341, 344, 351, 355, 367
Fermentation, 101, 118–120
Fertilization, 268, 303, 310, 419, 523
Fick’s first law, 21
Field capacity, 169–170, 568
Filter
Biotic, 2–3, 6
Historical, 6
Physiological, 6, 505
Flavonoid, 394, 410, 425–427, 458, 480, 495
inhibition of respiration, 408, 448–449
role in legume-respiration recognition, 408, 424
secondary plant compound, 448–449
UV absorption, 239
Flooding
O2 barrier, 121–122
soil CO2 concentration, 130
soil O2 concentration, 355–356
Flower induction, 378, 382, 385, 386, 390
Gap, 35, 167, 169, 378, 382, 385, 386, 390
Gap detection, 385
Gas exchange, 52–53, 79, 84, 247–253, 359, 388
Geophyte, 182, 506
Geotropism, 579
Germination, 375–387, 492–494, 556
Gibberellic acid (GA), 327, 384
Gland
Salt, 228, 298–299, 301
Fluoracetate, 453, 467

G
Galactose, 152, 327, 457
Gap, 35, 167, 169, 378, 382, 385, 386, 390
Gap detection, 385
Gas exchange, 52–53, 79, 84, 247–253, 359, 388
Geophyte, 182, 506
Geotropism, 579
Germination, 375–387, 492–494, 556
Gibberellic acid (GA), 327, 384
Gland
Salt, 228, 298–299, 301
Fluoracetate, 453, 467

H
Halophyte
Respiration, 123
Hartig net, 406, 410
Harvest index, 396
Hastorium, 493–495
Heat
Production, 112–114, 234, 395
Index
Index

shock protein
 Storage, 241, 243, 292, 294
Heathland, 305, 306, 517
Heavy metal
 Resistance, 291–296
Tolerance, 290
Toxicity, 284
Heliotropism, 207
Hemicellulose, 136, 324–325
Hemiepiphyte, 177, 196, 209
Hemiparasite, 58, 491, 492, 494–501
Herbicide
 Resistance, 471
Heterodimer, 457
Heterotrophic respiration, 561
Hexokinase, 51, 89, 349
High-affinity transport system (HATS), 265, 267
High-irradiance response (HIR), 329, 330, 381
Histidine, 292, 295, 296
Historical filter, 6
Hofler diagram, 176
Holoparasite, 496, 497, 501
Homeostasis, 127–129, 268
Honeydew, 160
Host recognition, 408, 493
mycorrhizal fungi, 409
parasitic plants, 408
rhizobium, 408
Humic substances, 287
Humus, 279, 287, 545
Hydathode, 183
Hydraulic
 Conductivity, 188, 190–192, 250, 350, 508
 Lift, 182–183, 518, 521
Signals, 54, 197
Hydrenchyma, 196, 209
Hydrophyte, 356
Hydrostatic pressure
 Cells, 155
phloem, 151
soil, 165
Utricularia bladder, 539
Xylem, 151
Hydrotropism, 174
Hygrophyte, 580
Hyperaccumulation, 289, 290, 294, 295, 480
Hypersensitive response, 482, 485, 488
Hypocotyl, 325, 328–330, 338
Hyponastic growth, 358–359
Hypostomatous, 580
Hypoxia
 I
IAA, auxin, 238, 262
Ice formation, 215
Imbibition, 118, 375, 376, 383
Immobilization, 258, 259, 276, 279, 294, 447, 517, 549
Immunization, 488
Incompatible response, 390, 482, 485, 509
Induced defense, 462, 464, 468, 480, 481, 485
Induced resistance
 Systemic, 153, 485–487
Phloem, 153
Infection thread, 425, 427–428
Infiltration, 29, 297, 567
Infrared radiation, 26, 122, 225–229
Inorganic phosphate (Pi), 14, 48, 109, 120, 257, 337, 415
Inositol phosphate, 271, 337
Integrated pest management, 522
Interception, 1, 260, 330, 510, 559
Integration, 1, 260, 330, 510, 559
Interellular space, 18, 23–24, 29, 52–53, 57, 65, 67, 72, 121, 179, 186, 202
CO2 concentration (Ci), 21
Intercellular
Space, 18, 23–24, 29, 52–53, 57, 65, 67, 72, 121, 179, 186, 202
Interference competition, 445–448, 505
Intermediate cell, 154–157, 161
Internal conductance/resistance, see mesophyll conductance/resistance
Invertase, 178
Ion-specific channel, 263
Iron (Fe)
deficiency, 121, 275
phloem, 152
Irradiance
Excess, 26, 36, 237
Level, 33, 35, 36, 42–43, 44, 135, 237, 329, 342, 343, 390, 397
spectral composition, 329, 344–345
Isohydric, 196–198, 216
Isoprene, 242, 244
Isoprene emission, 241–242
Isotope discrimination, 117, 206–207
Isotope effect, 22–23, 115
Isotope fractionation, 22, 23–24, 56–57, 75, 81, 82, 85, 113, 115–116, 118, 123, 124, 388, 498–499
Isotropic, 581
J
Jarowization, vernalization, 387, 393–394
Jasmonate/jasmonic acid, 327, 378, 462, 463, 510
Juglone, 447
Juvenile
Foliage, 388
Phase, 375, 385, 386–387
K
Kinetin, see cytokinin
Kranz anatomy, 64, 72, 85
Krebs cycle, Tricarboxylic acid cycle (TCA cycle), 101, 103, 104, 120–121, 128, 132, 448, 453
Kstrategy, 581
L
Lactate/lactic acid, 101, 119–120
Lambert-Beer, 34, 248
Latent heat, 183, 232, 565, 567
Late-successional species, 385, 515, 518, 524–526, 547
Laticifer, 456
Law of the minimum, 581
Lead (Pb)
 Accumulation, 290–293
Leaf
 Anatomy, 27–32
 as dependent on growth irradiance, 34–35
 as dependent on nitrogen supply, 352
 area index (LAI), 26, 247, 248, 250, 380, 510, 518, 559, 567
 area ratio (LAR), 211, 253, 270, 322, 323, 342, 366, 388, 512, 557
 conductance/resistance, 18, 21, 196–206, 232, 249, 251, 252, 261
 dimension, 82, 232, 234, 247
 elongation, 238, 239, 365, 453, 536
 hair, 228, 232, 235, 239, 365, 453, 536
 hopper, 460
 initiation, 198
 mass density, 59, 332–333, 334, 341, 342, 365, 366, 512, 514, 557
 mass per unit leaf area (LMA), 322, 323, 332
 mass ratio (LMR), 322, 323, 342, 344, 361, 366, 513
 orientation, 206, 208, 226, 227
 respiration, 122–123, 125, 127–135, 323, 360, 362
 rolling, 175, 207, 228
 size, 178, 216, 508
 thickness, 34, 59, 62, 79, 332, 343
 turnover, 365–366, 566
 Leaf-cutter ants, 390–391
 Lea genes, 214
 Lectin, 457, 460, 480, 523
 Leghemoglobin, 429, 436
 Legume, 152, 159, 304, 397, 408, 422–436
 Lichen, 62, 568
Light
 Cycle, 211, 284, 329, 377, 385, 388, 398, 409, 436, 491, 494, 512
 Form, 84, 331, 332, 506
 Span, 59, 362, 363, 364, 365, 454, 507, 546
 Extinction, 26–27
 in canopies, 26–27
 in leaves, 31
 quality, 329–330
 reaction, 12, 14, 18, 45, 78, 132, 140, 237, 244
 requirement (of seed germination), 380, 381, 383
 saturation, 18–20, 31, 44, 70, 500
 Light-compensation point (of photosynthesis), 27, 135, 390
 Light-harvesting complex (LHC), 13, 15, 34, 237
 Lignin, 136–139, 179, 333, 334–335, 352, 446, 451, 454, 461, 466, 480, 483, 495, 496, 547, 550, 552
 Lignin:nutrient ratio
 Decomposition, 456–547
 Lime chlorosis, 289
 Liming, 435
 Lipid
 Composition, 346
 Lipid transfer protein, 244, 480
 Litter
 Decomposition, 352, 454, 548, 550, 551
 Production, 547
 Quality, 546–549, 565
 Lockhart equation, 323–327, 328, 354
 Long day, 124, 339, 345–346, 387, 391–393, 433
 Long-day plant/species, 391–393
 Long-wave radiation, 226, 229–232, 234, 235
 Low-affinity transport system (LATS), 267
 Low fluence response (LFR), 329–330, 381
 Luxury consumption, 262, 268, 336, 421
M
 Macronutrient, 260, 310
 Macrosymbiont, 403, 413, 429, 436
 Magnesium, 257, 260, 287, 290
 Maintenance respiration measurement, 461
 protein turnover, 134–135
 solute gradients, 134–135
 Malate dehydrogenase, 65, 76, 103, 175, 214
 Malic enzyme, 65, 67, 76, 103, 130–131, 482, 483
 Malonate, 471
 Manganese (Mn)
 Phloem, 152
 Toxicity, 275
 Mangrove, 121, 299, 301, 375, 378, 550
 Mannitol
 osmotic solute, 175
 parasite, 495–496
 phloem, 152
 radical scavenger, 175
 xylem, 495–496
 Mass flow, 121, 151, 153, 184, 259, 260–261, 299, 307, 310, 416
 Matric potential, 165, 168, 169, 170
 Mean residence time, 304–306, 308, 309, 512–513
 Mechanical resistance, 354
 Mediterranean, 4, 6, 81, 176, 177, 188, 201, 212, 250, 261, 336, 354, 383, 390, 491, 535, 550
 Membrane
 Channel, 140
 Fluidity, 62, 241, 242, 346
 Meristem size, 328, 331, 333, 349
 Mesophyll
 conductance/resistance (g\text{m}), 18, 22–25, 32–33, 55, 56, 57, 60, 204
Mesophyte, 356
Metallophyte, 255, 290, 302, 310, 470
Metallothionein, 292, 294
Methane
Flooding, 121–122
greenhouse gas, 122
Methyl salicylate, 465, 485
Microbial respiration, 251, 547
Microclimate, 225, 247, 250, 253, 510, 527
Microfibril, 199, 203, 324–325
Micronutrient, 539
MicroRNA (miRNA), 153
Microsymbiont, 403, 418–419, 420, 434–435, 437, 505, 523
Midday depression, 180
Midrib, 154
Mimicry, 454, 499
Mimosine, 447
Minor vein anatomy, 154–155
Missing sink, 563
Mistletoe, 56, 195, 397, 491–492, 497–500
Mitochondrial respiration, 105, 132, 447, 448
Mitosis, 287, 331, 336
Monocarpic perennial, 388
Monoterpene emission, 241–242
Morphogenesis, 26
Mor soils, 552
Moss(es), 80, 137, 212, 255, 342, 547, 567–568
Mucilage, 288, 533, 539
Mull soils, 552
Multilayer model, 250, 251
Mycoheterotrophic, 409, 421
Myccorrhiza
arbuscular, 417–418
ecto, 406, 408, 410, 413–416, 418, 421
effects on photosynthesis, 418–419
effects on water acquisition, 417–418
ericoïd mycorrhiza, 406, 408, 410, 413
interactions with nonmycorrhizal species, 412–413
orchid mycorrhiza, 406, 408, 409
release of carboxylates, 404, 412, 413
release of phosphatases, 413–416
role in nitrogen acquisition, 421–422
role in phosphorus acquisition, 413–416
role in water acquisition, 417–418
Mycorrhizal dependency
Growth, 404–408
phosphorus, 403
Mycorrhizal network, 419–421
Mycorrhizal responsiveness, 410–412
Mycorrhizal species interactions with nonmycorrhizal species, 412–413
Mycorrhizal symbiosis
carbon costs, 418–419
N
NAD(P)H dehydrogenase bypass of complex I, 119
dependence on N supply, 451
Natural abundance of, 15 N, 432, 433
N deposition, 89, 549–550, 561–562, 568
Necrosis, 63, 482, 486, 487
Nematicidal, 448, 521
Nematode
phloem unloading, 160
tritrophic systems, 465
Nernst equation, 263, 264, 267
Net assimilation rate (NAR), 322, 323, 333–335, 340, 341–343, 345, 462
Net Ecosystem Carbon Balance (NECB), 561
Net ecosystem production (NEP), 561, 562
Net photosynthesis, 19, 27, 55, 60, 63, 68, 74, 89, 122, 248, 559, 569
Net primary production (NPP), 164, 396, 556, 560
Niche, 2, 3, 491, 533
Nickel, 289, 290
Nicotine, 451, 466
Nitrate (NO3–), 39, 102, 103, 120, 125, 138, 257, 266–270, 276, 280, 281, 350, 378, 380, 385, 436
Nitrate reductase, 267–270, 280, 281, 350, 378, 436
Nitrification
inhibition by allelochemicals, 447–448
Nitrite (NO2–), 257, 261, 270, 436, 550, 551
Nitrogen
Assimilation, 49
Concentration, 499, 501
Content, 338
Fixation, 432
isotope (15 N), 432–433
mineralization, 257, 259, 280, 517, 545, 549, 552
remobilization, 338
Nitrogenase, 429, 431–432, 436
Nitrogen productivity (NP), 306
Nitrogen-use efficiency (NUE), 54, 249, 302, 306, 388
Nod factor, 425–428, 435
Nod gene, 425–426
Nodulation, 410, 420, 421, 424–428, 435
Nodulin429
Nondestructive growth analysis, 360
Nonmycorrhizal species interactions with mycorrhizal species, 412–413
Nonprotein amino acid, 447, 451, 454, 456
Normalized difference vegetation index (NDVI), 559–560
Nuclear magnetic resonance (NMR) spectroscopy
ATP production in vivo, 107–109
pH in intact cells, 107–109
Nurse plant, 521
Nutrient
Absorption, 303, 338, 346, 415, 463
Acquisition, 3, 58, 140, 143, 257, 262, 265, 284–301, 309, 336, 387, 410, 412, 414, 518, 527, 563

Nutrient (cont.)
Availability, 8, 27, 90, 102,
123, 133, 136, 143, 255,
257, 280, 282, 306, 308,
310, 347, 365, 385, 398,
461, 513, 516, 520, 521,
552, 557, 558, 569
Budget, 306, 308
Cycle, 545, 552, 564
Deficiency, 280, 310
Loss, 164, 306–307, 309, 365, 421
Productivity, 304, 322, 323
resorption
leaves, 307–308
roots, 308
supply
decomposition, 257
toxicity, 549–550
transfer (mycorrhiza), 415
uptake, 122, 141, 211, 261, 262,
265–266, 268–269, 303,
306, 309, 334, 336, 338, 346,
347, 364, 396, 415, 516, 523,
563, 565
Nutrient-use efficiency (NUE),
268, 302–304, 307,
308–310

O
Oil of wintergreen, 485
Oligofructan, 152
Oligosaccharides
Phloem, 151–152
Opportunity costs, 340
Orchid
mycorrhizal association, 406
Osmoprotection, 214
Osmoregulation, 151
Osmotic adjustment, 55, 114,
175, 177
Osmotic potential, 165, 167, 169,
170, 171, 175–178, 180,
182, 186, 198, 337, 344,
350, 498
Osmotic solute, 122, 166, 168, 175,
178, 198, 337, 348
Overflow hypothesis, 114
Overgrazing, 560, 566, 568
Oxalate, oxalic acid, 287–288, 292,
295, 413, 446
Oxidative pentose phosphate
pathway, 101, 103,
131, 482
Oxidative phosphorylation, 103,
106, 107, 108, 114, 449

Oxygen
isotope (18O), 79
sensitivity of nitrogenase (N2
fixation), 429–431
sensitivity of photosynthesis,
434–435
Oxygenation reaction of Rubisco,
18, 73
Ozone, 63, 238, 244, 471, 472
Phenyiphenol, phenolic
defense, 446–473
UV-B, 239
Phenotypic plasticity, 514, 527
Phenylalanine ammonia lyase,
449, 483
Phloem, 151–153, 155, 156, 157,
159, 160, 161
Phloem sap
Composition, 151, 152, 160, 298,
397
Phosphatase, 270, 271, 542
Phosphate
diffusion in soil, 413
effect on cluster-root
formation, 257
effect on mycorrhiza
formation, 413
sorption, 259, 274
toxicity, 262, 266, 268
Phosphoglyceric acid (PGA), 14,
15, 16, 67
Phospholipid, 270, 271, 346
Phosphorus, 164, 255, 257, 260,
263, 270, 287, 307, 310,
mineralization, 259

See also Phosphate
Phosphorylation, 45, 78, 103, 106,
107, 108, 114, 120, 180, 265,
266, 269, 449
Photodamage/photodestruction,
27, 33, 36, 237
Photodegradation, 547
Photoinhibition, 26, 27, 36, 39, 40,
42, 55, 62, 63, 226, 227,
339, 510
Photon flux density (=irradiance), 117
Photooxidation
at low temperature, 239
Photoperiod, 26, 132, 215, 228,
341, 345–346, 391, 392,
397, 461
Photoperiodic, 345
Photophosphorylation, 45
Photorespiration, 15, 16, 17, 19,
27, 52, 60, 67, 68, 69, 70, 71,
72, 73, 74, 77, 82, 84, 96,
104, 105, 132
Photosynthetic
active radiation (PAR), 26, 37,
226, 227, 228, 509, 559,
560
induction, 43, 44, 45
nitrogen-use efficiency (PNUE), 53, 54, 58, 71, 249, 302, 304, 305, 306, 309
quotient (PQ), 14, 77, 78
water-use efficiency, 56, 203, 206, 207, 252
Photosystem (PSI, PSII), 12, 15, 37, 39, 40, 42, 291, 447
Phototropism, 227, 325
Phreatophyte, 211, 212, 557
Phyllosphere, 118
Phylogenetic constraint, 331
Physiological amplitude, 3, 4, 284, 310
Physiological filter, 6, 505
Phytase, 271
Phytate, 271
Phytoalexin, 117, 131, 424, 470, 483, 484, 485
Phytoanticipin, 480
Phytochelatin, 292, 294, 295
Phytochrome, 26, 238, 325, 329, 330, 343, 344, 345, 351, 367
Phytohormone, 54, 90, 163, 165, 197, 211, 213, 241, 280, 326, 327, 349, 352, 358, 384, 392, 493, 498
Phytmetallopohore, 277
Phytomining, 277
Phytoremediation
heavy metals, 290
xenobiotics, 469–471
Phytosiderophore, 277, 278, 287, 403, 521
Pioneer, 35, 333, 522, 523, 526, 559
Pitcher plant, 533, 535, 536, 542
Pit-membrane pore, 189, 193
Plant ecology strategy scheme, 506
Plasma membrane, 83, 129, 154, 155, 156, 159, 179, 180, 199, 200, 243, 244, 262, 263, 264, 265, 267, 268, 275, 276, 277, 285, 286, 291, 294, 297, 298, 299
Plasmodesmata
connectivity, 155
frequency, 155, 156
phloem loading, 157
root nodules, 429
water transport, 180
Plasmolysis, 585
Plasticity, 411, 511, 514–516, 539
Platanetin, 448
Pneumatophore, 121
Poikilohydric, 212
Pollination, 149, 394, 395, 396, 469
Pollinator, 112, 226, 394, 396, 398, 445, 469, 521
Polyamines, 239
Polygalacturonic acid, 324
Polyphosphate/poly-P, 337, 415
Post-illumination CO2 fixation, 45, 46, 76, 78, 85
Potassium (K), 164, 257, 260
Prairie, 89, 163, 360, 386, 421, 516, 517, 520, 522, 561
Precipitation, 74, 81, 83, 164, 170, 171, 172, 174, 183, 192, 212, 257, 259, 286, 297, 302, 377, 413
Predawn water potential, 192
Pressure-Chamber, 185, 186, 189, 198, 348
potential, 585
pressure-volume curve(only in ref)
probe, 177, 200, 327, 328
vessel, 348
Pressurized flow aerenchyma, 121
Priming, 552
Programmed cell death, 356, 397, 398, 482
Proline, 175
Protease, 210, 457, 458, 459, 538, 542
Protease/proteinase, 210, 328, 448, 457, 458, 462, 487, 533, 538, 542
Protease/proteinase inhibitor, 459, 462, 487
Protein
Bodies, 339, 460
Synthesis, 118, 137, 210, 213, 264, 265, 304, 337, 347, 351, 352, 378, 457
Turnover, 127, 134, 135, 210
Proteoid root, cluster root, 117, 271, 272, 273, 366, 412, 413, 415, 517
Protocarnivory, 543
Proton
Cotransport, 140, 263, 268, 415
efflux, 415
extrusion, 14, 83, 104, 105, 109, 112, 115, 275, 395
Proton-motive force (pmf), 14, 104, 107, 237, 264, 430
Protoplastic streaming, 585
Protoplast, 324
Protozoa, 533, 541, 542, 552
Prussic acid, 455
Pulvinus, 207, 208, 209, 360
Push-pull strategy, 522
Pyrimidine dimer, see
Cyclobutane-pyrimidine dimer
Pyruvate, pyruvic acid, 65, 67, 75, 76, 103, 108, 111, 119, 130, 131, 132, 483
Q
Q10, 127–128, 135
Qualitative defense (compound), 453, 454
Qualitative long-day plant, 585
Qualitative short-day plant, 585
Quantitative defense (compound, 365, 451, 453–454, 461, 525, 547, 548
Quantitative long-day plant, 586
Quantitative short-day plant, 586
Quantum yield, 27, 31, 34, 36–40, 54, 61, 63, 68–69, 73–75, 117, 210, 248, 390, 511
Quenching (fluorescence), 38
Quinoline, 451, 457, 458
R
Radial oxygen loss, 358
from roots under flooding, 358
Radical, 175, 421, 459
Radicle, 360, 375–377, 384
Raffinose, 152, 156
effects on growth, 360–361
Rainforest, 29, 44, 307, 492, 557
Index 603

gland, 228, 298, 299, 301
resistance, 301
resistant species, 194, 243, 244, 288, 290, 291, 302, 348, 518
sensitive species, 194, 216, 243, 348, 358
tolerance, 216
toxicity, 297
Saponin, 454, 480, 481
Sapwood, 184, 187, 188, 194, 195, 196, 497, 498, 508
Savanna, 91, 171, 519, 521, 556, 557, 558
Scaling, 91, 144, 207, 247–253, 508, 555, 556, 559, 566, 568
Sclerenchyma, 333, 352, 365, 497, 498, 508
Sclerenchymatic cell, 333, 352, 365
Scleromorph(ic), 24, 25, 204, 212, 307
Sclerophyllous, 177, 464
Seed
bank, 376, 383, 385, 386, 519, 520
coat, 157, 159, 375, 376, 377, 384, 397, 492
dormancy, 375–376, 382, 383, 385
filling, 337, 338
mass, 368, 386, 395, 508, 525
number, 386
phloem unloading, 157, 159
reserves, 385, 386
ripening, 493
size, 363, 386, 387, 396, 508, 524
yield, 338
Seeder species, 337
Seedling
bank, 376, 383, 385, 386, 519, 520
emergence, 376
establishment, 386, 388, 389
phase/stage, 385, 386, 521
Selenium (Se), 480
Self-thinning, 555, 556
Sensible heat, 230, 232, 566, 567, 568, 569
Sensitivity analysis, 234, 282–284
Seropentine soils, 257, 290, 295
Shade
acclimation, 32, 342
adaptation, 342–343
adapted species, 33, 35, 134, 342, 390
avoiding plants/species, 26, 35, 341, 342, 343, 344, 367, 509
leaf, 26, 30
plant, 1, 26, 29, 41, 42, 43, 90, 127, 342, 343
species, 123, 125, 127, 343
tolerant, 41, 329, 341, 342, 343, 344, 367, 390, 518
Shoot
shoot mass ratio, 361, 515
temperature, 346, 347
Short-day plant/species, 345, 391–393
Short days, 124, 243, 339, 345, 391, 392, 393
Short-wave radiation (SR), 225, 226, 229, 230, 234, 235, 565
Sieve element, 151, 152, 153, 154, 155, 156, 157
Sieve plate, 153
Sieve tube
diameter, 153, 154, 155, 156, 157, 160
Signal-transduction (pathway), 90, 241, 286, 287, 341, 348, 349, 426
Silicon (Si), 200, 262, 264, 479
Simulation model, 7, 282, 284, 306, 341
Sinigrin, 447, 493
Sink
axial, 157, 159
terminal, 157
Smoke signal, 377, 378
Soil
compaction, 168, 327, 353, 354, 355, 356
temperature, 336, 356, 565
texture, 169
Solar tracking, 226, 395
Sorbitol
compatible solute, 122, 123
phloem, 152
Sorgoleone, 447, 493
Source, 51, 257
Source-sink interaction, 51, 308
Spadix, 112, 131, 234
Species distribution, 4, 284, 366, 505
Specific root length (SRL), 286, 323, 342, 510, 512, 514
Spider mite, 466
Spittlebug nymphs, 191
Spongy mesophyll, 29, 30, 31, 240
Stable isotope, 79, 114, 172
Stachyose, 152, 156
Starch, 12, 15, 47, 49, 51, 65, 76, 77, 103, 105, 120, 136, 321, 336, 337, 448, 549
Stem
elongation, 325, 326, 343, 344, 367, 369, 509, 515, 527
growth, 327, 332, 360, 396, 509
respiration, 322, 323
tem mass ratio, 322, 323, 361, 367, 515
Steppe, 163, 567, 568
Stomatal
action, 205
aperture, 199, 200, 203
conductance, 54, 196, 357, 388, 526
patchiness, 43, 54
pore, 196, 199, 200
resistance, 21
Stoma(ta)/stomates, 164, 182, 198, 200, 203, 204, 211, 498
Storage
amides, 337, 338, 339
amino acids, 337
carbohydrates, 102, 103, 338, 337, 338, 416
carbon, 337–338
nitrate, 337
nitrogen, 338
nutrients, 338
phosphate, 337
protein, 338
water, 339
Index

Triose phosphate, 12, 14, 16, 46, 47, 49, 67, 213, 214
Tritrophic interaction, 466
Tropical species, 346, 375, 393
Tuber, 321, 337, 345, 391, 393
Tundra, 26, 122, 137, 257, 259, 260, 261, 271, 303, 338, 416, 547, 549, 556, 557, 560, 565, 568
Turgor pressure, 163, 165, 176, 177, 178, 196, 198, 323, 324, 344, 355
Turgor-loss point, 175, 176, 201
Turnover
cyanogenic compounds, 448, 455, 456
leaf, 365, 366, 566
protein, 107, 127, 134, 135, 210, 264
root, 365, 366, 565
Ubiquinone, 103–105, 108, 110, 111, 118, 124, 447
Ultraviolet (UV) absorption, 238
epidermis, 181, 239, 240
phenolic compounds, 239, 394
damage, 237, 238–239, 244, 390
prevention, 238–239
repair, 268, 269, 274
exposure, 239
leaf angle, 227–228
protection, 238–239
reflection, 226, 228
Uncoupler, 105, 106, 114, 123, 125, 537
Uncoupling protein (UCP), 103, 106, 107, 112, 119, 129
Up-regulation, 61, 127, 266, 267, 327, 361, 393, 482, 483
Urease, 304, 454
Ureide, 304, 425, 429, 431
UV-B, 238, 239, 240
Vacuole, 72, 76, 78, 109, 120, 175, 199, 240, 285, 292, 294, 295, 299, 301, 394, 415, 455, 456, 457, 471, 484
Vapor pressure deficit (water), 54, 202, 209, 247, 253, 567
Vapor pressure difference (water), 23, 56, 79, 172, 201, 234, 235, 252, 352
Vegetative reproduction, 388, 389
Vegetative storage protein, 303, 337, 338
Verbas cose, 152
Vernalization, 387, 393
Very low fluence response, 329, 330, 381
Vesicle, 301, 404, 409, 410, 416, 456, 542
Vesicular-arbuscular mycor rhiza, see arbuscular mycorrhiza
Vessel, 183, 187, 188, 189, 191, 192, 193, 194, 348
Vine phloem, 151, 160, 195
xylem, 151, 160, 182, 188, 192, 193, 195
Violaxanthin, see Xanthophyll cycle
Virus phloem, 153, 460
Visual advertisement, 153, 453, 499
Viviparous seeds, 375
Wall loosening, 325, 348, 349, 356, 361
Water channel, 180, 210, 263, 291, 346, 350
channel protein, 180, 210, 263, 291, 346, 350, 518
deficit, 196, 203, 210, 227, 228, 338
potential, 54, 114, 121, 125, 151, 155, 165, 166, 167, 169, 170, 171, 174, 175, 176, 177, 178, 179, 182, 185, 191, 198, 202, 216, 297, 346
shortage, 51, 85, 176, 196, 358, 367
status, 165, 196, 197, 198, 324, 348, 398, 418, 521, 567
stress, 4, 54–55, 266, 286, 349, 507
effect on respiration, 127
transport in the xylem, 165
Water-storing capacity, 196
Water-use efficiency (WUE) intrinsic, 23, 54, 56, 63, 89, 204, 206, 207
Wax
UV tolerance, 239
Weathering role of ectomycorrhizal fungi, 291, 410, 421, 550
Source of nutrients, 257, 259, 543
Weed, 2, 63, 164, 379, 380, 382, 445, 446, 447, 520, 550
Whole plant approach, 2, 5, 7, 26, 103, 128, 201, 212, 291, 302, 303, 304, 321–322, 328, 330, 333, 346, 347, 362, 508, 555
Wilting point, 169, 170
Wind effects on growth, 360–361
Winter annual, 383, 384, 393
Wounding, 338, 480

X
Xanthophyll cycle, 31, 36–41, 237, 239, 242, 244
Xenobiotic, 469–472
Xerophyte, 213
Xylem
exudation, 170
pressure, 185, 189, 191
sap, 119, 152, 182, 184, 185, 186, 190, 191, 197, 270, 289, 348, 353, 354, 397, 431, 495, 496, 498, 500
diameter, 187, 188, 194
Xyloglucan endotransglycosylase (XET) 325, 356, 361

Y
Yield coefficient (cell wall), 324, 328, 374, 376, 385
quantum (gas exchange, fluorescence), 64, 67
threshold (cell wall), 328, 354, 374, 385
of the root, 355
of the soil, 355

Z
Zeatin, 356, 381
Zeaxanthin, see Xanthophyll cycle