Index

A
Abegrin, 68
ABT-510, 424
Actin cytoskeleton, 210–211
Actinobacillus actinomycescomitans, 534
Active drug delivery, 284
AD. See Alzheimer’s disease
ADAM. See A Disintegrin And Metalloproteinase
Adaptive immune cells, 225–226
Adenosine receptors, hypoxia inducible factor-1 and, 175
Adenovirus-delivered angiostatin (ADK3), 134
ADI. See Arginine deiminase
A Disintegrin And Metalloproteinase (ADAM), 55, 58
ADK3. See Adenovirus-delivered angiostatin
ADM. See Adrenomedullin
ADMA. See Asymmetric dimethylarginine
ADP-ribosylation, lactate and, 554–555
Adrenomedullin (ADM), hypoxia inducible factor-1 and, 173
Adriamycin, TNP-470 in vivo studies and, 401
AG-013736, 26, 28
AGENT-1 trial, 566
AGENT-2 trial, 566
Age-related macular degeneration (AMD), 333, 345, 348, 417, 426, 580
Akt/PKB, 133
Alzet, 234
Alzheimer’s disease (AD), angiogenesis in central nervous system and, 496
AMD. See Age-related macular degeneration
ANCHOR trial, 349, 426
Ang2. See Angiopoietin-2
Angiogenesis
alternate animal models in, 306–308
angiogenic switch, 577
in central nervous system, 489–499
Alzheimer’s disease and, 496
blood brain barrier formation/maintenance, 492–493
blood vessel maturation in, 491–492
cerebral amyloid arteriopathy and, 496
vascularization, 489–491

ADPKB, 133
Alzet, 234
Alzheimer’s disease (AD), angiogenesis in central nervous system and, 496
AMD. See Age-related macular degeneration
ANCHOR trial, 349, 426
Ang2. See Angiopoietin-2
Angiogenesis
alternate animal models in, 306–308
angiogenic switch, 577
in central nervous system, 489–499
Alzheimer’s disease and, 496
blood brain barrier formation/maintenance, 492–493
blood vessel maturation in, 491–492
cerebral amyloid arteriopathy and, 496
vascularization, 489–491
cerebral autosomal recessive arteriopathy with subcortical
infarcts and leukoencephalopathy, 493
cerebroretinal vasculopathy, 493
disease and, 493–498
familial amyloid angiopathies, 493
gliomas and, 498
hemangioblastomas and, 497–498
hereditary endotheliopathy with retinopathy, neuropathy and
stroke syndrome, 493
hereditary vascular retinopathy, 493
Moya-Moya disease, 493–495
multiple sclerosis and, 496–497
Parkinson’s disease and, 496
retinal arteriolar tortuosity, and leukoencephalopathy, 493
stroke and, 495
vascularization, 489–491
corneal angiogenesis assay, 304–305
coronary
clinical trials, 565
patient selection in, 567
randomized controlled trials, 565–567
therapeutic stimulation, 565
current knowledge of, 576–577
direct regulators of, 185–186
angiopoietin, 185
epidermin, 185–186
endothelin, 186
placental growth factor, 186
VEGF, 185
genes encoding indirect regulators, 186–187
erthropoietin, 186–187
matrix metalloproteinases, 187
plasminogen activators, 187
historical breakthroughs in, 575–576
history of, 1–10
imaging of, 321–330
in clinical trials, 329
computed tomography, 324–327
magnetic resonance imaging, 322–324
positron emission tomography, 328–329
single photon emission computed tomography, 328–329
immunotherapy of, 452
Angiogenesis (continued)
in inflammation, 18, 21
integrins in, 63–65
Matrigel plug assay, 305–306
nitric oxide role in, 194
normalization of, 8–9
in oral cavity, 533–537
oral mucosa wound healing and, 536
as organizing principle, 8
pericytes in, 47–48
regulation of
circulating levels of, 314–315
by microenvironment, 261–263
regulatory proteins, in platelets, 9
research, 578–579
flow charts, 578
genotype variations, 579
maps of, 578
vascular stem cells, 578–579
wiring diagram, 578
research, bioassays for, 3–6
retinal, 221–222
sponge implant assays, 306
tumor, 577
cancer stem cell and, 250–252
chemokines in, 229–230
cytokines in, 229–230
delta-like 4 and, 220–221
endothelial precursor cells and, 165–166
extracellular matrix in, 228–229
growth factors in, 229–230
hematopoietic cell participation and, 165–166
hypoxic regulation of, 163–164
immune cells and, 226–227, 231–233
inflammatory cell role in, 164–165
mosaic vessels, 165
nitric oxide role in, 195
platelet-derived growth factor to, 106
prognostic significance of, 166
proteases in, 228–229
stem cells in, 245
vascular endothelial growth factor-A in, 347
vascular endothelial growth factor and, 416
vasculogenic mimicry, 165
tumor progression and, 162
and tumors of central nervous system, 497–498
in vitro, 5
in vitro assays, 300–302
cell migration assay, 300–301
coculture protocols, 302
organ culture assays, 302
proliferation assay, 300
in vitro tube formation, 301–302
in vivo assays, 302–304
chorioallantoic membrane assay, 302–303
mesenteric window assay, 303–304
wound revascularization, 543–545, 550–551
Angiogenesis-dependent disease, 9–10
Angiogenesis inhibitors, 2
antiangiogenic agents, classification of, 423–424
in clinic, 7–8
discovery of, 6–7
Angiogenic molecules, discovery of, 6
Angiogenic phenotype, 9
Angiogenic protein, in extracellular matrix, 6
Angiogenic regulatory network, 579, 581
Angiogenic signaling, inhibition of, 355–356
chemistry of, 356
BAY 43-9006 (Sorafenib), 356
indolinones, 356
PTK 787 (Vatalanib), 356
ZD6474 (Vandetanib), 356
Angiogenic switch, 161–162, 577
Angiomirotin
for angiotatin, 132
tumor endothelial cells and, 455
Angiopoietin-2 (Ang2), 48
Angiopoietin-receptor complex, tie receptor tyrosine kinase family and, 115
Angiopoietins, 113–114
angiogenesis and, 185
expression, 114
gene-modified mice, 115–117
ocular neovascularization and, 522–523
signal transduction, 117
structure of, 113–114
Angiopoietin-tie system, 117
Angiostatin, 57
anti-inflammatory activity of, 133
circulation and, 129–130
clinical studies of, 135
crystallography, 135
delivery of, 135
discovery of, 130
ocular neovascularization angiostatin gene therapy, 134–135
human neuroblastoma and, 135
mechanism of action of, 133
ocular neovascularization and, 522–525
physiological angiogenesis and, 135
protein, anti-tumor activity of, 135
recombinant
in vivo induction of, 133–134
forms of, 130–131
gene therapy and, 134
experimental anti-tumor therapy, 134
ocular neovascularization angiostatin gene therapy, 134–135
Animal models
angiogenesis and alternate, 306–307
EPCs, tumors and, 242
VEGF-Trap and preclinical, 416–417
Annexin A1, 335
Antiangiogenic agents
classification of, 422–424
  angiogenesis inhibitors, 423–424
  clinical translational developmental issues of, 427–428
  in combination regimens, 432–442
  kinase inhibitors, 435–439
  minocycline, 432–435
  new target discovery, 432–442
  protein therapeutics, 439–440
  FDA approved, 424–426
  bevacizumab, 424–425
  lenalidomide, 425
  pegaptanib, 426
  sorafenib, 425
  sunitinib, 425–426
  thalidomide, 425
  tyrosine kinase inhibitors, 426–427
  AZD2171, 427
  motesanib, 427
  vandetanib, 427
  vatalanib, 427
Antiangiogenic drugs, tumor vasculature targeted drug delivery
  therapeutics with, 292–293
Antiangiogenic targets, identification of, 421–422
Antiangiogenic therapy
  anti-inflammatory drugs and, 233–234
  biphasic efficacy of, 9
  cancer stem cell and, 253–256
  pharmacogenetics of, 477–483
  in anti-VEGF therapy, 480–481
  clinical trials, 482
  single nucleotide polymorphisms of VEGF-A gene, 478–480
  single nucleotide polymorphisms of VEGFRs genes, 481–482
  VEGF-A promoter haplotypes, 480
rationale for, 422
of tumors, 461–471
  activated endothelial cells, 462
  adverse effect prevention/management of, 465–466
  bidirectional action and, 471
  broad-spectrum targeting, 470
  CEC circulating levels, 467
  CEP circulating levels, 467
  clinical studies, 468–469
  genetic profiling, 467
  hypoxia pathways, 464
  metronomic chemotherapy, 470–471
  monoclonal antibodies, 464–465
  natural peptide inhibitors, 465
  nitric oxide, 464
  patient selection in, 466–468
  pericytes, 462–463
  platelets and, 467
  proangiogenic factors, 463–464
  proteomics, 467
  small-molecule inhibitors, 464–465
  surrogate biomarkers and, 466
  targets in, 462–464
  therapeutic strategies in, 464–465
  vascular imaging techniques, 467–468
Anti-apoptotic pathways, 355
Antigen-presenting cells (APCs), 453
Anti-inflammatory drugs, antiangiogenic therapy and, 233–234
Anti-vascular therapy, of multidrug resistant, cancer of prostate, 267
APCs. See Antigen-presenting cells
Apoptosis, 65–68
Arginine deiminase (ADI), 198
Arginine depletion, nitric oxide and, 197–198
ARNT. See Aryl hydrocarbon receptor nuclear translocator
Arresten, 67, 121, 137
Arterial spin labeling (ASP), magnetic resonance imaging, of angioimmunoblastic lymphadenopathy, 324
Arterial-vein specification, 211
Arteriogenesis
  bone marrow-derived cells and, 568
  coronary collaterals and, 567–568
  in endothelial cell activation, 39
  monocytes, 568
  wound revascularization, 547
Aryl hydrocarbon receptor nuclear translocator (ARNT), 169, 359
Ascites, 6, 9, 91, 92, 94, 116, 211
Aselli, Gasparo, 505
ASL. See Arterial spin labeling
Aspergillus fumigatus Fresenius, 395
Assays
  corneal angiogenesis, 304–305
  Matrigel plug, 305–306
  sponge implant, 306
  in vitro, 300–302
    cell migration assay, 300–301
    coculture protocols, 302
    organ culture assays, 302
    proliferation assay, 300
  in vivo, 302–304
    chorioallantoic membrane assay, 302–303
    mesenteric window assay, 303–304
AstraZeneca, 132, 427
Asymmetric dimethylarginine (ADMA), 195
ATP synthase, for angiostatin, 131–132
Auerbach, Robert, 3
Autophagy, 137
AVANT study, 378
Avastin. See Bevacizumab
AZD2171, 427
αVβ3, 65
α,β integrin, for angiostatin, 132
B
Basement membrane
  blood vessels in tumors, 23, 26
  vascular endothelial growth factor inhibitor cellular action and, 28
Basic fibroblast growth factor (bFGF), 6, 7
  DNA vaccines, biological factor blocking and, 456
Basic vascular endothelial growth factor (bVEGF), 261
BAY 43-9006 (Sorafenib), 356
BAY-129566, 424
BB-2516, 424
BBB. See Blood brain barrier
BCNU+, TNP-470 in vivo studies and, 401
BDNF. See Brain-derived neurotrophic factor
Becker, Frederick, 1
Bevacizumab, 7, 10, 176, 199, 313, 345, 347, 355, 416, 423, 424–425, 462
for breast cancer, 379–380
clinical trials, 375–376
for colorectal cancer, 377
as adjuvant treatment, 378
clinical trials in, 376–377
metastatic, 377–378
for lung cancer, 378–379
mechanism of action, 375
for ovarian cancer, 380
for prostate cancer, 381
for renal cell cancer, 380–381
safety monitoring and, 383–384
toxicity of, 383–384
bFGF. See Basic fibroblast growth factor
Biological fluids, soluble molecular markers in, 314–315
Bissele, Mina, 5
Blood brain barrier (BBB), 489, 496
formation/maintenance of, 492–493
Blood retinal barrier (BRB), 492
Blood vessels
abnormalities in, 17–18
in central nervous system, maturation of, 491–492
in tumors, 21–26
basement membrane of, 23, 26
endothelial cells of, 23
identification of, 21–23
pericytes, 23
regrowth of, 28, 30
VEGF inhibitor cellular actions, 26–28
vascular endothelial growth factor inhibitor on, 30
BMS-275291, 424
Bone marrow-derived cells
arteriogenesis and, 568
ocular neovascularization and, 523–524
tumor anatomy and, 243
BOOST trial, 568
Bortezomib, 462
Brain-derived neurotrophic factor (BDNF), 498
BRB. See Blood retinal barrier
Breast cancer, bevacizumab for, 379–380
Brem-Harold, 129
BRiTE study, 465
Broad-spectrum antiangiogenic agents, 8
Broad-spectrum targeting, in tumor antiangiogenic therapy, 470
Bromocriptine, TNP-470 in vivo studies and, 401
Bruch’s membrane, 520
bVEGF. See Basic vascular endothelial growth factor

C
CAA. See Cerebral amyloid angiopathy
CADASIL. See Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
Calreticulin (CRT), 458
CAM. See Chick chorioallantoic membrane
Cancer
of breasts, bevacizumab for, 379–380
colorectal, bevacizumab for, 377–378
control of, 451
hypoxia inducible factor-1 in, 171–172
expression, 172
prognosis, 172
xenograft studies, 172
of lungs, bevacizumab for, 378–379
ovarian, bevacizumab for, 380
of prostate, 264–266
antivascular therapy of multidrug resistant, 267
bevacizumab for, 381
renal cell, 264
bevacizumab for, 380–381
therapy for, thalidomide for, 390
Cancer stem cell (CSC)
antiangiogenic therapy and, 253–256
hypothesis, 249–250
tumor angiogenesis and, 250–252
vascular endothelium and, 252–253
Canstatin, 67, 122, 137
Caplostatin. See 2-Hydroxypropyl metahcrylamide
CARASIL. See Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy
Carrier systems, 233, 285, 286
Cartilage oligomeric matrix protein (COMP), 147
CD26, for angiostatin, 132
CD36, 150–151
CD133, 243–244, 250
CECs. See Circulating endothelial cells
Celecoxib, 440
Cell(s)
growth control of, 5
invasion, 63–64
shape, 5
Cell migration assay, 300–301
Cell proliferation assay, 300
Cellular responses, initiated of, by platelet-derived growth factor, 103
competence of, 103
completion of, 104
priming of, 104
progression of, 103
Central nervous system (CNS)
angiogenesis in, 489–499
Alzheimer’s disease and, 496
blood brain barrier formation/maintenance, 492–493
blood vessel maturation in, 491–492
cerebral amyloid angiopathy and, 496
cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, 493
cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, 493
cerebroretinal vasculopathy, 493
disease and, 493–498
familial amyloid angiopathies, 493
gliomas and, 498
hemangioblastomas and, 497–498
hereditary endotheliopathy with retinopathy, neuropathy and stroke syndrome, 493
hereditary vascular retinopathy, 493
Moya-Moya disease, 493–495
multiple sclerosis and, 496–497
Parkinson’s disease and, 496
retinal arteriolar tortuosity, and leukoencephalopathy, 493
stroke and, 495
vascularization, 489–491
disorders of, 493, 494, 495–498
genetic disease of, 493–495
tumors of, angiogenesis and, 497–498
CEP. See Circulating endothelial progenitor cells
CEPs. See Circulating endothelial progenitors
Cerebral amyloid angiopathy (CAA), angiogenesis in central nervous system and, 496
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), 493
Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), 493
Cerebroretinal vasculopathy, 493
Ceruloplasmin, hypoxia inducible factor-1 and, 175
CEUS. See Contrast-enhanced ultrasound
Chemokines, in tumor angiogenesis, 229–230
Chemokinesis, 301
Chemotaxis, 301
Chemotherapeutics, tumor vasculature targeted drug delivery therapeutics with, 293
Chemotherapy
maximum tolerated dose, 313–314
metronomic, in tumor antiangiogenic therapy, 470–471
Chick chorioallantoic membrane (CAM), 5, 6, 66, 77, 161
Chorioallantoic membrane assay, 302–303, 397
Choroidal neovascularization (CNV), 348, 349, 519–520
Chronic myelogenous leukemia (CML), 335, 353
Chronic periodontitis, 534–535
CHS 828, TNP-470 in vivo studies and, 401
Cilengitide, 68
Circulating cellular markers, 315–316
Circulating endothelial cells (CECs), 239, 315–316
  circulating levels, in tumor antiangiogenic therapy, 467
Circulating endothelial progenitor cells (CEPs), 48, 315–316
  circulating levels, in tumor antiangiogenic therapy, 467
Circulating endothelial progenitors (CEPs), 482
Circulating tumor cells (CTCs), 316
Cisplatin, TNP-470 in vivo studies and, 401
Clinical trial design, 471
CML. See Chronic myelogenous leukemia
CNS. See Central nervous system
CNT095, 68
CNV. See Choroidal neovascularization
Coagulation, wound revascularization, 547–548
Coculture protocols, 302
Colchicine, 525
Collagen
  type IV, 124
  type XIX, 124
  type XV, 124
  type XVIII, 140
Collagen fragments, 137
Colony stimulating factor-1 (CSF-1), 230–231
Colorectal cancer, bevacizumab for, 377
  as adjuvant treatment, 378
  clinical trials in, 376–377
  metastatic, 377–378
Combination therapy, antiangiogenic agents in, 432–442
Combretastatin A-4, 525
COMP. See Cartilage oligomeric matrix protein
Computed tomography (CT), in angiogenesis, 324–327, 468
  contrast-enhanced ultrasound, 326
  dynamic, 324–326
  optical imaging, 326–327
  ultrasound, 326
Connective tissue growth factor (CTGF), 185
  hypoxia inducible factor-1 and, 173–174
Contrast-enhanced ultrasound (CEUS), in angiogenesis, 326
COOH-terminal domain, thrombospondins and, 152–153
Corneal angiogenesis assay, 304–305
Corneal neovascularization, 3–4
Coronary angiogenesis
  clinical trials, 565
  patient selection in, 567
  randomized controlled trials, 565–567
  therapeutic stimulation, 565
Coronary collaterals, arteriogenesis and, 567–568
Coronary vasculature, development of, 561
Corticosteroids, 284–285
Coup-TFII, growth factors in vascular development, 564
COX. See Cyclooxygenase
COX-2. See Cyclooxygenase-2
CRT. See Calreticulin
Crystallography, angiostatin, 135
CSC. See Cancer stem cell
CSF-1. See Colony stimulating factor-1
CT. See Computed tomography
CTCs. See Circulating tumor cells
CTGF. See Connective tissue growth factor
CTL. See Cytotoxic T lymphocyte
CXCR4+VEGFR1+ hemangiocytes, 244
Cyclooxygenase (COX), 195–196
  inhibitors, ocular neovascularization and, 524
Cyclooxygenase-2 (COX-2), 389
Cyclophosphamide, TNP-470 in vivo studies and, 401
Cytokines, in tumor angiogenesis, 229–230
Cytotoxic T lymphocytes, 454
D
D’Amato, Robert, 7, 388
Datura stramonium (DSL), 18
Dawson’s fingers, 497
DC. See Dendritic cell
DCE-MRI. See Dynamic contrast-enhanced magnetic resonance imaging
DDAH. See Dimethylarginine dimethylaminohydrolase
Delta-like ligand 1 (Dll1), 218
Delta-like ligand 4 (Dll4), 37, 218–219, 339
  for developmental angiogenesis, 219–220
  in postnatal vascular development, 221–222
  in regulating angiogenesis, 222
  in regulating tumor angiogenesis, 220–221
  as target for antiangiogenesis therapy, 222–223
Delta-Notch system, molecular components of, 218–219
Delta proteins, 218
Dendritic cell (DC), 457–458
precursors, tumor angiogenesis and, 232–233
Dental pulp, 556
Developmental angiogenesis
delta-like 4 for, 219–220
endothelial cell activation during, 35–38
angiogenic response initiation, 35–37
guiding cues for, 37–38
tip vs. stalk, 37
vascular lumen formation, 38
Developmental retinal neovascularization, 518
Diabetic macular edema (DME), 418
Diabetic retinopathy
pericytes in, 49
platelet-derived growth factor in, 106
Dimethylarginine dimethylaminohydrolase (DDAH), 195
A Disintegrin And Metalloproteinase (ADAM), 55
Dll1. See Delta-like ligand 1
Dll4. See Delta-like ligand 4
DLT. See Dose-limiting toxicity
DME. See Diabetic macular edema
DNA vaccines
antiangiogenic therapy limitations, 458
biological factor blocking and, 456
bFGF, 456
VEGF, 456
extracellular matrix and, 456
immunotherapy, 452
novel molecular target identification, 457
potency of, anti-angiogenic effect and, 457–458
tumor endothelial cells and, 453–456
angiomotin, 455
EGFR, 456
endoglin, 455
FGFR1, 455
integrin αvβ3, 455
survivin, 456
Tie2, 455
VEGFR2, 454
tumor stromal cells and, 457
legumain, 457
PDGFBR, 457
TAMs, 457
Docetaxel, 439
TNP-470 in vivo studies and, 401
Dose-limiting toxicity (DLT), 468
Down syndrome, 123, 133, 139
endostatin in, 140
Doxorubicin, 290
TNP-470 in vivo studies and, 401
Drosophila, 56
Drug delivery systems, production of, 291–292
Drug-induced gingival enlargement, 535
DSL. See Datura stramonium
Dvorak, H., 163
Dynamic computed tomography, in angiogenesis, 324–326
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), of angiogenesis, 322–324, 467

**E**
ECGC. See Epigallocatechin gallate
ECM. See Extracellular matrix
EDG-1. See Endothelial differentiation gene-1
EDRF. See Endothelium-derived relaxing factor
EGFR. See Epidermal growth factor receptor
ELISA. See Enzyme-linked immunosorbent assay
ELVAX. See Ethylene vinyl acetate copolymer
Embryonic development
lymphatic vasculature, development of, 506
Endogenous inhibitors, of matrix metalloproteinases, 56
Endogenous molecular targets, of immune responses, breaking of, 452–453
Endoglin (Eng)
angiogenesis and, 185–186
tumor endothelial cells and, 455
Endorepellin, 122–123, 137
Endosialin. See Tumor endothelial marker 1
Endostar, 137
Endostatin, 7, 57, 67, 123, 135–141, 462
affinity for zinc, 136
angiogenic activity of, 136–137
biphasic U-shaped dose-response curve, 136, 137
molecular mechanisms, 136–137
crystal structure, 136
discovery of, 135–136
in Down syndrome, 140
experimental anti-cancer activity for, 138–140
endostatin gene therapy, 139
endostatin improves radiotherapy, 139
endostatin protein therapy, 138–139
gene therapy, 139–140
heparan sulfates binding to, 136
improves radiotherapy, 139
like domain of type XV collagen, 124
platelets and, 140
protein therapy, 138–139
Endostatinuria, 140
Endothelial cell heterogeneity, 300
Endothelial cells
activation of
angiogenic response initiation, 35–37
arteriogenesis, 39
during developmental angiogenesis, 35–38
guiding cues for, 37–38
integrin-mediation regulation and, 65–67
in pathological conditions, 38–39
termination of, 39–40
tip vs. stalk, 37
in tumor antiangiogenic therapy, 462
vascular lumen formation, 38
of blood vessels in tumors, 23
FGF2-mediated intracellular signaling, 79–80
invasion of, integrins in, 63–64
migration of, TNP-470, 396
mortality, TNP-470, 396–397
proliferation of, 210
TNP-470, 395–396
sprouting, TNP-470, 396
survival of, 210
tumor, DNA vaccines and, 453–456
vascular, in vitro, 4–5
Index

Endothelial cell surface receptors, for angiostatin, 131–133
  alpha beta, integrin, 132
  angiomotin, 132
  ATP synthase, 131–132
  CD26, 132
  hepatocyte growth factor receptor, 132
  NG2 proteoglycan, 132
  nucleolin, 132–133
Endothelial differentiation gene-1 (EDG-1), 164
Endothelial fenestrations, vascular endothelial growth factor inhibitor cellular action and, 26, 28
Endothelial-like monocyte-derived cells, tumor angiogenesis and, 232–233
Endothelial microenvironment, changes in, VEGF signaling changes and, 211–212
Endothelial nitric oxide synthase (eNOS), 153
Endothelial precursor cells (EPC), tumor angiogenesis and, 165–166
Endothelial progenitor cells (EPCs), 240, 462
disease and, 241–242
hematopoietic cells and, 241
pathophysiology of, in human cancer, 243–244
regulation of, systemic signals, 242–243
significance of, 239–240
tissue resident, 242
  by tumor, animal models, 242
Endothelial sprouts, vascular endothelial growth factor inhibitor cellular actions and, 26
Endothelial stalk cell, 36, 37
Endothelial tip cell, 36, 37
Endothelin 2, hypoxia inducible factor-1 and, 174
Endothelins (ETs), angiogenesis and, 186
Endothelium-derived relaxing factor (EDRF), 193
Eng. See Endoglin
Engelbreth-Holm-Swarm sarcoma tumor, 121, 305
Enhanced permeability and retention (EPR), 284
ENL. See Erythema nodosum leprosum
eNOS. See Endothelial nitric oxide synthase
Enzastaurin, 436–438
Enzyme-linked immunosorbent assay (ELISA), 534
EPC. See Endothelial precursor cells
EPCs. See Endothelial progenitor cells
EphrinB2, 218, 222, 491, 536
Ephrins, growth factors in vascular development, 564
Ephs, growth factors in vascular development, 564
Epidermal growth factor receptor (EGFR), 439
tumor endothelial cells and, 456
Epigallocatechin gallate (EGCG), 200
EPO. See Erythropoietin
EPR. See Enhanced permeability and retention
Erbitux, 7
Erlotinib, 462
Erythema nodosum leprosum (ENL), 387
Erythropoietin (EPO), 185
  angiogenesis and, 186–187
  hypoxia inducible factor-1, 174
Ethylene vinyl acetate copolymer (ELVAX), 3
ETs. See Endothelins
EUROINJECT-I trial, 566
Experimental anti-tumor therapy, angiostatin and, 134
Extracellular matrix (ECM), 55
  angiogenic protein in, 6
  breakdown of, 424
  DNA vaccines and, 456
  MMPs, 457
  organization of, thrombospondin 2 in, 149
  signals, ocular neovascularization, 524
  in tumor angiogenesis, 228–229
Eyes
  retinoblastoma of, 1–3
  vascular beds in, 517–518
  vascular endothelial growth factor family members and, 521–522
F
  FAK. See Focal adhesion kinase
  Familial amyloid angiopathies, 493
  Familial exudative vitreoretinopathy (FEVR), 518
  Farnesyl transferase inhibitors, 368
  Ferrara, Napoleone, 6, 10
  FEVR. See Familial exudative vitreoretinopathy
  FGF. See Fibroblast growth factor (FGF)
  FGF2. See Fibroblast growth factor-2
  FGF2-mediated intracellular signaling, endothelial cells and, 79–80
  Fibroblast growth factor-2 (FGF2), 77
cross-talk with angiogenic growth factors, 80
  ECM-bound, 78–79
  inflammation and, 81
  mechanisms of action of, 78
  extracellular interactions, 78
  mediated intracellular signaling and, 79–80
  as target for anti-angiogenic/anti-cancer regimens, 83–84
  in tumor angiogenesis, 82–83
  experimental tumors, 82
  human tumors, 82–83
  in vasculogenesis, 80–81
  Fibroblast growth factor (FGF), growth factors in vascular development, 563
  Fibroblast growth factor receptor-1 (FGFR1), tumor endothelial cells and, 455
  Fibulins, 124, 137
  FIRST trial, 566
  5-Fluorouricil, leucovorin, oxaliplatin (FOLFOX), 348, 377, 378
  5-Fluorouricil, TNP-470 in vivo studies and, 401
  Focal adhesion kinase (FAK), 63, 132
  FOLFOX. See 5-Fluorouricil, leucovorin, oxaliplatin
  Folkman, Judah, 77, 161, 227, 387, 395, 461
  Fumagillin. See TNP-470
  Functional imaging markers, 316–317
  Fusin, hypoxia inducible factor-1 and, 174
  Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), 322
Gastrointestinal stromal tumors (GIST), 354, 461
  Gleevec-resistant, 416
  Gd-DTPA. See Gadolinium-diethylenetriamine pentaacetic acid
  GDNF. See Glial-derived neurotrophic factor
  Gemcitabine, TNP-470 in vivo studies and, 401
  GeneSpring, 442
Gene therapy
  angiostatin and, 134
  experimental anti-tumor therapy, 134
  ocular neovascularization angiostatin gene therapy, 134–135
  for endostatin, 139–140
Genetic polymorphisms, 477
Genetic profiling, in tumor antiangiogenic therapy, 467
Gimbrone, Michael, 1, 3, 4
Gingival hyperplasia secondary to drugs. See Drug-induced gingival enlargement
GIST. See Gastrointestinal stromal tumors
Gleevec, 265, 335, 354, 435
Glial-derived neurotrophic factor (GDNF), 492
Gliomas, angiogenesis in central nervous system and, 498
GM-CSF. See Granulocyte macrophage-colony stimulating factor
Granulocyte macrophage-colony stimulating factor (GM-CSF), 165
Growth factors, wound revascularization, 549–550
GSL-I. See Griffonia (Bandeiraea) simplicifolia I
Growth factors, wound revascularization, 549–550
GSL-I. See Griffonia (Bandeiraea) simplicifolia I

H

Habu, 92
HC. See Hematopoietic cells
Heart, development of, 561
Hedgehog family
growth factors in vascular development, 563–564
sonic, 490
Hemangioblastomas, angiogenesis in central nervous system and, 497–498
Hematopoietic cells (HC)
  endothelial progenitor cells and, 241
  participation of, tumor angiogenesis and, 165–166
Hematopoietic stem cells (HSCs), 239
Heme oxygenase-1 (HO-1), 185
Heparan-sulfate proteoglycans (HSPGs), 6, 78, 207
Heparan sulfates, binding of, to endostatin, 136
Hepatic stellate cells (HSC), 47
Hepatocyte growth factor (HGF)
  hypoxia inducible factor-1 and, 174
  receptor, for angiostatin, 132
Hereditary endotheliopathy with retinopathy, neuropathy and stroke syndrome (HERNS), 493
Hereditary hemorrhagic telangiectasia (HHT), 185
Hereditary vascular retinopathy, 493
HERNS. See Hereditary endotheliopathy with retinopathy, neuropathy and stroke syndrome
Hexabrachion. See Tenascin-C
Hexamethylpropylene amine oxime (HMPAO), 329
HGF. See Hepatocyte growth factor
HHT. See Hereditary hemorrhagic telangiectasia
HIF. See Hypoxia inducible factor
HIF-1. See Hypoxia inducible factor-1
HIF-1α. See Hypoxia inducible factor-1α
HIF-2α. See Hypoxia inducible factor-2α
Histidine-rich glycoprotein (HRGP), 150
HIV-associated Kaposi’s sarcoma, TNP-470 clinical trial phase I and, 405–406
HMPAO. See Hexamethylpropylene amine oxime
HO-1. See Heme oxygenase-1
Holmgren, Lars, 132

Horizontal inhibition, 471
HPMA. See 2-Hydroxypropyl methacrylamide
HRCC. See Human renal call carcinoma
HRE. See Hypoxia-responsive element
HRF. See Hypoxia inducible factor-1-related factor
HRGP. See Histidine-rich glycoprotein
HSC. See Hematopoietic stellate cells
HSCs. See Hematopoietic stem cells
HSPGs. See Heparan-sulfate proteoglycans
Human neuroblastoma, angiostatin and, 135
Human renal call carcinoma (HRCC), 264
Human tumors, normalization in, 276–277
Human umbilical vein endothelial cells (HUVECs), 150–151, 396, 408, 409, 436
Hunter, John, 1, 541
HUVECs. See Human umbilical vein endothelial cells
Hyaloidal vasculature, regression of, 518–519
2-Hydroxypropyl methacrylamide (HPMA), copolymer Gly-Phe-Leu-Gly-TNP-470, 408
Hypoxia, wound revascularization, 551–552
Hypoxia inducible factor (HIF)
  biochemistry of, 359–364
  asparaginyl hydroxylation, 362–363
  DNA and, 360–361
  endogenous hydroxylase regulation by small molecules, 363
  hydroxylation, 361
  prolyl hydroxylation, 361–362
  prolly hydroxylases, lactate and, 553–554
  system modulation, 364–368
  alternative pathways, 367
  dimerization of, 367
  DNA binding, 367
  farnesyl transferase inhibitors, 368
  genetic approaches, 368
  microtubule destabilization, 367
  microtubule stabilization, 367
  PI3K pathway inhibitors, 367–368
  selectivity, 364–365
  target gene activation inactivation, 365–366
  targets within, 365
  thioredoxin inhibitors, 368
  topoisomerase inhibitors, 367
  transcriptional coactivator p300, 366
Hypoxia inducible factor-1 (HIF-1), 137, 164
  activation
    alternative pathways in, 170
    in hypoxia, 170
  angiogenic factors induced by, 173–175
    adenosine receptor, 175
    adrenomedullin, 173
    ceruloplasmin, 175
    connective tissue growth factor, 173–174
    endothelin 1, 174
    endothelin 2, 174
    erythropoietin, 174
    fasin, 174
    hepatocyte growth factor, 174
    insulin-like growth factor-2, 175
    interleukin-8, 174
    lysyl oxidase, 175
notch signaling, 174
osteopontin, 174
stanniocalcin 1, 174
stanniocalcin 2, 174
stromal cell-derived factor-1, 174
tenascin-C, 175
tie 2, 175
transferrin receptor, 175
tie 2, 175
vascular endothelial growth factor, 173
in cancer, 171–172
expression, 172
prognosis, 172
xenograft studies, 172
degradation pathway, 169
regulated gene expression, 172–173
regulatory pathway, 183
structure of, 169
subfamily, 170–171
synthesis, regulation of, 170
Hypoxia inducible factor-1α (HIF-1α), 183–185
angiogenesis and, 183–185
Hypoxia inducible factor-1-related factor (HRF), 171
Hypoxia inducible factor-2α (HIF-2α), 183–185
Hypoxia pathways, in tumor antiangiogenic therapy, 464
Hypoxia-responsive element (HRE), 91, 519
Hypoxia, wound revascularization, 551–552
Hypoxic regulation, of tumor angiogenesis, 163–164, 170–176

I
IAUGC. See Initial area under the gadolinium concentration curve
IGF-2. See Insulin-like growth factor-2
IL-6. See Interleukin-6
IL-8. See Interleukin-8
IL-12. See Interleukin-12
ILK. See Integrin-linked kinase
Imatinib, 335, 354
Imatinib mesylate, 265
IMG. See Intussusceptive microvascular growth
IMiD. See Immunomodulatory analogues derivatives
Immune cells, tumors angiogenesis and, 226–227, 231–233
dendritic cell precursors, 232–233
endothelial-like monocyte-derived cells, 232–233
mast cells, 231
myeloid-derived macrophages, 231–233
neutrophils, 232
tie2-expressing suppressor cells, 232–233
endothelial cell invasion, 63–64
vessel maturation and, 67–68
Integrin αβ, tumor endothelial cells and, 455
Integrin-binding anti-angiogenic peptide fragments, 67
Integrin-linked kinase (ILK), 63
Integrin-mediated regulation and, endothelial cell activation of, 65–67
Interleukin-6 (IL-6), 261
Interleukin-8 (IL-8), 231, 261
hypoxia inducible factor-1α and, 174
Interleukin-12 (IL-12), 454
Interleukin-12 (IL-12), 454
Internal ribosomal entry site B (IRES-B), 479
Intracellular signaling, 78, 79–80, 133, 136, 141, 287
Intraocular neovascular syndromes, vascular endothelial growth factor-A in, 348
Intussusceptive microvascular growth (IMG), 162
In vitro assays, 300–302
cell migration assay, 300–301
coculture protocols, 302
organ culture assays, 302
proliferation assay, 300
in vitro tube formation, 301–302
In vivo assays, 302–304
chorioallantoic membrane assay, 302–303
mesenteric window assay, 303–304
IREs. See Iron responsive elements
IRES-B. See Internal ribosomal entry site B
Iron regulatory proteins (IRPs), 175
Iron responsive elements (IREs), 175
IRPs. See Iron regulatory proteins
Ischemia, hemodynamics and, 565
Ito cells, 47

J
Jaffe, Eric, 4
Jagged proteins, 218
Kawasaki disease (KD), 481
KD. See Kawasaki disease
Kerbel, Robert, 315
Kinase inhibitors, 416
Klagsbrun, Michael, 6
Kawasaki disease (KD), 481
See Kawasaki disease
Kerbel, Robert, 315
Kinase inhibitors, 416
Klagsbrun, Michael, 6

Lactate
ADP-ribosylations and, 554–555
HIF prolyl hydroxylases and, 553–554
importance of, 555–556
regulatory redox activity and, 554
in wounds, 552–553
Lactate accumulation, wound revascularization, 551–552
Langer, Robert, 3
LEA. See Lycopersicin esculentum
LECs. See Lymphatic endothelial cells
Legumain, tumor stromal cells and, 457
Lenalidomide, 423, 425
FDA approved indications for, 390–391
Leukemic stem cells (LSC), 249
Leukocytes, 225–226
Lewis lung carcinoma, 26, 28, 125, 130
Lipoprotein-related protein (LRP1), 152
LOX. See Lysyl oxidase
LRP1. See Lipoprotein-related protein
LSC. See Leukemic stem cells
Lucentis, 7, 9, 335, 462
Lung cancer, bevacizumab for, 378–379
Lycopersicin esculentum (LEA), 18, 28
Lymphangiogenesis
adult, 506
inflammation and, 512
tumor, 512
metastasis and, 512
Lymphangiogenic growth factors, 509–512
VEGFs and receptors, 509–510
Lymphatic endothelial cells (LECs), 505
Lymphatic endothelium, lineage markers, 507–508
Lymphatic vascular system, experimental models for, 506–507
Lymphatic vasculature
anatomical/functional features of, 505–506
embryonic development of, 506
Lymphatic vessel endothelial hyaluronan receptor (LYVE-1), 21
Lysyl oxidase (LOX), hypoxia inducible factor-1 and, 175
LYVE-1. See Lymphatic vessel endothelial hyaluronan receptor

Macromolecular contrast media (MMCM), 323
Macrophages, wound revascularization, 550–551
Macugen, 7, 9, 348, 462
Macular degeneration, 426
Macular edema, 426
Vascular endothelial growth factor and, 520–521
Magnetic resonance imaging (MRI), of angiogenesis, 322–324
arterial spin labeling, 324
dynamic contrast-enhanced, 322–324
stem cell, 324
Major histocompatibility complex (MHC), 290
Mammalian target of rapamycin (mTOR), 425, 464
MAPK. See p4/42 mitogen associated kinase
MARINA trial, 349
Marina trial, 521
Mast cells, tumor angiogenesis and, 231
Matrigel plug assay, 305–306, 396, 547
Matrix metalloproteinase-9 (MMP-9), 164
Matrix metalloproteinases (MMPs), 36, 40, 55–56, 148
angiogenesis and, 187
anti-angiogenic activities of, 57–59
dependent inhibitors of, 56
extracellular matrix and, 457
proangiogenic activities of, 56
Maximum tolerated dose (MTD), 334, 468
chemotherapy, 313–314
Metastases
lymphangiogenesis tumor and, 512
organ-specific, 259
pathogenesis of, 259–260
thrombospondins and, 153–154
Metronomic chemotherapy, in tumor antiangiogenic therapy,
470–471
MHC. See Major histocompatibility complex
Microvascular homeostasis, pericytes in, 46
Microvessel density (MVD), 82, 162, 166, 314, 321
Mimetic peptides, 154
Minimum target inhibiting dose (MTID), 468
Minocycline, 432–435
TNP-470 in vivo studies and, 401
Mitochondrial myopathy, encephalopathy, lactic acidosis and
stroke-like episodes (MELAS), 493, 495
Mitomycin C, TNP-470 in vivo studies and, 402
MMCM. See Macromolecular contrast media
MMP-9. See Matrix metalloproteinase-9
MMPs. See Matrix metalloproteinases
MoAbs. See Monoclonal antibodies
Monocarboxylic transferases (MCTs), 548
Monoclonal antibodies (MoAbs), in tumor antiangiogenic therapy,
464–465
Monocyte chemoattractant protein-1 (MCP-1), 230–231
Monocytes, arteriogenesis, 568
Mosaic vessels, tumor angiogenesis and, 165
Motesanib, 427
Moya-Moya disease, angiogenesis in central nervous system and,
493–495
MRI. See Magnetic resonance imaging
MS. See Multiple sclerosis
MTD. See Maximum tolerated dose
MTID. See Minimum target inhibiting dose
mTOR. See Mammalian target of rapamycin
Multidrug resistance gene (MDRI), 266

MCL-1. See Myeloma cell line-1
Malaria, 26
Marine窗口, 303–304
MetAP-2, TNP-470 and, 403
Metastases
lymphangiogenesis tumor and, 512
organ-specific, 259
pathogenesis of, 259–260
thrombospondins and, 153–154
Metronomic chemotherapy, in tumor antiangiogenic therapy,
470–471
MHC. See Major histocompatibility complex
Microvascular homeostasis, pericytes in, 46
Microvessel density (MVD), 82, 162, 166, 314, 321
Mimetic peptides, 154
Minimum target inhibiting dose (MTID), 468
Minocycline, 432–435
TNP-470 in vivo studies and, 401
Mitochondrial myopathy, encephalopathy, lactic acidosis and
stroke-like episodes (MELAS), 493, 495
Mitomycin C, TNP-470 in vivo studies and, 402
MMCM. See Macromolecular contrast media
MMP-9. See Matrix metalloproteinase-9
MMPs. See Matrix metalloproteinases
MoAbs. See Monoclonal antibodies
Monocarboxylic transferases (MCTs), 548
Monoclonal antibodies (MoAbs), in tumor antiangiogenic therapy,
464–465
Monocyte chemoattractant protein-1 (MCP-1), 230–231
Monocytes, arteriogenesis, 568
Mosaic vessels, tumor angiogenesis and, 165
Motesanib, 427
Moya-Moya disease, angiogenesis in central nervous system and,
493–495
MRI. See Magnetic resonance imaging
MS. See Multiple sclerosis
MTD. See Maximum tolerated dose
MTID. See Minimum target inhibiting dose
mTOR. See Mammalian target of rapamycin
Multidrug resistance gene (MDRI), 266

Index
Multiple myeloma, 7, 243, 244, 249, 365, 388, 389, 390, 391, 423, 425, 427, 435, 436, 440, 441, 462
Multiple sclerosis (MS), angiogenesis in central nervous system and, 496–497
Mural cells, 17, 23, 40, 45, 105, 345, 472, 491, 564
MVD. See Microvessel density
Mycoplasma pulmonis, 18, 21
Myeloid-derived suppressor cells, tumor angiogenesis and, 232–233
Myeloma. See Multiple myeloma
N
Natural peptide inhibitors, in tumor antiangiogenic therapy, 465
N-benzoylated staurosporine analog midostaurin, 435
NC1 domain
of alpha 6 chain type IV collagen, 124
of type XIX collagen, 124
Netrins, 38
Neuropilin-1, 94–95, 229
Neuropilin-2, 94–95
Neuropilins (NRPs), 207
growth factors in vascular development, 564
Neutrophils, tumor angiogenesis and, 232
Nexavar, 7, 313
NFκB. See Nuclear factor κB
NG2 proteoglycan, for angiostatin, 132
NH2-terminal domain, thrombospondins and, 152
Nitric oxide (NO), 525
arginine depletion, 197–198
availability of, chemoprevention with natural derivatives and, 200
donors, 198–199
in endostatin antiangiogenic activity, 137
potentiators, 198–199
releasing NSAIDs, 199
roles of, 193
in angiogenesis, 194
in tumor angiogenesis, 195
scavengers, 197–198
synthesis, 193
in tumor antiangiogenic therapy, 464
Nitric oxide synthases (NOS), 193
inhibitors of, 196–197
isoforms, genetic polymorphism of, 196
pathway, antiangiogenic/anti-tumor drugs and, 199–200
perspectives of, 196
pharmacological interventions of, 196
NO. See Nitric oxide
Non-phagocytic oxidase (NOX), 548
Non-small cell lung cancer (NSCLC). See Lung cancer
Nonsteroidal anti-inflammatory drugs (NSAIDs), 233, 524
nitric oxide releasing, 199
Normalization hypothesis, 274–275
NOS. See Nitric oxide synthases
Notch family, growth factors in vascular development, 564
Notch signaling, hypoxia inducible factor-1 and, 174
NOX. See Non-phagocytic oxidase
NRPs. See Neuropilins
NSAIDs. See Nonsteroidal anti-inflammatory drugs
NSCLC. See Non-small cell lung cancer
Nuclear factor kB (NFkB), 226
Nucleolin, for angiostatin, 132–133
O
OBD. See Optimal biologic dose
Ocular neovascularization. See also Retinal neovascularization;
Subretinal neovascularization
angiopoietins and, 522–523
angiostatin and, 524–525
bone marrow-derived cells and, 523–524
cyclooxygenase inhibitors and, 524
ECM signals and, 524
tie receptor and, 522–523
TNF-α, 523
VEGF family members, 521–522
Ocular neovascularization angiostatin gene therapy, angiostatin and, 134–135
ODD. See Oxygen-dependent degradation
Oncogenic mechanisms, 181
Optical imaging, in angiogenesis, 326–327
Optimal biologic dose (OBD), 334
Oral cavity, angiogenesis in, 533–537
Oral mucosa wound healing, angiogenesis and, 536
O’Reilly, Michael, 130
Orf-VEGF. See Vascular endothelial growth factor-E
Organ culture assays, 302
Organ-specific metastasis, 259
Orthodontics, 533, 536
Osteopontin, 64
hypoxia inducible factor-1 and, 174
Ovarian cancer, bevacizumab for, 380
Oxygen-dependent degradation (ODD), 183
P
p42 mitogen associated kinase (MAPK), 133
Paget, Stephen, 260–261, 431
PAI-1. See Plasminogen activator inhibitor-1
Pancreatic carcinoma, 263–264
Parkinson’s disease (PD), angiogenesis in central nervous system and, 496
Pathologic retinal neovascularization, 519
PD. See Parkinson’s disease
PDGF. See Platelet-derived growth factor
PDGF-B. See Platelet-derived growth factor-B
PDGFR-α. See Platelet-derived growth factor receptor-α
PDGFR-β. See Platelet-derived growth factor receptor-β
PECAM-1. See Platelet endothelial cell adhesion molecule-1
PEDF. See Pigment epithelium-derived factor
Pegaptanib, 423, 426
Pegaptanib sodium, 348–349
Pericytes
in angiogenesis, 47–48
blood vessels in tumors and, 23
characteristics of, 45
in diabetic retinopathy, 49
identification of, 45–46
mediated recruitment of, platelet-derived growth factor-B and, 105
in microvascular homeostasis, 46
tissue-specific functions of, 46–47
Pericytes (continued)
tumor, 49–50
in tumor antiangiogenic therapy, 462–463
in tumor blood vessels in, 164
in vascular development, 47–48
in vascular disease, 48–49
vascular endothelial growth factor inhibitor cellular action and, 28
Perineural vascular plexus (PNVP), 489
Periodontal disease, 533–535
Periodontium, 533–534
PET. See Positron emission tomography
PEX, 67
PFS. See Progression-free survival
PGE. See Prostaglandin
PHDs. See Prolyl-4-hydroxylases
Phagocytic oxidase (PHOX), 548
Physiological angiogenesis, angiostatin and, 135
PI3K. See Phosphoinositide 3-kinase
Pichia pastoris, 135
PIGF. See Placental growth factor
Pigment epithelium-derived factor (PEDF), ocular neovascularization and, 524–525
Pigment epithelial cell adhesion molecule-1 (PECAM-1), 21, 212
Platelet-derived growth factor receptor-β (PDGFR-β), 23, 28, 46, 47, 100, 104–105
tumor stromal cells and, 457
Platelet endothelial cell adhesion molecule-1 (PECAM-1), 21, 212
Platelets
angiogenesis regulatory proteins in, 9
endothastin and, 140
tumor antiangiogenic therapy and, 467
PLCγ. See Phospholipase Cγ
PNVP. See Perineural vascular plexus (PNVP)
Podoplanin, 509
PolyHEDA. See Polymer polyhydroxy ethylmethacrylate
Poly-lactic acid (PLA) microspheres, TNP-470 in, 408
Polymer polyhydroxy ethylmethacrylate (PolyHEMA), 3
Poly(vinyl alcohol)-TNP-470 conjugate, 408–409
Porphyromonas gingivalis, 534
Positron emission tomography (PET), of angiogenesis, 328–329, 468
Postnatal vascular development, delta-like 4 in, 221–222
Proangiogenic factors, tumor antiangiogenic therapy and, 463–464
Progression-free survival (PFS), 273, 469
Prolyl-4-hydroxylases (PHDs), 183
Prostaglandin (PGE), 195–196
inhibitors, ocular neovascularization, 524
Prostate cancer, 264–266
antivascular therapy of multidrug resistant, 267
bevacizumab for, 381
Prostate-specific membrane antigen (PSMA), 339
Proteases, in tumor angiogenesis, 228–229
Protein kinase B (PKB), 355
Protein kinase inhibitors
cytotoxic agents with, 355–356
targeted agents with, 355–356
Protein kinase signaling network, 355
Protein therapy, for endostatin, 138–139
Protein tyrosine kinase, 113, 114, 264, 265, 353, 355, 464
Proteomics, tumor antiangiogenic therapy and, 467
Prox1, 509
PSMA. See Prostate-specific membrane antigen
PTK 787 (Vatalanib), 356
PTPs. See Phosphotyrosine phosphatase
pVHL. See von Hippel-Lindau protein
Pyogenic granuloma, 533–536
Platelet-derived growth factor receptor-α (PDGFR-α), 100, 104–105
Platelet-derived growth factor receptor-β (PDGFR-β), 23, 28, 46, 47, 100, 104–105
tumor stromal cells and, 457
Platelet endothelial cell adhesion molecule-1 (PECAM-1), 21, 212
Platelets
angiogenesis regulatory proteins in, 9
endothastin and, 140
tumor antiangiogenic therapy and, 467
PLCγ. See Phospholipase Cγ
PNVP. See Perineural vascular plexus (PNVP)
Podoplanin, 509
PolyHEDA. See Polymer polyhydroxy ethylmethacrylate
Poly-lactic acid (PLA) microspheres, TNP-470 in, 408
Polymer polyhydroxy ethylmethacrylate (PolyHEMA), 3
Poly(vinyl alcohol)-TNP-470 conjugate, 408–409
Porphyromonas gingivalis, 534
Positron emission tomography (PET), of angiogenesis, 328–329, 468
Postnatal vascular development, delta-like 4 in, 221–222
Proangiogenic factors, tumor antiangiogenic therapy and, 463–464
Progression-free survival (PFS), 273, 469
Prolyl-4-hydroxylases (PHDs), 183
Prostaglandin (PGE), 195–196
inhibitors, ocular neovascularization, 524
Prostate cancer, 264–266
antivascular therapy of multidrug resistant, 267
bevacizumab for, 381
Prostate-specific membrane antigen (PSMA), 339
Proteases, in tumor angiogenesis, 228–229
Protein kinase B (PKB), 355
Protein kinase inhibitors
cytotoxic agents with, 355–356
targeted agents with, 355–356
Protein kinase signaling network, 355
Protein therapy, for endostatin, 138–139
Protein tyrosine kinase, 113, 114, 264, 265, 353, 355, 464
Proteomics, tumor antiangiogenic therapy and, 467
Prox1, 509
PSMA. See Prostate-specific membrane antigen
PTK 787 (Vatalanib), 356
PTPs. See Phosphotyrosine phosphatase
pVHL. See von Hippel-Lindau protein
Pyogenic granuloma, 533–536
R
Radiotherapy, endostatin improves, 139
Ranibizumab, 335, 423, 426
vascular endothelial growth factor-A and, 348–349
RAP. See Retinal angiomaticious proliferation
RAVE trial, 566
RCC. See Renal cell carcinoma
Reactive oxygen species, 150, 170, 183, 227, 404, 543, 545, 548, 549
Receptor tyrosin kinase (RTK), 49, 113, 288
RECK. See Reversion-inducing cysteine-rich protein with Kazal motifs
Regulated gene expression, hypoxia inducible factor-1, 172–173
Regulatory redox activity, lactate and, 554
Renal cell carcinoma (RCC), 181–182
bevacizumab for, 380–381
Resistance, signal transduction therapy, 355
Retinal angiogenesis, 221–222
Retinal angiomatous proliferation (RAP), 520
Retinal arteriolar tortuosity, and leukoencephalopathy, 493
Retinal neovascularization
  developmental, 518
  models of, 519
  pathologic, 519
  VEGF and, 520–521
Retinal pigmented epithelium (RPE), 492, 518, 519
Retinopathy of prematurity (ROP), 519
REVASC trial, 566
Reversible posterior leukoencephalopathy syndrome (RPLS), 382
Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), 56
Revlimid, 7, 462
Ricinus communis, 18
RIP-Tag2, 26, 28
Robo, 38
Robo4, 339
ROP. See Retinopathy of prematurity
Rouget, Charles, 45
RPE. See Retinal pigmented epithelium
RPLS. See Reversible posterior leukoencephalopathy syndrome
RTK. See Receptor tyrosin kinase
Sabin, Florence, 506
SAGE. See Serial analysis of gene expression
Salmonella typhimurium, 453, 454, 455, 456, 458
SCCRO. See Squamous cell carcinoma related oncogene
ScFv. See Single-chain variable fragments
Schnitzer, Jan, 335
SDF-1. See Stromal cell derived factor-1
“Seed and Soil” hypothesis (Paget), 260–261
SELEX. See Systemic evolution of ligands by exponential enrichment
Sema4A. See Semaphorin4A
Semaphorin4A (Sema4A), 38
Semaphorins, 37
Semaxanib, 464
Serial analysis of gene expression (SAGE), 441, 457
SFKs. See Src family kinases
Shb, 79, 104, 205, 208, 209, 210
Shh. See Sonic hedgehog
Shing, Yuen, 6
Signal transducers and activators of transcription factors (STATs), 117
Signal transduction, angiopoietins, 117
Signal transduction pathways, triggered of, by platelet-derived growth factor, 101–102
Signal transduction therapy, 353–355
  principles of, 353–354
  resistance, 355
  successfulness of, 354
  types of, 354–355
  anti-apoptotic pathways, 355
  protein kinase signaling network, 355
Single-chain variable fragments (ScFv), 287
Single nucleotide polymorphisms
  of VEGF-A gene, 478–480
  of VEGFRs genes, 481–482
Single photon emission computed tomography (SPECT), of angiogenesis, 328–329
α-SMA. See α-smooth muscle actin
Small-molecule inhibitors, in tumor antiangiogenic therapy, 464–465
α-smooth muscle actin (α-SMA), 23, 28
SOCS. See Suppressor of cytokine signaling
Solunan tuberousum (STL), 18
Solid tumors, passive drug delivery to, 233–286
Soluble molecular markers, in biological fluids, 314–315
Sonic hedgehog (Shh), 490
Sorafenib, 176, 313, 356, 416, 423, 425, 462
SPECT. See Single photon emission computed tomography
Sponge implant assays, 306
Squamous cell carcinoma related oncogene (SCCRO), 477
Src, 63
Src family kinases (SFKs), 101
Stanniocalcin 1, hypoxia inducible-factor-1 and, 174
Stanniocalcin 2, hypoxia inducible-factor-1 and, 174
STATs. See Signal transducers and activators of transcription factors
Stem cells
  magnetic resonance imaging, of angiogenesis, 324
  in tumor angiogenesis, 245
S.T.E.P.S. See System for Thalidomide Education and Prescribing Safety program
STL. See Solunan tuberousum
Stroke, angiogenesis in central nervous system and, 495
Stromal cell derived factor-1 (SDF-1), 165, 230
  hypoxia inducible-factor-1 and, 174
Stromal cells, 457
SU5416, 435
Subretinal neovascularization, 519–520
  models of, 520
  VEGF and, 520–521
Suicidal DNA vectors, 453
Sunitinib, 313, 423, 425–426, 462, 465
Suppressor of cytokine signaling (SOCS), 182
Surrogate biomarkers, tumor antiangiogenic therapy and, 466
Survivin, tumor endothelial cells and, 456
Sutent, 7, 313
Synectin, growth factors in vascular development, 564–565
System for Thalidomide Education and Prescribing Safety (S.T.E.P.S.) program, 390, 425
Systemic evolution of ligands by exponential enrichment (SELEX), 287
TAF. See Tumor angiogenesis factor; Tumor angiogenic factor
TAMs. See Tumor-associated macrophages
Tarceva, 7
Targeted drug delivery, 284
to tumor neovasculature, 286–290
  carrier systems for, 286
  homing ligands, 287
  pharmacological agents for, 287–290
  target epitopes, 287
Target epitopes, 233, 287, 288, 290, 291
Taxotere, 134
Teeth, 533, 534, 536, 537
Teicher, Beverly, 274
TEM1. See Tumor endothelial marker 1
TEM5. See Tumor endothelial marker 5
TEM7. See Tumor endothelial marker 7
TEM8. See Tumor endothelial marker 8
Temozolomide, TNP-470 in vivo studies and, 402
TEMs. See Tie2-expressing monocytes; Tumor endothelial markers
Tenascin-C, 64
hypoxia inducible factor-1 and, 175
Tetrahydrocortisol, 7
T.f. svVEGF (Trimeresurus flavoviridis snake venom vascular endothelial growth factor), 92
TGFβ. See Transforming growth factor β
Thalidomide, 7, 423, 425, 440, 462
analogue development, 389–390
for cancer therapy, 390
FDA approved indications for, 390–391
IMid derivatives of, 387–392
lenalidomide and, clinical development of, 391–392
pharmacological mechanisms of, 387–389
antiangiogenic activity, 388–389
anti-inflammatory activity, 389
immunomodulatory activity, 389
Thalmid. See Thalidomide
Therapeutic angiogenesis, 194, 242, 495, 555, 564, 565, 567, 568
Thioredoxin inhibitors (Trx-1), 368
Thrombospondin 1 (TSP1), 231
angiogenic functions of, 151
antiproliferative functions of, 151
biphasic functions of, 151
Thrombospondin 2 (TSP2)
antiproliferative functions of, 151
in extracellular matrix organization, 149
Thrombospondins (TSPs), 147–154
angiogenesis functions and, 151–153
COOH-terminal domain, 152–153
NH2-terminal domain, 152
types I, II, III repeats, 152
as endogenous inhibitors of angiogenesis, 149–151
cellular mechanisms in, 150–151
transcriptional regulation, 149–150
as matricellular proteins, 148
in metastases, 153–154
ocular neovascularization, 524–525
in tumor growth, 153–154
wound healing and, 148–149
Thrombospondin structural homology repeats (TSR), 152
Tie1/2, gene-modified mice, 115–117
venous malformations and, 116
Tie2
hypoxia inducible factor-1 and, 175
tumor endothelial cells and, 455
Tie2-expressing monocytes (TEMs), tumor angiogenesis and, 232
Tie receptor, ocular neovascularization and, 522–523
Tie receptor tyrosine kinase family, 114–115
angiopoietin-receptor complex and, 115
expression of, 114
structure of, 114–115
TIMP. See Tissue inhibitor of metalloproteinase family
TIMP-1. See Tissue inhibitor of metalloproteinase-1
TIMP-2. See Tissue inhibitor of metalloproteinase-2
Tissue inhibitor of metalloproteinase-1 (TIMP-1), 185
Tissue inhibitor of metalloproteinase-2 (TIMP-2), 40
Tissue inhibitor of metalloproteinase (TIMP) family, 56, 58, 59
TNF-α. See Tumor necrosis factor-α
TNF-related apoptosis-inducing ligand (TRIAL), 389
TNP-470 (O-chloroacetylcarbamoyl)fumagillol) clinical trials of, 405–409
cytotoxic agents, 406, 408
phase I, 405–406
phase II, 406
discovery of, 395
mechanism of action, 403–405
on cell cycle, 403–404
on MetAp-2, 403
on non-endothelial cell, 404–405
on vessel hyperpermeability, 404
in medium chain triglyceride, 408
metabolism of, 405
pharmacokinetics of, 405
in poly-lactic acid microspheres, 408
preclinical toxicity of, 402–403
in vitro characterization of, 395–397
capillary-like tube formation disruption, 396
endothelial cell migration, 396
endothelial cell morphology, 396–397
endothelial cell proliferation, 395–396
endothelial sprouting, 396
non-endothelial cells, 397
in vivo characterization of, 397–402
angiogenesis models, 397
metastatic models, 402
primary murine tumor models, 397–402
transgenic models, 402
Topoisomerase inhibitors, 367
Torisel, 7
TRAFFIC trial, 566
Transferrin receptor, hypoxia inducible factor-1 and, 175
Transforming growth factor-β (TGF-β), hypoxia inducible factor-1 and, 174–175
Transforming growth factor β (TGFβ), 105
Trastuzumab, 278
TRIAL. See TNF-related apoptosis-inducing ligand
Trimeresurus flavoviridis snake venom vascular endothelial growth factor (T.f. svVEGF), 92
Triticum vulgaris, 18
Trx-1. See Thioredoxin inhibitors
TSAd, 90, 209, 210
TSP1. See Thrombospondin 1 (TSP1)
TSP2. See Thrombospondin 2
TSPs. See Thrombospondins
TSR. See Thrombospondin structural homology repeats
Tube formation, in vitro, 301–302
Tumor(s). See also Tumor angiogenesis
angiogenesis-dependent, 165
antiangiogenic therapy of, 461–471
activated endothelial cells, 462
adverse effect prevention/management of, 465–466
bidirectional action and, 471
broad-spectrum targeting, 470
CEC circulating levels, 467
CEP circulating levels, 467
clinical studies, 468–469
hypoxia pathways, 464
metronomic chemotherapy, 470–471
monoclonal antibodies, 464–465
natural peptide inhibitors, 465
nitric oxide, 464
pericytes, 462–463
platelets and, 467
proangiogenic factors, 463–464
proteomics, 467
small-molecule inhibitors, 464–465
surrogate biomarkers and, 466
targets in, 462–464
therapeutic strategies in, 464–465
vascular imaging techniques, 467–468
blood vessels in, 21–26
basement membrane of, 23, 26
endothelial cells of, 23
identification of, 21–23
pericytes, 23
pericytes in, 164
regrowth of, 28, 30
VEGF inhibitor cellular actions, 26–28
of central nervous system, angiogenesis and, 497–498
Engelbreth-Holm-Swarm sarcoma, 121
experimental, fibroblast growth factor-2 in, 82
growth of
angiogenesis-dependent, 1–3
blocking of, antiangiogenesis for, 451
in isolated perfused organs, 1
thrombospondins and, 153–154
human
fibroblast growth factor-2 in, 82–83
in mice, 138
normalization in, 276–277
lymphangiogenesis, 512
mass, growth suppression and, 129
metastasis and, lymphangiogenesis, 512
pericytes, 49–50
progression of, angiogenesis and, 162
solid, passive drug delivery to, 233–286
transplanted, blocking VEGF signaling in, 275–276
Tumor angiogenesis, 577
cancer stem cell and, 250–252
chemokines in, 229–230
cytokines in, 229–230
delta-like 4 and, 220–221
endothelial precursor cells and, 165–166
extracellular matrix in, 228–229
fibroblast growth factor-2 in, 82–83
experimental tumors, 82
human tumors, 82–83
growth factors in, 229–230
hematopoietic cell participation and, 165–166
hypoxic regulation of, 163–164
immune cells and, 226–227, 231–233
dendritic cell precursors, 232–233
endothelial-like monocyte-derived cells, 232–233
mast cells, 231
myeloid-derived suppressor cells, 232–233
neutrophils, 232
tie2-expressing monocytes, 232
tumor-associated macrophages, 231–232
inflammatory cell role in, 164–165
mosaic vessels, 165
nitric oxide role in, 195
platelet-derived growth factor to, 106
prognostic significance of, 166
proteases in, 228–229
stem cells in, 245
vascular endothelial growth factor-A in, 347
vascular endothelial growth factor and, 416
vasculogenic mimicry, 165
Tumor angiogenesis factor (TAF), 431
Tumor angiogenic factor (TAF), 2
isolation of, 161
Tumor-associated macrophages (TAMs), 478
hypoxia inducible factor-1 and, 172
tumor angiogenesis and, 231–232
tumor stromal cells and, 457
Tumor blood flow, instant blockade of, 290
Tumor endothelial cells, DNA vaccines and, 453–456
angiomotin, 455
EGFR, 456
endoglin, 455
FGFR1, 455
integrin αvβ3, 455
survivin, 456
Tie2, 455
VEGFR2, 454
Tumor endothelial heterogeneity, 291
Tumor endothelial marker 1 (TEM1), 336–337
Tumor endothelial marker 5 (TEM5), 337
Tumor endothelial marker 7 (TEM7), 337–338
Tumor endothelial marker 8 (TEM8), 338–339
Tumor endothelial markers (TEMs), 335–339
antiangiogenic agents, 334–335
TEM1, 336–337
TEM5, 337
TEM7, 337–338
TEM8, 338–339
uncovering of, 335–336
vascular agents, 334–335
Tumorigenesis
initiation of, 225–226
promotion of, 225–226
Tumor microenvironment, 55, 56, 57, 59, 68, 163, 186, 195, 199, 205, 226, 228, 230, 231, 232, 251, 273, 275, 276, 284, 315, 375, 391, 402, 404, 458
targeting of, 259–267
Tumor necrosis factor-α (TNF-α), Ocular neovascularization, 523
Tumor neovasculature, targeted drug delivery to, 286–290
carrier systems for, 286
homing ligands, 287
pharmacological agents for, 287–290
target epitopes, 287
Tumor stromal cells, DNA vaccines and, 457
legumin, 457
PDGFRβ, 457
TAMs, 457
Tumor suppressor, 182–183
Tumor vasculature
cancer stem cell and, 252–253
normalizing rationale, 275
targeted drug delivery therapeutics
with antiangiogenic drugs, 292–293
with chemotherapeutics, 293
Tumor vessels
genotypic characteristics of, 163
phenotypic characteristics of, 163
Tumstatin, 67, 124–125, 137
Tyrosine kinase inhibitors, 426–427
Tyrosine kinase receptor, 115
Tyrosine phosphatase, 117
U
Ultrasound, in angiogenesis, 326
UNC5, 38
V
Vandetanib, 356, 427
Vascular architecture, changes in, 18
Vascular basement membrane (VBM), 121
Vascular beds, in eyes, 517–518
Vascular cell adhesion molecule-1 (VCAM-1), 64
Vascular cooption, 163
Vascular development
growth factors in, 562–565
coupl-TFI, 564
ephrins, 564
ephs, 564
FGF family, 563
hedgehog family, 563–564
neuropilins, 564
Notch family, 564
PDGF family, 564
synectin, 564–565
VEGF family, 562–563
pericytes in, 47–48
Vascular disease, pericytes in, 48–49
Vascular disrupting agents (VDAs), 334
Vascular endothelial growth factor (VEGF), 6, 8, 9, 10, 261
angiogenesis and, 185
biology of, receptors and, 415–416
co-receptors, 207–208
DNA vaccines, biological factor blocking and, 456
family members, 521
eye and, 521–522
growth factors in vascular development, 562–563
ocular neovascularization, 521–522
history of, 345–346
hypoxia inducible factor-1 and, 173
inhibitor cellular actions, 26–28
basement membrane, 28
endothelial fenestrations, 26, 28
endothelial sprouts, 26
immunoreactivity, 28
pericytes, 28
tumor vascularity, 26
vessel patency, 26
inhibitors
on blood vessels, 30
cancer patient clinical trials with, 347–348
tumor vessel regrowth, 28, 30
macular edema and, 520–521
pathway inhibitors for cancer treatment, 416
regulation of, 206
retinal neovascularization and, 520–521
signal transduction, 205–210
subretinal neovascularization and, 520–521
tumor angiogenesis and, 416
Vascular endothelial growth factor-A (VEGF-A), 90–91
biological effects of, 346
embryonic lethality of, in heterozygotic mice, 90
function of, 90
gene expression regulation of, 91, 347
growth factors, 347
hormones, 347
oncogenes, 347
oxygen tension, 347
in intraocular neovascular syndromes, 348
isoform of, gene products, 90–91
isoforms, 346
in pathological angiogenesis, 91
pegaptanib and, 348–349
promoter haplotypes, 480
Ranibizumab and, 348–349
receptors, 346–347
single nucleotide polymorphisms, 478–480
in tumor angiogenesis, 347
in vascular permeability, 91
Vascular endothelial growth factor-B (VEGF-B), 92
Vascular endothelial growth factor-C (VEGF-C), 92
Vascular endothelial growth factor-D (VEGF-D), 92
Vascular endothelial growth factor-E (Orf-VEGF), 92
Vascular endothelial growth factor-receptor (VEGFR), 93–95
activation of, 206
activity, down-regulation of, 206–207
co-receptor, 94–95
endothelial cell signaling and, 93
neuropilin-1, 94–95
neuropilin-2, 94–95
regulation of, 206
signal transduction pathways, 208–210
cytoplasmic tyrosine kinases, 210
phospholipase Cγ pathway, 208–209
PI3K, 209–210
Vascular endothelial growth factor-receptor 1 (VEGFR1), 93
Vascular endothelial growth factor-receptor 2 (VEGFR2), 93–94
tumor endothelial cells and, 454
Vascular endothelial growth factor-receptor 3 (VEGFR3), 94, 507–508
Vascular endothelial growth factor-receptor (VEGFRs), single
nucleotide polymorphisms, 481–482
Vascular endothelial protein tyrosine phosphatase (VE-PTP), 117
Vascular eye diseases, VEGF-Trap in, 417–418
Vascular imaging techniques, in tumor antiangiogenic therapy, 467–468
Vascular maturation, 113
Vascular permeability factor (VPF), 6, 345
signal transduction in, 211–212
Vascular progenitor cells, dependent recruitment of, platelet-derived
growth factor and, 106–107
Vascular regulatory leukocytes (VRL), 576, 578
Vascular remodeling, in inflammation, 18, 21
Vascular smooth muscle cells (vSMCs), 45
Vascular stability, 17, 40
Vascular stem cells, angiogenesis research, 578–579
Vascular targeting agents (VTAs), 279, 316, 334, 339
Vascular tube
formation of, 210–211
migration of, 210–211
Vasculogenesis, 561–562
fibroblast growth factor-2 in, 80–81
wound revascularization, 546–547
Vasogenic mimicry, tumor angiogenesis and, 165
Vasohibin, 524–525
Vatalanib, 356, 427, 465
VBM. See Vascular basement membrane
VCAM-1. See Vascular cell adhesion molecule-1
VCB E3, 182–183
VDAs. See Vascular disrupting agents
VE-cadherin, 94, 151, 210, 211, 212, 240, 287, 336, 462, 562, 565
VEGF. See Vascular endothelial growth factor
VEGF-A. See Vascular endothelial growth factor-A
VEGF-B. See Vascular endothelial growth factor-B
VEGF-C. See Vascular endothelial growth factor-C
VEGF-D. See Vascular endothelial growth factor-D
VEGFR. See Vascular endothelial growth factor-receptor
VEGFR1. See Vascular endothelial growth factor-receptor 1
VEGFR2. See Vascular endothelial growth factor-receptor 2
VEGFR3. See Vascular endothelial growth factor-receptor 3
VEGF-Trap, 26
clinical development of, 415–418
in clinical trials for cancer, 417
in preclinical animal models, 416–417
in vascular eye diseases, 417–418
VEGF-Trap-Eye, 417, 418
Velcade, 7
Venous malformations, and gene-modified mice, tie1/2, 116
VE-PTP. See Vascular endothelial protein tyrosine phosphatase
Verteporfin, 348
Vertical inhibition, 471
Vesiculo-vacuolar organelles (VVOs), 397
Vessel hyperpermeability, TNP-470 and, 404
Vessel normalization, 274, 278, 293
VHL. See von Hippel-Lindau
Vinblastine, 525
Vincristine, 525
Visudyne, 348
Vitaxin, 68
VIVA trial, 566
Volociximab, 68
von Hippel-Lindau (VHL), 91, 169, 497
gene structure, 182
hypoxia inducible factor-1 and, 171–172
tumor suppressor gene, 182–183
von Hippel-Lindau protein (pVHL), 182–183
function, 182
regulatory pathway, 183
structure, 182
von Hippel-Lindau (VHL) Syndrome, 181–182
von Willebrand factor (vWF), 21
VPF. See Vascular permeability factor
VRL. See Vascular regulatory leukocytes
vSMCs. See Vascular smooth muscle cells
VTAs. See Vascular targeting agents
VVOs. See Vesiculo-vacuolar organelles
vWF. See von Willebrand factor
W
WGA. See Wheat germ agglutinin
Wheat germ agglutinin (WGA), 18
White, Carl, 6–7
Wilms’ tumor suppressor protein (WT-1), 185
Wnt pathway, 518
Wound healing
oral mucosa, angiogenesis and, 536
thrombospondins and, 148–149
Wound revascularization, stimuli to
angiogenesis, 543–545, 550–551
arteriogenesis, 547
coaulation, 547–548
growth factors, 549–550
hyperoxia, 551–552
hypoxia, 551–552
inflammation, 548–550
inosculation, 545–546
lactate accumulation, 551–552
macrophages, 550–551
metabolic need, 542–543
remodeling, 550–551
therapeutic angiogenesis, 555
vasculogenesis, 546–547
Wounds, lactate in, 552–553
WT-1. See Wilms’ tumor suppressor protein
X
Xenograft studies, hypoxia inducible factor-1 in cancer, 172
Xenopus, 56
Y
YC-1, 368
Z
ZD6474 (Vandetanib), 356