APPENDIX

About Graphs and Matrices in Mathcad

CHANGING NUMBERS IN A FILE AND PLOTTING A GRAPH

\[x := 1, 2 \ldots 10 \quad a := 3 \quad b := 4 \quad f(x) := a \cdot x + b \]

\[\lambda := 0.5 \quad A := 1 \quad T \equiv 1 \quad \delta 1 \equiv 1 \quad t 1 \equiv 0.1 \]

Specification of the number of \(x \) and \(t 1 \) values

\[N := 15 \quad i := 0 \ldots N \quad j := 0 \ldots N \]

Specification of the range

\[x_j := -0.4 + 0.025 \cdot i \quad t 1_j := -0.4 + 0.025 \cdot j \]
In the specification of the function only x and t_1 are used

$$u_c(x, t_1) := \left[2 \cdot A \cdot \cos \left(2 \cdot \pi \left(\frac{\delta_1}{2 \cdot \lambda} \right) \right) \cdot \left[\cos \left(2 \cdot \pi \cdot \left(\frac{x}{\lambda} - \frac{t_1}{T} \right) \right) - 2 \cdot \pi \left(\frac{\delta_1}{2 \cdot \lambda} \right) \right] \right]^2.$$

In the plotting function one needs the i and j notation

$$M_{i,j} := u_c(x_i, t_{1j}).$$

Call on “Surface plot” and type at the place holder just M and push “F9.”

Go with the mouse on the graph and change the angle of the “point of view.” Click twice on the graph and get “3D-Plot Format” for “graph options.” Switch to contour plot.

MATRICES

Go to “Insert” and “Matrix” and select 2 by 2

$$\begin{pmatrix} & \cdot \\ \cdot & \cdot \end{pmatrix}$$

Type $M :=$
Indicate the matrix and insert

$$M := \begin{pmatrix} & \cdot \\ \cdot & \cdot \end{pmatrix}$$

to get

$$M := \begin{pmatrix} & \cdot \\ \cdot & \cdot \end{pmatrix}$$
The manipulation of matrices can easily be seen from files containing matrices. Here we give an example of a matrix composed of functions and how to access the matrix elements after a multiplication has been done.

Fill in functions of \(x \) directly and call \(M \) now \(M(x) \quad x := 0, .1 \ldots 5 \)

\[
M(x) := \begin{pmatrix}
\cos(x) & -\sin(x) \\
+\sin(x) & \cos(x)
\end{pmatrix}
\]

One can access the matrix elements separately. Note that in Mathcad one starts with 0. For the 0, 1 and 1, 1 elements one has

\[
M(x)_{0,1} = M(x)_{1,1} =
\]

\[
\begin{array}{c|c}
0 & 1 \\
-0.1 & 0.995 \\
-0.199 & 0.98 \\
-0.296 & 0.955 \\
-0.389 & 0.921 \\
-0.479 & 0.878 \\
\end{array}
\]

Consider the matrix product \(M1(x) = M(x)^3 \). After multiplication one can again access the matrix elements

\[
M1(x) := M(x)^3 \quad \text{one gets for the 0, 1 element}
\]

\[
M1(x)_{0,1} =
\]

\[
\begin{array}{c}
0 \\
-0.296 \\
-0.565 \\
-0.783 \\
-0.932 \\
-0.997 \\
\end{array}
\]
APPENDIX B

Formulas

CONSTANTS

\[100\mu m \Rightarrow 3000 \text{ GHz}\]
\[100\mu m \Rightarrow 100 \text{ cm}^{-1}\]
\[10\mu m \Rightarrow 1000 \text{ cm}^{-1}\]
\[1 \text{ meV} = 10^3 \text{ eV} = 1.6 \times 10^{-16} \text{ joule} \Rightarrow 8.07 \text{ cm}^{-1}\]
\[100 \text{ nm} = 1000 \text{ Å}\]
\[10000 \text{ Å} = 1 \mu\]
\[1 \text{ Å} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}\]

FORMULAS

\[
\sqrt{-1} = i \quad i^2 = -1
\]
\[z = a + ib = r(\cos \phi + i \sin \phi) = re^{i\phi}\]
\[
\cos x = \frac{e^{ix} + e^{-ix}}{2} \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}
\]
\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots, \quad \sin x = x - \frac{x^3}{3!} + \cdots, \quad \cos x = 1 - \frac{x^2}{2!} + \cdots\]
\[s_n = a + aq + aq^2 + \cdots + aq^{n-1} = a\frac{q^n - 1}{q - 1}\]
\[if |q| < 1, N \to \infty \quad s_\infty = \frac{a}{1-q}\]
\[x^2 + ax + b = 0 \]
\[x_{1,2} = \frac{-a \pm \sqrt{(a^2)} - b}{2} \]

\[(1 \pm x)^n \approx 1 \pm nx \quad |x| < 1 \]

\[\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \times \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1c_1 + b_1c_2 & a_1d_1 + b_1d_2 \\ a_2c_1 + b_2c_2 & a_2d_1 + b_2d_2 \end{pmatrix} \]

\[\begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2c_2 \\ b_3c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1c_1 \\ b_3c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1c_1 \\ b_2c_2 \end{vmatrix} \]

\[\begin{vmatrix} b_1c_1 \\ b_2c_2 \end{vmatrix} = b_1c_2 - b_2c_1 \]

TRIGONOMETRIC FORMULAS

\begin{center}
\begin{tabular}{r|cccccc}
\hline
& 0 & 30° & 45° & 60° & 90° & 180° & 270° & 360° \\
\hline
\sin & 0 & \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{2} & 1 & 0 & -1 & 0 \\
\cos & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} & 0 & 1 & 0 \\
\tan & 0 & \frac{\sqrt{3}}{3} & 1 & \sqrt{3} & \infty & 0 & \infty & 0 \\
\cot & \infty & \sqrt{3} & \frac{1}{3} & \frac{1}{\sqrt{3}} & 0 & \infty & 0 & \infty \\
\hline
\end{tabular}
\end{center}

\[\sin^2 \alpha + \cos^2 \alpha = 1 \]
\[\frac{\sin \alpha}{\cos \alpha} = \tan \alpha \quad \frac{\cos \alpha}{\sin \alpha} = \cot \alpha \]

\[\tan \alpha = \frac{1}{\cos \alpha} \quad \cos^2 \alpha = 1 + \tan^2 \alpha \quad \sin \alpha = \frac{\tan \alpha}{\sqrt{1 + \tan^2 \alpha}} \quad \cos \alpha = \frac{1}{\sqrt{1 + \tan^2 \alpha}} \]

\[\sin(90° \pm \alpha) = \cos \alpha \quad \sin(180° \pm \alpha) = \mp \sin \alpha \]
\[\cos(90° \pm \alpha) = \mp \sin \alpha \quad \cos(180° \pm \alpha) = -\cos \alpha \]
\[\tan(90° \pm \alpha) = \mp \cot \alpha \quad \tan(180° \pm \alpha) = \pm \tan \alpha \]
\[\cot(90° \pm \alpha) = \mp \tan \alpha \quad \cot(180° \pm \alpha) = \pm \cot \alpha \]

\[\sin(-\alpha) = -\sin \alpha \quad \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \]
\[\cos(-\alpha) = +\cos \alpha \quad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \]
\[\tan(-\alpha) = -\tan \alpha \quad \tan(\pm \alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta} \]
\[\cot(-\alpha) = -\cot \alpha \quad \cot(\alpha \pm \beta) = \frac{\cot \alpha \cdot \beta \pm 1}{\cot \beta \pm \cot \alpha} \]
\[
\sin 2\alpha = 2 \sin \alpha \cos \alpha \\
\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1 \\
\sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha} \quad \cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} \\
\tan^2 \alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{2}{\cot \alpha - \tan \alpha}, \quad \cot 2\alpha = \frac{\cot^2 \alpha - 1}{2 \cot \alpha} = \frac{1}{2} (\cot \alpha - \tan \alpha) \\
1 + \cos \alpha = 2 \cos^2 \frac{\alpha}{2}, \quad 1 - \cos \alpha = 2 \sin^2 \frac{\alpha}{2} \\
\tan \alpha = \sqrt{\frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}} = \frac{\sin 2\alpha}{1 + \cos 2\alpha} = \frac{1 - \cos 2\alpha}{1 - \tan^2 \frac{\alpha}{2}} = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}} \\
\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2} \quad \frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \tan \frac{\alpha + \beta}{2} \\
\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2} \\
\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2} \quad \frac{\sin \alpha - \sin \beta}{\cos \alpha + \cos \beta} = \tan \frac{\alpha - \beta}{2} \\
\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2} \\
\frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta} = \tan \alpha \cdot \tan \beta \\
\tan \alpha + \tan \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta} \quad \frac{1 + \tan \alpha}{1 - \tan \alpha} = \tan(45^\circ + \alpha) \\
\cot \alpha \pm \cot \beta = \frac{\pm \sin(\alpha \pm \beta)}{\sin \alpha \sin \beta} \quad \cot \alpha + 1 = \cot(45^\circ - \alpha) \\
\cot \alpha - \tan \alpha = \frac{2}{\sin 2\alpha} \quad \cot \alpha - \tan \alpha = 2 \cot 2\alpha
\]
DIFFERENTIATION

\[(u \cdot v)' = uv' + u'v\]
\[\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}\]
\[(\sin x)' = \cos x \quad (e^x)' = e^x\]
\[(\cos x)' = -\sin x \quad (\ln x)' = \frac{1}{x}\]
\[(\tan x)' = \frac{1}{\cos^2 x} \quad (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}\]
\[(\cot x)' = -\frac{1}{\sin^2 x} \quad (\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}\]

INTEGRATION

\[\int u dv = uv - \int v du\]
\[\int dx = x \quad \int x^n dx = \frac{x^{n+1}}{n+1} \quad \int \frac{dx}{x} = \ln x\]
\[\int \sin x dx = -\cos x \quad \int \cos x dx = \sin x\]
\[\int \cot x dx = \ln \sin x \quad \int \frac{dx}{\sin^2 x} = -\cot x\]
\[\int \frac{dx}{\cos^2 x} = \tan x\]
\[\int \frac{dx}{1-x^2} = \ln \frac{1+x}{1-x}\]
\[\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x \quad \int \frac{dx}{1+x^2} = +\arctan x\]
\[\int e^x dx = e^x \quad \int a^x dx = \frac{a^x}{\ln a} \quad \int \frac{dx}{x \pm a} = \ln(x \pm a)\]
References

Index

Aberration, 415
 achromatic doublet, 432
 aplanatic lens, 425
 astigmatism of single surface, 428
 astigmatism of a thin lens, 429
 chromatic aberration, 430
 coma, 423
 \(\pi \)-6 equation, 420
 spherical of single surface, 415
 spherical of thin lens, 418
 absorption, 319
 achromatic doublet, 430
 achromatic doublet with separated lenses, 432
 active medium, 295
 Airy disc, 149
 Airy function, 116
 alternating high and low refractive indices, 258
 amplitude division, 96
 amplitude grating, 152, 158, 170
 amplitude reflection coefficients, 321
 angle of deviation, 7
 angular magnification, 40
 angular momentum quantum number, 282, 283
 angular quantum number, 283
 antireflection coating, 252, 256
 aperture function \(\alpha(n) \), 385
 aperture plane, 382
 aperture in random arrangement, 169
 aplanatic lens, 425, 427
 apodization, 366, 367
 Arago, 135
 array of source points, 121
 nonperiodic, 126
 periodic, 121
 astigmatic difference ASD, 427, 428, 429
 astigmatism of a single spherical surface, 427
 astigmatism of a single surface, 429
 astigmatism of a thin lens, 428, 429
 asymmetric Fourier transform, 370
 atomic emission, 273
 atomic energy states, 284
 excited states, 286
 occupation rule, 283
 atomic polarizability, 317, 318
 Babinet’s theorem, 166, 168
 background spectrum, 372
 bandpass filter, 364
 bandwidth, 285, 288
 doppler, 291
 homogeneous, 288
 Lorentzian, 293
 mechanical, 291
 natural, 291
 quantum, 291
 beamsplitter, 104
 Bessel function, 149, 165, 166, 389, 390
 Bessel function \(J_1(q) \), 151
 Bessel function as transfer function, 394
 birefringent, 231
Blackbody radiation, 203, 273, 274
Boltzmann’s, Wien’s law, 281
depending on frequency, 279
depending on wavelength, 279
Radiance, Area, solid angle, 281
blackening curves, 376, 377
blocking function, 402
Bohr’s model, 282
buildup principle, 283
K-shell, 284
L-shell, 284
M-shell, 284
boundary conditions, 254
Brewster angle, 216, 321, 322
C-ray, 15, 36
calcite, 232, 236
cavity
concenetric, 77
condition for stability, 76
confocal, 77, 297, 299, 300, 303, 307
matrix for eigenvalue problem, 73
rectangular shaped mirrors, 303
stability relation, 74
with round mirrors, 307
changing numbers, 435
charge density, 206, 316
chromatic aberrations, 430, 431, 432
negative, 430
circular aperture, 148
circular mirrors, 308, 309
circular polarized light, 237, 240
Clausius–Mossotti equation, 320
coherence, 185
condition, 189
extended source, 191
intensity fringe pattern, 187
interval, 195
length, 204
two source points, 185
visibility, 194
Young’s experiment, 186
coherent light, 398
coma
negative coma, 424
positive coma, 424
commercial microscopes, 44
complementary screens, 166, 168
complex cfft, 380
complex dielectric constant, 315
complex Fourier transformation, 345, 346, 349, 370
complex notation, 87
complex refractive index, 315, 321, 326, 327
concave mirror, 71
concave spherical mirror, 70
condition for laser action, 293
confocal cavity, 297
beam parameters, 297
beam waist, 299–301
wavelength at center, 299
wavefront at mirror, 300
wavefront of beam and mirror, 299
confocal resonator, 304, 309
conjugate points, 9
constructive interference, 91, 93, 94, 98, 99, 104, 113, 116
convex single refracting surface, 12, 14
convex spherical mirror, 72
convex spherical surfaces, 9, 14, 19
convex-plane lens, 67
convolution
integral 350, 387
product of two functions, 350
spread function, 397
convolution with the spread function, 397
coordinates for the derivation of Fresnel’s formulas, 212
Cornu’s spiral, 182
critical angle
phase shift, 219
reflected and transmitted intensity, 223
total reflection, 227
crossed polarizers, 238, 239, 245, 246
current density, 326, 327
current density vector, 206, 316
curvature of the wavefront, 299
cylindrical coordinates, 311
cylindrical lens, 388
Damping term, 318
denominator, 123
dense medium, 216, 219, 319
density of the oscillators, 319
dependence on θ, 109
destructive interference, 91, 93, 94, 98–100, 105
INDEX

447

dielectric circular waveguide, 268
dielectric constant, 318
dielectrics, 316
differentiation, 442
differentiation "space", 208
differentiation "time" \(\frac{\partial}{\partial t} \), 208
differentiation operation, 208
diffraction
 amplitude grating, 155
circular aperture, 148
circular opening, 133
circular stop, 135
echelette grating, 159
 on an edge, 176
factor, 153
far field, 138
Fraunhofer, 138
generated wavelets, 131
grating, 152
incident light under an angle, 158
Kirchhoff-Fresnel Integral, 131
losses, 302
on slit, 140–142, 144, 172, 174
3-D graph of rectangular aperture, 147
3-D graph of round aperture, 151
discrete Fourier transform, 366
discrete length coordinates, 356
dispersion of light, 7
Doppler broadening, 393
 line shape, 290
 line width, 296
double slit, 157
double-sided step function, 344, 346, 347
drift velocity, 326
Drude model, 326

Echelette grating, 159, 161
eigenvalue problem, 73
Einstein coefficient, 289
 coefficient of stimulated absorption, 292
 probability coefficient, 276
electrical field vector, 206, 316
electrical polarizability, 316
electromagnetic theory, 205
ellipsometry, 335
electrocalytrically polarized light, 237, 240, 241, 334
emission of light from \(^{86}\text{Kr} \), 202
energy density per frequency, 274
energy levels, 284
energy state, 284
 transitions between states, 286
evanescent wave, 228, 229
 attenuation factor, 229
 penetration depth, 229, 331
 and index of refraction, 232
excited state, 286
extended source, 191, 196
extinction index, 318
extraordinary indices of refraction, 231
eye, 2
Fabry–Perot, 77, 115–117, 249
cavity, 294
etalon, 115
plates, 249
 spectrometer and resolution, 118
 transmission depending on \(D \), 117
far field approximation, 136
Fast Fourier transformation, 341, 342
Fermat’s principle, 2, 5
 law of refraction, 5
 optimum path, 3
 optimum time, 6
 velocity for travel, 4
Fiber optics waveguide, 266
 Bessel function solution, 267
 determination of \(k \), 268
 periodic exponential solution, 266
Fizeau fringes, 106
focal length, 34
folding of the Fourier transform spectrum, 359
folding of the spectrum, 360
 formula for summation, 122
formula for the summation process, 112
formulas, 439
Fourier integrals, 339
Fourier series, 378
Fourier transform integral, 372
Fourier transform spectrometer, 203
Fourier transform spectroscopy, 339, 354, 355
 apodization, 368
 folded spectrums, 364
 high resolution, 365
 large optical path difference, 363
Fourier transform spectroscopy (cont.)
Michelson interferometer, 355
Fourier transformation, 144, 339, 350, 376, 392
asymmetric, 370
discrete length and frequency coordinates, 358
fast, 343
functions $1/(1 + x^2)$ and $\pi e^{-2\pi x}$, 341
gauss function, 340
general, 351
numerical, 341
real, 352, 349, 366
sample interval, 358, 365
two transformations, 382
Fourier transformation using analytical functions, 340
Fraunhofer diffraction, 138, 139
Fraunhofer observation, 136
frequency coordinates, 356
frequency domain, 401
frequency spectrum, 367
Fresnel, 95, 138
Fresnel diffraction 136, 172
on an edge, 175
integrals, 174
on a slit, 173
Fresnel number, 302
Fresnel’s double mirror experiment, 93
Fresnel’s formulas, 80, 211, 320
as function of angle, 215, 217
parallel case 211, 321
perpendicular case, 214
transmission coefficient, 218
Fresnel’s mirror, 95
fringe pattern, 89
fundamental mode, 299, 308
fused quartz, 325
Gain of the beam, 294
Galilean telescope, 46, 48
Gauss function, 340, 350, 351
Gaussian beam, 297
Gaussian line shape, 290
generated wavelet, 131
Geometrical construction, 18
geometrical construction, 15, 17, 18, 29, 31, 70, 72
general, 351
graphical constructions, 25, 30, 36
graphical method, 70
graphs and matrices in Mathcad, 435
grating, 152
number of lines N, 155
openings d, 155
periodicity constant, 159
resolution, 154
side maxima, 154
side minima, 152, 156
Green’s function, 132
guided waves, 259
Half-wave plate, 233, 238, 245
phase shift ϕ, 233
harmonic waves
phase factor, 80
superposition, 82, 206
two depending on space and time coordinates, 82
Heidinger interference fringes, 103, 106, 107, 108
high frequency region, 328
high resolution spectroscopy, 363
Holography, 403
different waves, 405
hologram, 404
product of real image, 405
real image, 404
recovery, 404, 405
size of hologram, 406
transmission curve, 404
under an angle, 405
virtual image, 404, 405
homogeneous equation, 327
Huygens’ principle, 129, 131
Huygens’ wavelets, 129, 375
Image of
one bar, 388
one round object, 389
two round objects, 390, 397
two bars, 388
Image formation using wave theory, 375
amplitude function, 385
aperture function, 385
circular lens, 389–391
convolution, 387
image formation, 386, 398
image forming process, 382
impulse response, 387
one bar, two bars as object, 389
one round, two round as object, 389, 390
pair of Fourier transformations, 385
resolution, 399
spread function, 386
summation process, 383, 384
transfer function, 401
imaginary part, 318
imaging with coherent light, 400
impulse response, 387
incident intensity, 113
incident light under an angle ψ, 158
incoherent light, 386
induced absorption, 275
induced dipoles, 316
induced emission, 275
inhomogeneous equation, 327
intensity, 87, 126
complex notation, 87
normalization, 88
time average, 87
intensity fringe patterns, 187
intensity pattern, 387
interference, 78 (minima)
air gaps, 100, 101
factor, 153
fringes, 113
maxima, minima, 83
pattern generated by two sources, 83
pattern of N sources, 124
interferogram function $S(y)$, 356
interferograms, 353
interferometry, 89
amplitude dividing, 96
Fresnel double mirror, 93
Lloyd, 92
Michelson, 103
model, 89
Newton’s Rings, 101
plane parallel plate, 99
wavefront dividing, 89
wedge shaped, 99
Young, 90
internally reflected components, 244
inverse transformation, 342, 344, 346, 347
inverted image, 2
isotropic medium, 81
isotropic nonconducting medium, 210
Jones matrices, 244, 245
Jones vectors, 244
Kepler telescope, 45, 46, 48
Kirchhoff–Fresnel integral, 131, 132, 139, 376
Kramer–Kroning model, 325
Labels for energy levels, 283
laser beam expander, 48
lasers, 273
active medium, 295
amplification factor, 293, 294
gain of the beam, 294
spontaneous transition, 292
stimulated emission, 291, 292, 293
stimulated transition, 293
two-level systems, 292
lateral magnification, 17
lateral spherical aberration, 418, 420
law of reflection, 2
law of refraction, 1, 2, 5, 222, 320
left polarized light, 237
length of wavetrains, 202
length units, 12
Lens
negative f, 31
plane-convex, 67
lenses, 1
less dense medium, 229, 317
life-time, 286
lifetime τ, 286, 288
linear polarized light, 240
Lloyd’s mirror, 92, 95, 96
longitudinal modes, 295
longitudinal spherical aberration, 415, 417, 419
Lorentz correction, 320
Lorentzian line shape, 286, 288, 290
Lorentzian line width, 295
lossless dielectrics, 336
low frequency region, 327
Magnetic field vector, 206, 316
magnetic quantum number and degeneracy, 282
magnification, 17, 18, 25, 36, 37, 43, 44, 46, 69
magnifier, 37, 47
angular magnification, 40
magnifying power, 40
virtual image at infinity, 39, 41
virtual image nearpoint, 39
magnifying power, 40, 43
many electron atoms, 282
Mathcad
plotting a graph, 435
matrices, 436
matrix elements, 53
matrix method, 49
application to two-and-three-lens systems, 47
glass sphere, 58
hemispherical lens, 58
principal planes, 51
refraction matrix, 49
thick lens, 55
translation matrix, 49
two lenses in air, 59
two thick lenses, 62
maxima, but only \(N - 2 \), 125
Maxwell’s equations, 205, 315, 326
meridional (vertical) plane, 428
Michelson interferometer, 106
dependence on \(\theta \), 109
nonnormal incidence, 106
nonnormal incident light, 106
normal incident light, 103
superposition of two cosine waves, 352
Michelson’s stellar interferometer, 197, 198, 199
two patterns, 197
microscope, 42, 47, 48
magnification 43
magnifying power, 43
near point configuration 41–43
slides, 100
virtual image at infinity, 43
minimum deviation, 8
mirror equation, 68
mirrors, 1
mirrors for laser cavities, 252
mode in a dielectric waveguide, 266
formation, 262
number of nodes, 250
propagation, 249, 261
rectangular box, 251
restrictive conditions, 261
(TM) modes or \(p \)-polarization, 214, 262
modes in a dielectric waveguide, 266
modes of the rectangular box, 251
monochromatic light, 200
M Wilson observatory, 198
multiple layer filters, 258
multiple lens system, 49
mutual orthogonal triad, 209
Natural emission line width, 289
negative chromatic aberration, 430
negative coma, 424
negative crystal, 232, 236
negative lens, 33
Newton, 7
Newton’s rings, 101, 102
Newton’s work, 79
node lines, 250
noncommutation of matrices, 65
nonconductive medium, 210
normal and anomalous dispersion, 319
number of nodes, 250
Object amplitude function \(h(y) \), 385
object focus, 12, 16, 24, 32
object point, 10
object positions, 37
occupation rule, 283
one electron atom, 282
one oscillator, 322
one round object, 389
optical axis, 232
optical axis is the fast axis, 232
optical constants, 315, 316, 326, 338, 372
optical constants of metals, 328
high frequency region, 330
low frequency region, 329
skin depth, 332
optical constants \(n \) and \(K \), 370
optical instruments, 4, 35
optical materials, 231
optical path difference
Fresnel’s double mirror, 94
Lloyd’s mirror, 93
Newton’s rings, 103
Michelson interferometer, 104
plane parallel plate, 98
wedge, 99
Young’s experiment, 91
optically denser medium, 80
order of interference, 83
ordinary index n_0, 232
oscillator expressions, 322
oscillator model, 317, 318
damping term, 317

Pair of Fourier transform integrals, 356
pair of Fourier transformation, 385
paraxial approximation, 15
paraxial theory, 1, 10
paraxial wave equation, 297
Pauli principle, 283
periodic arrangement, 74
periodic array, 126, 171
periodic set of slits, 152
permittivity, 206, 316, 317
perpendicular case, 214
PF-ray, 15, 36
phase difference Δ, 111
phase factor, 80
phase jump, 80
phase velocity, 210
phase velocity in vacuum, 81
planar waveguide, 259, 263
Planck, 273
Planck’s radiation law, 275, 280, 292
plane mirror, 67
virtual image, 67
plane parallel plate, 97, 110, 113, 114
normal incidence, 114
phase difference, δ, 111
summation of the reflected amplitude, 111
transmission, 113
transmitted amplitudes, 111
transmitted intensity, 114, 116
plane plate waveguide, 270
characteristic determinant, 271
traveling waves, 259
plane wave, 206
depending on space and time coordinates, 82
plasma frequency, 318, 328
Poisson spot, 135
polarization, 316
polarized light, 230
linear circular elliptical, 240
population inversion, 291, 292
positive chromatic aberration, 430
positive coma, 424
positive crystal, 232, 234, 236
positive lens, 25, 28, 30
Poynting vector, 222
Poynting vector in vacuum, 209
principal angle, 321
principal axis transformation, 243
principal planes, 56, 60, 62, 63, 67
principal quantum number, 282, 283
prism, 7
angle of deviation, 7
Quality factor, 288
quantum emission, 273
quantum mechanical model, 289
quarter-wave plate, 239, 246
quartz, 232, 234, 236
quasimonochromatic light, 200

Radius of curvature, 69, 71, 300, 417
radius of curvature ρ, 417
Rayleigh–Jean law, 275
random arrangement, 169
random arrangement of source points array, 125
grating, 169
random array, 170, 172
random phase angles, 126
randomly distributed, 126
rate equations, 292
ratio r_s/r_p, 322, 335
Rayleigh criterion, 164, 395
Rayleigh distance, 165, 395
Rayleigh–Jeans law, 274, 276, 280
Real Fourier transformation, 349
real image, 29, 404
real object, 16, 29, 32
real object function, 380
real object point, 11
real objects, 15, 20
recording of the interferogram, 403
recovery of image, 404
rectangular aperture, 145, 147
rectangular-shaped mirrors, 303
references, 443
reflectance R, 226
reflected intensity, 114, 116
reflecting cavity, 73
reflection, 113
amplitude, 111
intensity, 114, 116, 224, 227
power, 51
reflected and transmitted, 274
reflection coefficients, 217, 220, 320
reflection coefficients with absorption, 333
reflection in a mirror cavity, 74
reflection measurements, 322
refracting powers, 51
refraction, 49
refraction matrix, 50
refractive index, 2, 4, 316
relaxation time τ, 327
resolution
coherent light, 399
grating, 162
incoherent light, 394
resolving power, 119, 164
resonance
condition, 304, 308
mode, 116
wave numbers, 323
resonance of vibrations, 323
resonator parameters, 74
restricting, 284
right polarized light, 237
rotation, 65
rotation of the coordinate system, 243
round aperture, 149
round object, 390
round objects, 391
Sagittal (horizontal) plane, 428
sagittal coma C_γ, 423, 425
sampling interval, 359
scalar wave equation, 79, 131
Schawlow and Townes, 295
selection rules, 284
Sellmeier formula, 324
shape factor, 421
sign convention, 11, 69
simulations of interferograms, 358
sine function and apodization, 367
single refracting surface, 415
single surface, 416
single-sided step function, 343, 346
size of hologram, 406
skin depth, 331, 333
slow axis, 232
small angle approximation, 10, 16, 137, 154
solution of the eigenvalue problem, 243
spatial coherence, 185
frequencies, 376
wavelength, 378
waves, 376
spherical aberration, 415, 416, 418, 421, 422
spherical mirrors, 68
concave spherical mirror, 70
convex spherical mirror, 72
graphical method, 70
magnification, 69
virtual image, 73
spherical surfaces, 1, 9, 11, 15
conjugate points, 9
geometrical construction, 16
image focus, 12
image forming equation, 11
image point, 10
magnification, 16, 18
real object, 16
sign convention, 11
virtual image, 16, 18, 19
virtual object, 17, 18, 19
spherical thick lens, 58
spherical wave, 80, 131
spin states, 283
spontaneous emission A_{ji}, 275, 289, 293
spread function, 386, 392, 398
standing wave conditions, 249
static conductivity, 327
gold, 330
lead, 330
nickel, 330
silver, 330
Stefan–Boltzmann law, 277, 278
step function, 340
step grating, 178
stratified media, 252
antireflection coating, 258
plate of thickness $d = \lambda / 2n_2$, 257

two interfaces at distance d, 253

superposition

of two cosine waves, 84

of two double slit patterns, 188

of wavetrains, 201

principle, 80, 208

susceptibility χ, 317

Tangential coma C_T, 424, 425

TE modes, 262, 270

telescope, 44

Galilean, 46

Kepler’s, 44

temporal coherence, 200

length of wavetrains, 202

quasimonochromatic light, 200

superposition, 200

wavetrains, 200

Theory of Color, 7

thick lens, 51, 54

collection lens, 67

focal length, 54

matrix, 51

two hemispherical, 62, 63

two thick lenses, 61, 63

virtual image, 67

thin lens, 24, 33, 53, 54, 418, 422

different media, 34

equation, 23, 30

image focus, 24

magnification, 25

matrix, 52

model, 1

negative lens, 31

object focus, 24

positive lens, 26

transformation to principal planes, 54

two different media, 33

two thin lenses, 36

two thin lenses in air, 59

virtual image, 29, 32

virtual object, 29, 32

three lens system, 42

three-level laser, 296

threshold condition, 294–296

time average, 87

time-dependent, 88

TM modes, 265

total internal reflection, 259, 263

total reflection, 226, 228, 229

transmission coefficient, 221

transfer function, 392, 401

function for (Bessel j), 402

function for $(\sin x / x)$, 402

translation matrices, 49, 51

transmission intensity, 225, 227

transmittance T, 223

transposed matrix, 65

trigonometric formulas, 440

two lens system, 36

two lenses in air, 59

two round apertures, 391, 395

two-level system, 292

Uniaxial crystals, 231

unit matrix, 65

Velocity for travel, 4

vertex of the spherical surfaces, 56

violet catastrophe, 275

virtual image, 16, 29, 32, 68, 404, 405

virtual object, 30, 32

visibility, 194–196

visibility for two point sources, 194

Water waves, 83

wave equation, 242, 317

wavefront division, 89

wavelength, 279, λ, 142

wavetrains, 200, 287

wedge shaped air gap, 99

Wien’s displacement law, 278

Young’s experiment, 90, 91, 96

Young, Thomas, 79