Index

A
Aalders, R., 396
Abma, T.A., 664
Abowd, G.D., 131, 1118, 1119
Abrahall, R., 433, 434
Abraham, M., 625
Abraham, T., 782, 783
Access control model
design time
class mappings, 761
OWL-DL datatype, 762
OWL object property, 760
Ontology loader, 758
XML pruning engine, 759
Active database systems (ADBS), 1105
Active retired associations (ARAs), 120
Actor network theory (ANT)
actor-network relationship, 432–434
concepts of, 433
handover project
Custor network, 436–437
documentation and knowledge transfer, 438–440
maintainance responsibility, 442–443
technical porting, 440–442
translation, 433
ADL. See Architecture Description Language
Aer Lingus carrier
‘About Us’ link, 644
charges, 643
compliments or complaints, 645
online check-in and seat selection, 647
quotes, bookings and referrals, 642–644
Web site contact information, 644
Aesthetic issues
code and programming practices, 821
software art and user interfaces, 822
Agarwal, S., 764
Age differences in technophobia, Irish study
computer anxiety, 118–119
computer usage, 121–122, 125–126
gender issues, 124–125, 127
intervention techniques, 127
levels
group, 124
older adults, 123, 124
students, 123
methodology
measurement and demographic questionnaire, 120–121
participants, 120
procedure, 121
reliability of measures, 122–123
results, 121–125
training programmes, 127
user involvement, 127–128
Agent-Oriented Software Engineering (AOSE), 923
Agile software development, Czech Republic
methodologies research results
agile strengths, 56
agile usage rate, 53–54
agility index, 54
knowledge level, 55
risks, 57
transition reluctance, reasons for, 56
types, 54–55
research characteristics
questionnaire, 52–53
sample structure, 53
survey assumptions, 52
survey comparisons, 59–60
transitions restrictions
categories, 58–59
language problem, 59
Agile software development
methodology
critical factors, 17
field observations
double-loop learning and observed behaviours, 9
field notes reinterpretation, 10
project team meetings, 10
team lead and member's role, 8–9
groupthink, 6
principle and behaviours, 2
research approach
sampling strategy, 7–8
social factors, 7
single and double-loop learning
agile values, 5
definitions, 3
intentions and consequences, 4
model I and II behaviour, 4–5
SSM
explicit context analysis, 35
integration, 36–37
suitability, 35–36
strengths and weaknesses, 17
triple-loop learning, 5–6
XP methodology
core principles, 98–99
exploration and documentation, 99
exploration phase, 96
informal analysis, 100
input and output data, 100–101
interactive rule creation, 99
iteration phase, 97
iteration planning, 100–101
knowledge sources, 100
maintenance and death phases, 97–98
programme first, knowledge second, 98
release phase, 97
release planning phase, 97
Agility/discipline risk assessment
(ADA)
agile believer, 19
client involvement, 19
critical factors, 17–18
personnel ability, 18–19
results interpretation, 20–21
self-assessment, 18–19
software process strategy, 18
team critical factors diagram, 20–21
technique, 17–18
visual method, 17–18
Agrawal, M., 394
Aguirre, O., 553, 554
Aibo, S., 764
Airline industry, Ireland
design strategies, 648
ethically questionable practices
heuristic evaluation, 640–641
task construction, 642
ethical vs. business practices, 648
IS and marketing professionals
ethics, 648
LCCs success, 637–638
normative approach
LCCs’ lack of application, 640
marketing, 639
systems development, 638–639
self-service Web sites, 648
social responsibility, 649
web site evaluations
‘About Us’ link, 644
‘Contact Us’ information, 644
impulse task, 647
quotes, bookings and referrals, 642–644
Al-Awar Smither, J., 119
Alford, J., 768
Allaire, J.C., 119
Al-Mashari, M., 522, 524
Almenarex, F., 768
Alter, S., 113, 114
Alvarez, R., 550
Ambler, S., 60
American legislation, 616–617
American Power Conversion (APC), 417, 422
Ancheta, R.W., 472
Andersen, 230
Andersen, E.A., 630
Anderson, S.J., 119, 127
Andres, C., 96
Andriessen, J.H.E., 40
ANT. See Actor network theory
Anthony, L.M., 119, 127
Anthropological lens
disadvantages, 750
guiding principles, 748–749
human activity
definition, 741
role values, 742
ISD methodologies
ETHICS technology, 747–748
multiview, 747
Object-Orientated (OO), 746
soft system, 746–747
SSADM analysis, 745–746
measuring personal values
bipolar dimensions, 744
short schwartz’s value survey
(SSVS), 745
research method, 748
synthesis findings, 749–750
systems security development
critical component, 743
ISD values problem, 743–744
ISS definition, 742–743
Antoniou, G., 660
Apache, 992
APC. See American Power Conversion
Architecture Description Language
(ADL), 1047
Architecture development method
(ADM), 941
Ardichvili, A., 487
Argy, P., 471
Argyris, C., 3, 4, 7, 638
Armour, P.G., 498
Articles selection, 816
Artifact-centric skill
awareness of, 452
boundary object, 449
cycle of activity, 451
functions of, 450
job description and skills
programmer, 456–458
project manager, 454–456
system architect, 453–454
technical knowledge and skills, 451
Asaro, C., 655
Asgarkhani, M., 486
Aspray, S., 782, 783
Asynchronous support
benefits, 898
CBR vs. instructor-enhanced
advantages, 896–897
case storage, retrieval and
adaptation, 897
field of reasoning, 897
goal-based scenario, 896
inductive indexing techniques,
897
nearest-neighbour indexing
techniques, 896
tools and application, 895
process of CBR, 897
Atluri, V., 764
Atomic services, CbSDF, 1036
Australian Bureau of Statistics (ABS)
female attitudes on information
technology, 471–473
household use of IT, 475
Automated SYstem for CUstoms Data
(ASYCUDA), 357
Automatic code generation
code generation tool, 1055–1056
Manifold construction, 1052
scenario modeling
mapping of, 1054–1055
top-down approach, 1053
UML 2.0 modeling language
architecture modeling, 1049
component-based system’s
architecture, 1050
general steps, 1051–1052
sequence diagrams, 1049
Avallain, 334
Average variance extracted (AVE), 730
Avison, D.E., 132, 212, 406, 421, 427
Azzam, S., 1107
B
Baetjer, H., Jr., 498, 506
Baeza-Yates, R., 1042
Bai, X., 1095
Bailey, D., 820
Balancing Act, 333
Balasubramaniam, S., 1118, 1123
Balby, L., 923
Ballentine, J., 665
Baltic sea virtual campus project, 879
Bank of Ireland (BOI), 667
Banner system
Galway Mayo Institute of
Technology, 1134
operational data, 1094–1135
Bannister, F., 665
Barbier, F., 911, 952
Barney, J.B., 396
Barrett, R., 741
Barth, W.L., 978
Basic input output system (BIOS), 848
BASIS – BAAlanced corecard based
Information System, 384
Baskerville, R., 743, 745
Bassiliades, N., 660
Bateson, G., 5, 226
Beale, R., 131
Bearingpoint, 397
Beath, C., 782, 783
Beck, K., 96
Becker, S.A., 106, 109, 113, 118
Bed and breakfast (B&B) business, SSM
- activity analysis, 34
- conceptual model, 33–34
- initial problem statement, 31
- rich picture, 32
- root definition, 33
Belief-Desire-Intention (BDI), 925
Benbasat, I., 422, 423
Bennet, J., 126
Benton, B., 978
Berge, Z.L., 889
Berger, P.L., 232
Berman, S.L., 726
Berry, D.M., 910
Bertelsen, O.W., 822
Bertino, E., 744
Bessant, J., 419, 424, 425
Betz, C.T., 1083
Beydoun, G., 924
Beyer, J.M., 407
Biasiotti, M.A., 655
Bilsky, W., 744
Biswa, A., 818, 819
Bjorn-Anderson, N., 743
Blaha, M.R., 829, 954
Blake, R.R., 608
Bloomberg, J., 1095
Bodker, K., 8
Boehm, B., 17
Boehm, B.W., 106, 905
Boehm, B.W., 106, 905
Böhmann, T., 1083
Bokeno, R., 4
Boldyreff, C., 184
Bond, G.W., 821
Booch, G., 829
Borda (BO) rule, 903
Borell, A., 629
Botta-Genoulaz, V., 549
Bourret, R., 989, 991
Bowden, J.A., 785
Boyd, C., 769
Bozionelos, N., 119, 126
Braet, O., 625, 670
Braithwaite, J., 625
Brezoan, M., 1007
Brinkkemper, S., 307, 308
Broegger, A., 822
Brown, A., 628
Brown, C.V., 523
Brown, M.B., 125
Broy, M., 1026
Bruegge, B., 746
Bruel, J., 951, 952
Bucher, T., 551
Bugaite, D., 1108, 1114
Bullen, C., 782, 783
Bunge, M.A., 251
Bunting, B., 128
Burdescu, D.D., 997
Business activity monitoring (BAM),
237
Business information systems design
- curriculum
 - knowledge areas, 788–789
 - learning descriptors, 786–788
 - pedagogical stance, 785–786
 - underpinning values, 784–785
- IS model curriculum, 781
- setting, process, constraints and
 affordances, 783–784
Business intelligence (BI)
- BSC advantages, 382
- definition, 381
- performance measurement and
 strategic management, 381
- public sector, specifications, 381
Business model approach
- definition, 310
- product context diagram
 - components, 311
 - conventions and rules, 312
 - schematic representation, 311
- software supply network diagram
 - components, 314
 - conventions and rules, 314–315
 - schematic representation, 313
Business process management (BPM)
- activity monitoring rules
 - performance management
 - ontology, 244
- SWRL, 244–245
- BAM software system, 239
iWISE architecture
- event server and process
 - dashboard, 246–247
- process capture tool (PCT), 246
- SQL server database., 247
modelling process performance
information
event, 242–243
process, 241–242
XML schema, 240–241
process life cycle, 238
process modelling and definition
languages, 239
Web service-based research, 240
Business process orientation (BPO)
case study
companies introduction, 732
detailed BPO components
analysis, 734–736
overall BPO analysis and BPO
components, 733–734
conceptual model, 728
definition, 725
organizational performance
BSC, 726
cycle time reduction, 727
Freeman's Stakeholder theory, 726
internal coordination
improvement, 727
profit theory, 726
organization stages, 725
process jobs component
constructs, 726
detailed analysis, 735
process management and
measurement component
constructs, 726
detailed analysis, 736
process view component
constructs, 725–726
detailed analysis, 734–735
research hypotheses, 728
research methods and data analysis
AVE, 730
constructs, 729
CRI, 730
exploratory confirmatory
approach, 729
factor analysis technique, 729
path diagram, 731
research instruments, 728–729
structural equation modeling,
729–730
Business unit (BU), 202

Bussche, J. V., 1075
Bussler, Ch., 302
C
Cáceras, 977
Caceres, P., 953, 974
Campbell, R.H., 1121
Campo, C., 768
Canavesio, M.M., 300
Candy, L., 818, 819
Capatinidivimercati, S., 764
Carew, P., 746
Carlson, E.D., 539
Carlsson, S.A., 552, 553
Carmel, E., 106, 109, 113
Carroll, A.B., 608
Carroll, J., 144, 146, 522
Castano, S., 764
Cavero, J.M., 953, 954, 977
CbSDF. See Context-based Semantic
Description Framework
Ceecez-Kecmanovic, D., 199, 433, 434
CellStore project
architecture, 992–993
develop XML-native database, 989
file structure, 994, 995
goals, 989
main class model, 994
storage subsystem (low-level
storage)
cell-file structure, 994–995
tag-file structure, 996
text-file structure, 996
transaction manager, 997
XQuery executor, 998
Celtic Laundry, 667
Central Motor Vehicle Registration
System (CMVRS), 357
Cerqueira, R., 1121
Certification, project management
benefits, 798
challenges, 798–799
definition, 797
motivation, 799
organization, 797–798
Ceschi, M., 15
Çetintemel, U., 991
CFN. See Context Fusion Network
CG. See Conceptual graph
Chaitali, P., 498
Chalmers, S., 468
Index

Chang, C.K., 281, 283, 290, 291, 292
Chang, S.I., 676
Chang, W.T., 281, 282, 283, 286, 289, 291
Charaf, H., 1075, 1076
Chatha, K.A., 553, 554
Chatzoglou, P.D., 41, 46
Checkland, P., 30, 746
Chen, D.-T., 118, 119, 126
Chen, G., 1119
Chen, Y., 300, 301, 1095
Chopra, K., 767
Chua, S.L., 118, 119, 126
Ciborra, C.U., 226, 434, 444
Cilia, M., 1107
Clarke, C., 892
Clarke, M.C., 119, 127
Clarke, V.A., 472
Client involvement factors, 19
Client server n-tier architectures, 849
Close world assumption (CWA), 654
Cluts, M.M., 449
CMM. See Component Metamodels
CMMI certification, 802
Cockburn, A., 18, 217
COCOMO Project Data Base, 905
Co-evolutionary software development, 26–27
Cognitive models
communication, 1126
conceptual metaphor, 1128
hand-tuned reasoning algorithm, 1031
interpretation process
frame-representation parser, 1030
RSA three-tier model, 1029–1030
logical language, 1029
radial categories, 1027–1028
stories, 1027
Cohen, S., 978
Coiera, E.W., 625
Coleman, G., 46
Collaborative systems
broker interface implementation, 279
e-portfolio, 278
guidelines
business networking, 275–276
fundamental theories, 273–274
levels, 271–273
requirements analysis methods
community analysis, 270
design parameters, 269
identifying patterns, 270–271
proposed approach, 268
specifying generic engagements, 278
technical platform, 277–278
Collins, W.R., 608
Commercially off the shelf (COTS)
selection and implementation
features, 111
phases, 110–111
research, 109–110
Communications Decency Act (CDA), 615, 617
Community of practice (COP), 406–407
Component Metamodels (CMM)
basic concepts, 1088
components, 1086
problem management, 1089
Process, 1086–1087
Composite reliability index (CRI), 730
Composite services, CbSDF, 1036
Comrey, A.L., 729
Conboy, K., 66, 75
Conceptual data model, 1069,
1073–1074 See also
Semantic data models
application domain, 1069
domain relationship (ER) language, 1074
languages perspectives, 1073–1074
payroll OWL DL ontology, 1076–1078
plug-in OntER, 1078
Conceptual graph (CG), 1037–1039
Conceptual metaphor, cognitive semantics, 1028
Context-aware computing
classification, 1119
definitions, 1118–1119
definitions, 1118–1119
end-user programming, 1120
Fabric (Confab), 1120–1121
Fusion Network, 1120
Gaia, 1121–1122
MADAM system, 1123–1124
methods and tools, 1118
modeling, 1124
modularity/plugability, 1124
PACE middleware, 1122–1123
protocols and mobile, 1124
Reconfigurable Context-Sensitive Middleware, 1122
security and privacy, 1124
Toolkit, 1119–1120
Context-based Semantic Description Framework (CbSDF)
atomic and composite services
definition of, 1036–1037
definition of, 1035–1036
Dice coefficient, 1042
non-monotonic rules
Defeasible Logic, 1040–1042
rules of, 1041
parts contained, 1034–1035
Semantic Service Description Model
graphical illustration of, 1040
7-tuple, 1039–1040
service conceptual graphs
bipartite graph, 1037–1039
genus, differentia and schemata, 1037
service description framework, search mechanism, 1044
two-step service discovery mechanism
CG similarity calculation, 1042–1043
semantic similarity measurement method, 1043–1044
validation and ranking step, 1042
Context Fabric (Confab)
Infospaces, 1121
privacy and security, 1120
Context Fusion Network (CFN), 1120
Context Toolkit, 1119–1120
Contextual inquiry and requirements shaping
infrastructures, 231
interpret phenomena, 232
sense-making and communication efforts, 232–233
sense-making approaches, 227
SST framework, 233
Cooze, J., 892
Copeland (CO) rule, 903
Copyright infringement, 612–613
COSTART project, 819
Costello, C., 247
Costello, R.J., 909, 900, 914
Counterfactual reasoning
Description Logics, 657
inferred hierarchy, 659
propositional logics, 658
Cramer, F., 821, 822
Critical factors diagram, 20–21
Critical incidents technique (CIT), 335
Criticality, 17
Critical success factors, sustainability
categories, 340, 342
classifications, 349
concepts, 340
definition, 340
dwesa case study, 345–349
rural ICT projects, 342–344
Cucchiarelli, A., 896
Cummings, J.N., 41
Curtis, B., 676
Custom development characterization, 107
features, 111
phases, 107–108
Customer relationship management (CRM) systems, 639
Custom information systems (IS), 406
Cybercrime ontology. See Law articles and legal cases
Czech Society for System Integration (CSSI), 53
D
Dameri, R.P., 626
Damiani, E., 764
Daneva, M., 550
Dang, V.D., 468
Darke, P., 524
Data extraction, 816–817
DATAID approach, 911
Data warehousing
academic quality assurance, 1133–1134
architecture, 1130, 1136–1137
database, 1130
data transformation, 1131, 1133
decision making
in higher education, 1133–1134
managerial activities, 1131–1132
Index

educational measurement techniques, 1134
Expectancy Table, 1134
granularity, 1137
high-quality information, 1138
information processing steps, 1132
management theory, organisational context, 1131
operational data
Banner system, 1135
Galway Mayo Institute of Technology, 1134
Oracle Discoverer, 1136
project concepts and outcomes, 1135
raw data initial review, 1136
steps in, 1130
transformation functions, 1137–1138
two-part literature review, 1136
Date, C.J., 951
Daudjee, K., 910
Davenport, T., 497
Davis, B., 522
Davis, G.B., 782
Decision support framework
basic requirements, 538
essential elements, 539
knowledge and decision making, 537–538
meta-methodology, 540
Web-based shells, 538–539
Defamation, 613
Defeasible Logic
advantages and rules of, 1041–1042
non-monotonic rules, 1040
Defining collaborative levels
document sharing, 272
organizational goals, 273
strategic business approach, 271
Definition Metamodel (DMM)
Component Metamodels, 1086–1089
modelling theory and system engineering, 1085
OMG’s Meta Object Facilities, 1084
role of ITIL, 1082
Deloach, S., 924
DeLone, W.H., 939
DeMarco, T., 447
Dennis, A., 746
Deora, V., 468
De Panfilis, S., 15
Deschoolmeester, D., 665, 670
Designing web-based training course
baltic sea virtual campus project, 879
instructional design, 879–880
model based application
e-learning multimedia objects, 886
module creation, 886–887
multimedia objects classification, 884–885
project based application, 885
specification system concepts
component design, 882
development process, 880–881
e-learning modules, 881
elements and types, 882–883
levels, 880
De Vaus, A.D., 43
Devedzic, V., 890
Dewire, D.T., 396
Dey, A., 1188–1120
Dhillon, G., 743
Diamantopoulos, A., 729
Dibbern, J., 690
Dietrich, S.W., 977
Digital archive data management
community-based data injection, 1022
database vs. document based data management, 1018
development groups, 1018
National Audiovisual Archive (NAVA), Hungary
clustering categories and filters, 1021
Dublin Core base elements, 1019
The Know-How of Ingest and Transcoding, 1019
List of Requirements, 1019
mainframe servers, 1023
metadata preparation, 1019–1020
P2P-Fusion project, 1022
schema matching, 1021
special collections, 1017
user authentication process, 1024
user interfaces, 1022
XML schema form, 1020
P2P Fusion FP6 EU project, 1016
semantic tagging, 1017
traditional archives and web 2.0
techniques, 1016
Digital imaging and communications in
medicine (DICOM)
alphanumerical information, 1001
classification, 1005
colour characteristics extraction, 1006
extracting information, steps, 1005
structure, 1005
texture characteristics extraction, 1006
Digital Millennium Copyright Act, 616–617
Dileo, J., 924
Dimitrakos, T., 769
Diraya project
MDE advantages, 165–166
merging approaches, 165
metamodel tools, 163–165
methodological environment, 163
SAS development, 162
Discover Understand Construct Assess
life cycle (DUCA)
knowledge engineering process, 504
life cycle, 505
stages in, 505–506
Dittrich, Y., 434
Dolmen concept, 424–426
Domain descriptions (DDs), 833
Dong, J., 910
Dong, W., 1095
Dongxu, L., 300, 301
Donyaeec, M., 132
Double-loop learning, 3–5
Downey, J., 449, 452
Druschel, P., 1120
Dubois, E., 770
DUCA. See Discover Understand
Construct Assess life cycle
Duggan, E.W., 939, 948
Duggan, J., 247
Dutoit, A., 746
Dyck, J.L., 119

E
Eber, D.E., 821
Ebert, D.S., 820
Eckert, D., 903
E-commerce infrastructure technologies, 849
Eddy, F., 829
Edmonds, E., 818, 819
Educational issues
2D and 3D modeling, 820
digital art and science (DAS), 821
Eerola, A., 1083
Effective technical and human
implementation of computer-based system (ETHICS), 747
Effort estimation
advantages, 902
application and analysis
data set, 905
estimation accuracy, 906
ideas, 904
social choice voting rules, 905
machine-learning concepts, 901
social choice
aggregation algorithm, 902
borda rule, 903
condorcet criterion, 902
copeland rule, 903
maximin rule, 903
simple majority rule, 903
voting rules, 903
eGovernment
aims, 370
analysis, 375–377
assumptions and methods, 371–372
complementary perspectives, 370
definition, 369
innovation
definition, 370
eMunicipality, 372
entrepreneurship, 370
key elements, 371
process, 371
radical and incremental, 371
virtual communities, 372
legal acts, 372
public administration agencies, 370
web sites analysis
eDemocracy development, 375
eMunicipalities development, 372–373
environmental decision making, 374
eParticipation development, 374–375
eProcurement, 373
knowledge service, 373
social capital, 374
virtual communities, 373
E-learning systems complexity
advantages, 867–868
data analysis
interactivity, 873
projects, 871–872
statistics methods, 872
IS vs. human system
interaction model, 868
key factors, 869
methodology
data and content analysis, 870
interview protocol, 869
results
motivation referring, 873
participants analysis, 874–875
Tesys platform
application, 871
characteristics, 875–876
implementation, 870
levels, 876–877
Electronic-based assessment tool (EBAT) tool
challenges
short-term learning & long-term
wear out, 719
tailorization, 717–718
total usage costs, 718–719
CMMI level 2, 712–713
history, 713
maturity profile, 715
question types, 713, 714
research method, 714
software consultants, 716–717
Systems Inc., 715–716
Electronic database, 815
Electronic patient record (EPR), 754
Ellis, R.D., 119
Engineering Consulting Company
case study methodology, 517
emergent issues, handling of, 518–519
knowledge and project management methodology, 517
England, G.W., 743
Englmeier, K., 1027
Enterprise e-learning and knowledge management
blended learning, 484
content design, 492
definitions, 483
elements of, 485
framework for, 489–490
implementation issues, 488
just-in-time training, 487
learning content management systems, 487
learning culture, 493
models in, 488
new emerging disciplines, 484, 486
online technology-based learning, 486
opportunities for training professionals, 490
organizations learning practices, 484
pilot group, 492
primary goals, 487
sharing environment and culture, 491
smart enterprise, 489
stages and environment, 491–493
strategic organizational goals, 486–487
value chain, 488–489
Enterprise engineering
architectural design
essential elements, 539
model the present state rule, 540
decision support framework
basic requirements, 538
implementation, 543
knowledge, 537
rule components, 541–543
testing of, 543
Web-based shells, 538–539
support system
architecture framework
elements, 535–537
meta-methodology stages and sub-steps, 534–535
Enterprise resource planning (ERP) systems
actor role in organisations, 554
Index

four generic classes, 554
misfit
 broad categories, 549–550
 communication problem, 550
ERP and EA integration, 551–552
role based ERPs, development of, 552–554
roles, 552
quality attributes of IT systems, 556
real time business applications, 548
role, definition of, 553
role-based, influencing factors, 558
single access point, 553
standardized packaged software, 547
views of, 550
Enterprise system ontology
definitions, 251
inheritance dependency, 252
pre-condition states, 252–253
semantic dependencies, 253
Entity-relationship (ER) language, 1074
e-portfolio, 278
ER. See Entity-relationship
ERP implementation projects
factor occurrence, 528
leadership
 analysis of data, 526
 correlation, 529
critical success factors models, 522–523
definition, 521
factor occurrence, 528
factors related to, 524
homogenous collections, 524
importance of practice, 526–528
key human/organisational issue, 522
opinions of respondents, 527
partial measures, 528
research data, 525–526
success factors connected, 524–525
top management support, 529–530
limitation, 531
success factor model, 524–525
top management support, 529
Escalona, M.J., 159, 910
Esteves, J., 524, 549
ETHICS methodology, 230
Euchner, J., 11
European legislation, 617–619
Evaluation Life Cycle Model for Project Management, 668, 669, 672
Event-condition-action (ECA), 756
Event-driven process chain (EPC), 239
Event propagation
 application domain, 1106
 business to information system level definition, 1109–1110
 enterprise system structure, 1109
 lower level, 1110–1111
 Making_Contract and Renew_Contract propagation, 1112–1113
 observations, 1113–1114
 ontology domain knowledge, 1111–1112
classification, 1107
event/entity type matrix, 1108
event types and occurrences, 1106
header and body, 1107
HiPAC, 1105
Executive information systems (EIS), 381
Expectancy Table, 1134
Extended SDLC model
 competing models, 113–114
 interrelationships, 112–113
 practical implications, 114–115
F
Fainchtein, I., 910
Farbey, B., 664, 665, 670, 671
Faria, C.G.D., 923
Fay, D., 341
Fernández, J.L., 159
Fernandez-Araoz, C., 458
Ferrari, E., 764
Fiddian, N.J., 468
Finkelstein, A., 308
Finlay, J., 131
Finlay, P.N., 538
Finn, A., 488–491
Finnish information systems organizations
case study results, 695–696
driving factors, 692–693
introduction, 692
IS outsourcing acceptance evaluation, 695
summary, 695
suppressing factors, 693–694
Fischer, R., 551
Fishburn, P.C., 903
Fishwick, P., 821
Fitzgerald, B., 41, 43, 46, 47, 66, 75
Fitzgerald, G., 132, 212, 420, 421, 427, 627
Fitz-Gerald, L., 522
Fleming, W., 247
Floch, J., 1123
Flood, R., 5, 6
Folksonomy, community-added metadata, 1021–1022
Formal ontology classes and properties, 652–653
Description Logic binary relations, 653–654 components, 653 framework, 654 vocabulary, 653 normalization, 652 types, 652
Forsythe, A.B., 125
Fractal approach computerized subsystem, 297 emergent properties, 296 enterprises basic process/function taxonomies, 300 development approaches, 301–302 indirectly related work, 302 information flows and information stores, 301 properties, 300 fractal theory, 296 guidelines, 303–304 in IS development practice business model analysis, 303 multifractal model analysis, 302 paradigm, uses, 297 paradigm vs. other system paradigms, 299 properties, 298 purposes and features, 297 Fractality, 296 Framework architecture, system security encryption and decryption service, 757–758 key management service principles, 756–757 reissue and revoke keys, 757 management service, 758
France, R., 51
Frank, U., 1065
Freeman’s Stakeholder theory, 726
French criminal law articles Articles 323-1 to 323-4, 654 class of articles, 655 malicious actions, 655 ontology properties, 656 responsibilities, 655
Frisk, E., 665
Fuerst, W.L., 396
Fugazzo, C., 764
Fuglsang, L., 371
Furlong, J., 125–127

G
Gabriel, U., 821, 822
Gadamer, H.G., 232
Gaia, 1121–1122
Gaines, L.T., 768
Gaizauskas, R., 1107
Gallagher, K., 782, 783
Galler, J., 1065
Galliers, R., 670
Gallivan, M., 146
Galway Mayo Institute of Technology (GMIT), 1134
Gammelgård, M., 556
Garcia, C., 768
Garvey, G.R., 820
Geihs, K., 1034
Gelbukh, A., 1042
Gender issues in information technology female perspective access to computers, 474–475 computer communication, 476 design tool, 476 focus groups, 473–474 Millennials, 472 non-acceptence, 471–472 parents influence, 479–480 stereotypical attitudes, 477–478
teachers and school influence, 478–479
male domination, 475–477
Gender issues in information technology, Irish study
technophobia
Chi-square analysis, 125
computer anxiety, 124
computer usage, 121–122
levels, 125
older females, 127
Generic patterns, typology
product context diagram
client–server software product, 319–320
enterprise software product, 320–321
stand-alone software product, 319
web service software product, 320
software supply networks diagram
direct channel, 322
direct/indirect channel combinations, 323
indirect channel, 322
value added reseller/partner, 322
Gertz, M., 955
Gheorge, M., 15
Ghose, A.K., 927
Ghosh, A., 743
Ginsberg, M.L., 657
Girardi, R., 923
Giuglea, A.-M., 1030
Glaser, B., 200, 409
Glass, G.R., 816
GMIT. See Galway Mayo Institute of Technology
Goffin, K., 427
Gogolla, M., 1075
Goles, T., 690, 782, 783
Goodland, M., 745
Gorard, S., 125–127
Gordon, M., 128
Gordon Schulmeyer, G., 940
Gould, J., 522
Grabot, B., 549, 553, 554
Gray, W.A., 468
Greene, R., 816
Grey, J., 817
Griggs, K.A., 483, 486, 488–491
Gruninger, M., 773
Guan, J., 978
Gucht, D.V., 1075
Gudermann, F., 1034
Guidelines of information Modeling (GoM), 946
Guidotti, P., 655
Guizzardi, G., 951, 957, 961
Gulbrandsen, M., 371
Gunasekaran, A., 522
Gunn, C., 472
Gupta, S., 1122
Gwynne, B., 1095
Gyssens, M., 1075
H
Hada, S., 764
Hagerfors, A., 230
Haimes, Y.Y., 676
Haller, A., 240
Halpin, T., 954
Hamel, G., 397, 402
Härder, T., 960, 961, 997
Hardian, B., 1123
Harris, C., 816, 819, 824
Hart, C., 814
Hartnett, G., 66, 75
Hatzaras, P., 301
Haustein, M., 997
Hay, D.C., 1107, 1108
Heber, E., 472
Hedberg, B., 743
Hedman, J., 110, 113, 552, 553, 629
Heinbokel, T., 145
Heiskala, M., 1083
Henderson-Sellers, B., 924, 951, 952
Henrickson, K., 1118, 1123
Hess, C., 1121
Hess, T.J., 768, 769
Hestad, D.R., 768
Hevner, A.R., 679, 812
Heymans, P., 770
Higgs, M., 20, 22
Highest appearance frequency (HAF), 838
Highsmith, J., 217
Hightower, R., 46
Higuera, R.P., 676
Hirschheim, R., 397, 602, 626, 690, 782
Hogan, M., 119
Holcombe, M., 15
Holistic project management approach, 665
Holland, C., 523
Hong, J.I., 1120
Hong, S., 551, 552
Hongzhao, D., 300, 301
Horwath, A., 875
Howcroft, D., 628
Howell, C., 743
Huang, J.L., 281, 283, 290, 291, 292
Human–computer interaction (HCI), 638
Human resources (HR), 868
Human rights
information management, 623–625
workers, 624
Human rights impact assessment (HRIA)
ex ante and ex post assessments, 629
interventions, 629
Humphreys, K., 1107
Hurley, P., 978
Husserl, E., 232
Hybrid reasoning
data suppression taxonomy, 661
inference engine, 660
rule base, 661
Hyland, P., 927

I
Iedema, R., 625
IEEE computer graphics and applications, 816
Information technology-enabled change, Tanzania, 355
analysis, 354
goals, 354
social–economic dynamic process, 354
in Tanzania revenue authority (TRA), 354
Ward and Elvin framework
analysis, 356–365
benefits, 355
intervention lifecycle, 355
Iivari, J., 512, 747
Iivari, N., 132
Improvisation
Der Augenblick, 434
in technical porting, 440
types, 434
Indulska, J., 1118, 1123
Information and communications technologies (ICT) industry
evaluation, 625–626
globalization, 687
human rights information management, 623–6285
outsourcing, 688–690
Information and communication technologies (ICT), 844, 879
Information and communication technologies (ICTs), 229
eGovernment, uses, 369–371
implementation, 369
Information and Communication Technology (ICT), 889
Information management challenges, 633–634
Information system development (ISD)
Actor Network Theory
actors’ relations, 432
improvisation theory, 434–435
key concepts, 433
translation concepts, 433
Danish software business case study
Custor network, 436–437
documentation and knowledge transfer, 438–440
handover project, 436
maintainance responsibility, 442–443
technical porting, 440–442
improvised actions, 444–445
Information system quality architecture
definition, 941
development cycle, 941
GERA modeling framework, 941
TOGAF, 941
concepts
ISO 9126 standard, 940
quality model, 939
software quality, factors, 939–940
success (or effectiveness) model, 939
framework
impacts and relations, 947–948
quality factors, 943–947
schematic, 942
Information system quality framework, 937
Information systems development (ISD), 841
APC-MGE supply chain subsidiary, 424–425
case study in
American Power Conversion
Corporation, 422
human and technological
factors, 423
Lotus Notes software system, 422
challenge in practice, 428
contextual areas, 420
data collection methods, 423
dialogical AR, 423–424, 427
Dolmen concept, 425–426
method-in-action, 420–421
Multiview2 framework, 421
Operations function, 427
organizational analysis, 421
Information systems development life
cycle (SDLC) model
COTS selection and implementation
features, 111
phases, 110–111
research, 109–110
custom development
characterization, 107
features, 111
phases, 107–108
extended SDLC model
competing models, 113–114
interrelationships, 112–113
practical implications, 114–115
issues, 106
package development
characterization, 108–109
features, 111
phases, 109
strengths, 105–106
types, 106
Information systems evaluation (ISE)
benefit realization process, 627
definition, 626
organisational integration, 629
organisational sense-making, 629
orientations, 628
problems, 628
stages, 627
Information systems investment
evaluation
case studies
Bank of Ireland (BOI), 667
Celtic Laundry, Ireland, 667
interviews, 626
organisation selection, 665
VHI Healthcare, Ireland, 666
costs and change management, 671
Evaluation Life Cycle Model for
Project Management,
668–669, 672
ex ante evaluations, 671
case cycle models, 670
organisational activity, 670
organisational context
holistic project management
approach, 665
case cycle models, 665
purposes, 664
social system incorporating
stakeholder groups, 664
stages, 664
organisational learning, 668
purposes, 670
usability testing, 671
Information systems (IS) development
components
properties, 298
simplified view, 297
computerized subsystem, 297
multifractal approach
guidelines, 303–304
issues, 302
Information systems (IS) evolution
ORE framework
definitions, 679–680
as design science model, 677
overview, 677–679
subproject risk assessment,
680–684
risk management, 676
shortcomings, 675–676
technical risk, 676–677
Information systems (IS) outsourcing
Finnish organisation
acceptance evaluation, 695
case companies introduction, 692
Integrated software system architecture, 1003–1004
content-based visual query diagnostic aid, 1002
medical research, 1003
medical teaching, 1002
data, types, 1009
data sources, 1001
dedicated database management system
content-based visual query, 1010–1011
database and table management, 1008–1009
data organization, 1009–1010
experiments, 1011–1012
DICOM file processing, 1005
image processing, 1006–1007
query process, 1002
unified information, class hierarchy, 1007–1008
Interaction model, 868
Inter-Bank Settlement System (TISS), 363
Internal development unit (IDU), 202
International Centre for Insect Physiology and Ecology (ICIPE), 334
International jurisdiction issues, 615–616
International non-governmental organizations (INGOs)
human rights information management, 623–625
OHRRC evaluation framework, 631–633
International project management association (IPMA), 797
International Telecommunication Union (ITU), 328
Introna, L.D., 66, 76
Ion, A., 1007
Irani, Z., 670
ISD. See Information system development; Information systems development
IS development issues, sub Saharan Africa
animal and environmental health information, 334
Ayllon, 334
Balancing Act, 333
BioVision-foundation functions, 333
CIT, exploration/planning, 335
convergence perspectives, 332–333
Infonet-BioVision, 334
International Telecommunication Union, 328
millennium development goals, 327
mobile phones
 economic aspects, 328
 technologies, 335
theoretical perspectives
 development theories, 328–329
 diffusion of innovations, 329–330
 information systems theories, 330–331
sustainable development, 331–332
trial sites, 335
IS failure categories, 602
Ismail, R., 769
IS model curriculum, 781
IS organizational culture
 artifacts, 413
 beliefs and value, categories, 411, 412
 community of practice, 406–407
 custom information systems, 406 definition, 408
 grounded theory, 410
 inputs, processes, and outputs, 407
ISD work practices
 formal practices, 412
 informal practices, 412–413
manifestations, descriptions, 408
Martin’s framework, 408
perspective and research, 408–409
research methodology, 410–411
substances, 407
target organizations, 409–410
ISO standards, UE
ISO 9241
 activities, 139
 definition, 134, 135–136
 evaluation approach, 137
 scope, 134–135
 system life-cycle guidance, 141
ISO 13407
 activities, 139
 definition, 134, 135–136
 evaluation approach, 137
 scope, 134–135
 system life-cycle guidance, 141
 user and technology guidance, 140
ISO 18529
 activities, 139
 definition, 134, 135–136
 evaluation approach, 137
 scope, 134–135
 system life-cycle guidance, 141
 user and technology guidance, 140
ISO/IEC 9126
 definition, 133, 135–136
 scope, 134–135
 user and technology guidance, 140
ISO/IEC 14598
 activities, 139
 definition, 133, 135–136
 evaluation approach, 137
 scope, 134–135
IS project failure, 795
ITIL. See Information Technology Infrastructure Library
IT projects
 benefit realization process, 627
 features, 601
 IS failure categories, 602
 moral failure, 608
 moral psychology, 601–602
 moral success concept, 603–604
 Project Excellence Model, 602–603
research design
 implication, 609
 interpretive content analysis, 605
 interview with project managers, 605
 study evaluation, 609
 validity criteria, 605
results
 client selection, 606
 effects on stakeholders, 607
 laws and regulations, 607
project manager’s perceptions, 605–606
project objectives, 606–607
project proposal, 606
team member’s well-being and ethical treatment, 607
success survey, 602–603
iWISE architecture
 event server and process dashboard, 246–247
 process capture tool (PCT), 246
iWISE architecture, SQL server database, 247

J
Jackson, M., 29
Jackson, P.J., 40
Jacobs, T., 924
Jaimes, A., 819
Jansen, S., 308
Janson, M.A., 199, 605
Jäntti, M., 1083
Java virtual machine (JVM), 843
Jayatilaka, B., 690
Jennings, N.R., 468
Jensen, T., 433
Johnson, M., 1028
Johnson, W.C., 724, 725, 727, 728
Joint information systems committee (JISC), 892
Jokela, T., 132
Jones, T.M., 726
Josang, A., 767, 769
Juiz, C., 244
Jung, M., 299
Junginger, M., 1083
Junzhou, L., 764

K
Kahrarman, C., 670
Kaiser, K., 782, 783
Kakabadse, A., 396
Kakabadse, N., 396
Kanai, S., 1075
Kankanhalli, A., 127
Kaplan, C.A., 896
Karim, F., 1122
Karsai, G., 1075, 1076
Karukka, M., 132
Kautz, K., 433, 434, 435, 711
KCPM (Klagenfurt Conceptual Predesign Model), 911
Keil, M., 146
Kekelis, L.S., 472
Kelly, S., 423, 425
Kersten, M., 1071, 1075
Kesar, C., 769
Kethers, S.E.A., 768
Key performance indicator (KPI), 238
Key performance indicators (KPI) function, 386
Kien, S.S., 549, 550
Kiesler, S., 41
Kiountouzis, B., 742
Kishinam, T., 1075
Kishore, R., 394
Kitchenham, B., 814, 901
Klamler, C., 903
Klein, H.K., 232, 782
Klein, K., 7
Klesse, M., 238
Kline, R.B., 132
Kling, R., 743
KNOC. See Knowledge-Oriented Cooperative framework
Knowledge-based systems (KBS), 924
Knowledge management approach
 complex projects
 elements in, 510
 emergent issues, 511
 uncertainty, 511
 emergent issues, handling of, 518–519
 engineering project management firm, 517
 project management
 body of knowledge, 512
 constraint of, 514
 knowledge-based practice, 511–513
 managers, 512–513
 professions, definitions of, 512
 programme management, 514
 resolving emergent issues, framework, 515
 West Gate Bridge, 515–517
Knowledge-Oriented Cooperative framework (KNOC)
 dynamic perspectives
 asymmetries, 503
 DUCA life cycle, 504–506
knowledge engineering process, 504–505
operational prototypes, 504
organizational perspectives
levels of, 502
organizational actors
categories, 501–502
static, dynamic, and organizational perspectives, 501
static perspectives
component and connector, 503
specifications types, 502
Koch, C., 553
Koch, N., 159, 184, 910
Kohlberg, L., 604
Konsynski, B.R., 497
Korpela, M., 145
Kotha, S., 726
Kotz, D., 1119
Koufteros, X.A., 730
Koumpis, A., 301
Koutsakas, F., 301
Krcmar, H., 1083
Krippendorff, K., 605
Krogh, C., 705
Krüger, I., 1026
Kruithof, G.H., 701
Kudo, M., 764
Kuechler, W., 309
Kuhn, S., 146
Kuht, T.S., 233
Kumar, K., 547, 556, 743
Kurijewit, S., 551
Kyaw, P., 184

L
Lacity, M.C., 397, 605
Laird, C., 1055
Lakoff, G., 1027, 1028
LAMP (Linux, Apache, Mysql, PHP)
platform, 317
Land, F., 664, 665, 670, 671
Landay, J.A., 1120
Landman, T., 625
Lang, M., 185, 191, 193
Langefer, B., 232
Larsen, T., 2
Lars, I., 1072
Latour, B., 433
Law articles and legal cases
corpus, 654–656
formal ontologies
classes and properties, 652–653
Description Logics, 653–654
hybrid reasoning, 660–661
legal concepts and technical concepts, 659–660
reasoner usage
articles conceptualization,
656–657
counterfactuals reasoning,
657–659
LCMS. See Learning content management systems
Learning content management systems
(LCMS), 487
Learning outcomes, information system design
communication skills, 787
Dublin descriptors, 786
learning outcomes, 788
Lecoeuche, R., 831
Ledeczi, A., 1075, 1076
Lee, A.S., 386, 409, 417, 418, 423, 424, 427, 522
Lee, H.B., 729
Lee, J., 551, 552
Legal cybercrime ontology. See Law articles and legal cases
Leidner, D.E., 670
Lemos, P.G., 622
Lepa, J., 118
Le Parc-Lacayrelle, A., 951, 952
Lera, I., 244
Levendovszky, T., 1075, 1076
Levy, O., 602
Lewis, D., 657
Li, H., 764
Li, W., 487
Li, X., 768, 769
Li, Y., 127
Liang (Could not find initial), 671
Light, B., 523
Lind, M., 113
Lindeberg, O., 434
Lindeman, M., 745
Lindland, O.I., 945, 952
Lindow, A., 1075
Lindström, Å., 556
Linger, H., 512
Linn, M.C., 472
Lister, T., 447
Liu, D.-B., 909, 910, 914
Lodder, A., 659
Loebbecke, C., 782
Looker, N., 1095
Lopez, J., 764
López-López, A., 1042
Lo Presti, S., 769
Lorensen, W., 829
Lotus Notes software system, 422
Loupal, P., 989
Love, P.E.D., 670
Low, G.C., 281, 282, 283, 285, 289, 290, 292, 924
Low appearance frequency (LAF), 837
Low-cost carriers (LCCs)
 customer communications, 648
easyJet’s Web site, 644
Europe, 638
normative approach in marketing, 640
online check-in and seat selection, 647
self-service Web sites, 647
Web sites, 640
Lu, J., 523
Luck, M., 468
Luckman, T., 232
Luger, G.F., 891, 894, 898
Luo, W., 550
Lurey, J.S., 41
Lycett, M., 498
Lyons, G., 247
Lyytinen, K., 74, 602

M
Maarof, M.A., 768
Macaulay, L.A., 41, 46
Machin, C.H.C., 818
Macredie, R.D., 498
MADAM context system, 1123–1124
Madden, L., 125–127
Madsen, S., 434, 435
MADS (Modelling of application data with spatio-temporal features) conceptual model, 978
Mahesh, K., 1107
Mallinson, B., 340
Mambrey, P., 449
Mana, A., 764
Management information systems (MIS), 381
Management of innovation
 APC-MGE case study, 417, 422
 information systems development challenge in practice, 428
customer communications, 648
development context, 420
data collection methods, 423
dialogical action research, 427
dialogical AR, 423–424
Dolmen concept, 425–426
human and technological factors, 423
Lotus Notes, 422
main objectives, 424
method-in-action concepts, 420–421
Multiview methodology, 421
Multiview2 model, 424–426
operation function, 427
organizational analysis, 421
innovation literature themes, 419
innovative culture, 418
self-assessment tools, 419
Management support systems (MSS), 381
Mandal, P., 522
Manovich, 822
Map-based knowledge assessment system
 computer-assisted systems, 854
 concept maps, 855–856
definitions, 853–854
developed system
 coefficients values, 861
 concept map-based task, 857
difficulty reduction, 859
insertion algorithm, 860
learning stages, 862
scoring system, 858–859
evaluation results, 862–863
IHMC Cmaptools, 856
Web-based application, 864
Marakas, G.M., 539
March, S.T., 679
Marchese, F.T., 818, 819
Marcos, E., 953, 954, 977
Marin, A., 768
Markus, M.L., 395, 402, 554, 556
Markwitz, S., 1034
Maroti, M., 1075, 1076
Mårtensson, P., 417, 418, 423, 424, 427
Martinez, E., 300
Mata, F.J., 396
Matero, J., 132
Mattson, M., 609
Matulevicius, R., 770
Maurer, M., 487
Maximin (MM) rule, 903
May, D., 215
Mayadays, F., 782, 783
Mayer, N., 770
Mayhorn, C.B., 126
McConnell, S., 453
McCormack, K.P., 724, 725, 727, 728
McCormick, R., 890
McFadden, T., 1118, 1123
McGraw, G., 742, 743
McGregor, C., 240
McIlroy, D., 128
McLean, E.R., 939
McManus, J.I., 940
MDA. See Model Driven Architecture
Meisinger, M., 1026
Melchert, F., 238
Melin, U., 551, 554–556
Mendes, E., 901
Mendling, J., 237
Meredith, R., 215
Mesiti, M., 764
Metamodel-based transformations, 1074–1075
Method construction. See Situational method engineering (SME) paradigm
Method deployment, small- and medium-sized enterprises
case study results
IBM-based company, 69–70
nationwide consultancy, 71–72
small consultancy, 70–71
small-scale Web-based e-business systems, 68
software vendor, 68–69
issues
categories, 72
customer relationships, 75
developer’s attitude and experience, 75
organization’s view, 72–73
other factors, 75
project size, 74
research process
data analysis procedures, 67
grounded theory approach, 66
target organizations, 67
Method engineering. See Situational method engineering (SME) paradigm
Methodological issues
information systems research framework, 813
knowledge base, 812
literature review, 813–814
planning phase, 814–815
reporting, 817
Methodologies and design, object-oriented domain analysis
participant and notation choice, 832
scenarios, 832–833
METHONTOLOGY methodology
definition, 771
process life cycle, 772
Métrica, v3., 162
Michelson, B.M., 1107
Micro and macro-economical environment, 881
Mikalsen, M., 1123
Miller, K.W., 608
Millet, P.A., 549
Miranda, E., 902, 907
Misfit problem, ERP
actor role, 554–555
better integration, 551–552
broad categories, 549–550
communication problem, 550
data warehousing, 551
role based, 552–554
solution ways, 551
Mitchell, R., 427
Mitolhner, J., 903
Mitra, P., 1071, 1075
Mlýnková, I., 992
Mobile computing
battery-dependent and Wide-area network, 1118
Context-aware
categories, 1119
end-user programming, 1120
evaluation and analysis, 1124–1126
Fabric, 1120–1121
Fusion networks, 1120
Gaia, 1121–1122
MADAM, 1123–1124
methods and tools, 1118
PACE middleware, 1122–1123
Reconfigurable Context-Sensitive Middleware, 1122
Toolkit, 1119–1120
Context management system
future direction, 1126–1127
MUSIC middleware system, 1126
Personal Digital Assistants and mobile phones, 1117
Mobile clinical information system, 147–148
case analysis
complex implementation process, 148–149
user acceptance testing (UAT), 149
VACIS system, 149–153
MAS application
key paramedics, 153–154
potential process, 155
research method
technology applications, 147
VACIS system, 147–148
user participation
definition, 145
IS design, 144
prominent methodologies, 145–146
taxonomy, 146
types, 146–147
Model Driven Architecture (MDA), 1075
Model-driven architecture (MDA), 157
Model-driven engineering (MDE), 157
Model-drive web requirements
diraya project
MDE advantages, 165–166
merging approaches, 165
metamodel tools, 163–165
methodological environment, 163
SAS development, 162
integral requisite analyzer (IRqA), 159
navigational development techniques (NDT)
computation independent model (CIM), 161–162
life cycle, 160–161
methodological approach, 159
requirements metamodels, 160
user interaction diagrams (UID), 159–160
web engineering environment, 158
MOF. See OMG’s Meta Object Facilities
Mok, W.Y., 953
Møller, C., 548
Molloy, O., 247
Montes-y-Gómez, M., 1042
Monzón, A.A., 159
Moody, D.L., 945
Moral failure, 608
MORALy successful project, 604–605
Moral psychology, 601–602
Morisio, M., 449
Morlan, J., 820
Morrell, R.W., 126
Moschitti, A., 1030
Mothe, J., 1027
Mouton, J.S., 608
Muller, M., 146
Multimedia database management system (MMDBMS)
content-based visual query, 1004, 1010–1011
query language, 1008
testing experiments, 1011
Multimedia objects, 884
Multiple Hierarchical Restricted Domain (MHRD), 933
Multiview, 747
Multiview2 framework, 421
Mumford, E., 144, 146, 743, 747
Munro, M., 1095
Myers, M., 7
Myers M.D., 406
N
Nachmanovitch, S., 434
Nah, F., 523
Nahrstedt, K., 1121
Nair, M., 676
Nalder, G., 820, 822
National Audiovisual Archive (NAVA), Hungary
clustering categories and filters, 1021
Dublin Core base elements, 1019
Know-How of Ingest and Transcoding, 1019
List of Requirements document, 1019
metadata special collection, 1019–1020
P2P-Fusion project, 1022–1023
primary collection vs. special collection, 1017
schema matching, 1021
user authentication process, 1024
web 2.0 tools user interfaces, 1022
XML schema form, 1020
NAVA. See National Audiovisual Archive
Navigational development techniques (NDT), 158
computation independent model (CIM), 161–162
life cycle, 160–161
methodological approach, 159
requirements metamodels, 160
user interaction diagrams (UID), 159–160
Neely, A., 238
Nelson, K., 523
Nelson, M.A., 910
Nelson, T., 910
Nemes, L., 299
Nerheim-Wolfe, R., 820
Neri, F., 896
Nesamoney, D., 247
Networking across organizations, 270
Neumann, G., 237
Newberger, A., 1120
Newman, M., 782
Nguyen, T.D., 468
Nichols, M., 890
Nielsen, J., 131, 132
Nonaka, I., 218
Non-monotonic rules
Defeasible Logic, 1040–1041
rules of, 1041–1042
Non-profit organisations, 625–626
Norman, T.J., 468

Nute, D., 1040

O
Oberweis, A., 1065
Object constraint language (OCL), 785
Object Management Group (OMG), 1083–1085
Object-orientated domain analysis
domain analysis, 829
method, 833–834
methodologies and design
participants and notation
choice, 832
scenarios, 832–833
missing concepts
incorrect interpretation,
837–838
interpretation, 837
results
bank system, 834
elevator problem and film management, 835
taxonomy error types, 836
unimportant concepts
existing concepts, 837
nonexistent concepts, 836
Object-orientated methodology security, 750
Object-oriented web solutions (OOWS), 157

Object-Relational Database
Management Systems (ORDBMSs)
conceptual model constructs
aggregation and composition, 978
chen’s approach, 978
MADS, 978
online movie database, 979
UML class diagram, 980
conceptual schema, properties, 976
design principles
column vs. row types, 984
composition and aggregation,
implementation, 985
data normalization, 983
generalization, inheritance and reuse, 985–986
OID vs. keys, 983–984
domain-specific approaches,
977–978
features, 976, 979
general approaches, 977
index clustering and nested tables, 977
principles, 976
SQL:2003
aggregate functions, 980
object-oriented and value based, 982
transformation mapping rules, 981–983
type definition, 982
user-defined types, 980
Object-relational (OR) databases
aggregation design, 953
array and multiset, 954
definition, 951
ORSQL design
state of the art, 953–954
semantic quality, goals, 952
whole-part relationships
approaches, 953
implementation, 958–961
instance-asymmetry and type-antisymmetry, 954
properties, 952
suitable database design sets, 954–958
UML classification, 952
O’Kane, T., 66, 75
OMG. See Object Management Group
OMG’s Meta Object Facilities (MOF), 1094
Online human rights resource centres (OHRRCs)
challenges
design, 625
human rights workers, 624
inaccessibility, 624
information centres, 624
visibility maintenance, 624
development
human rights workers, 624
information centres, 624
evaluation framework
block diagram, 633
principles, 631
stages, 632
stakeholder consultation, 632
stakeholder participation, 631
human rights information management, 623–625
information management challenges, 633–634
literature review
human rights impact
determination, 629–631
ICT evaluation, 625–626
information systems evaluation, 626–629
online resource centre, 634
organisational learning, 634
planned objectives, 634
Online learning environment
artificial intelligence techniques, 890
asynchronous support
benefits, 898
CBR vs. instructor-enhanced, 894–898
case-based reasoning, 891
definition, 892
effectiveness, variables, 893–894
efficiency, 892–893
expert systems, 891
knowledge management, 890
operant conditioning, 890
Online Movie Database (OMDB)
conceptual model, 979
design guidelines, 983–989
UML class diagram, 980
Online service providers (OSPs), 616–619
Ontological foundation
acquisition, 773
development
ad hoc binary relation, 775
binary relations, 776
partial taxonomy, 774
methodology selection, 771–772
requirements specification document, 772
Ontology
advantages of, 1071
application of, 1070–1071
classification and formalisation of business rules, 1070
conceptual data model
elements of, 1074
entity-relationship (ER) language, 1074
Partial taxonomy, 774–775
Partitioning methods and techniques
advantages, 281
comparisons
class similarity, 283–284
concurrency identification, 284
partition coherency and low
inter-partition
coupling, 285
replication concerns, 284
discussion, 282–283
for distributed systems, 281
function class decomposition, 283
goals, 281, 282
literature review, 282–285
proposed technique
assign object/classes to
partitions, 287
communication determination,
285
concurrency identification,
steps, 285–286
similarity identification, 286
ticket booking system
comparison of results,
289–292
description, 287–289
implementation, 287
proposed method, 289
Paspallis, N., 1123
Pastor, J., 524, 549
Patton, M.A., 769
Patton, M.Q., 665
Paul, R.J., 498
Pavitt, K., 419, 424, 425
PCA. See Process Configuration
Approach
PCSEE. See Process centered software
engineering environments
Pearson, J.M., 46
Pedagogical stance
content vs. capability focus, 786
object constraint language (OCL),
785
Pedersen, C.M., 768
Pedersen, J., 8
Peltola, T., 66, 75
Pereira, J., 1127
Perry, D.E., 939
Personnel ability factors, 18–19
Pettigrew, A.M., 398
Phang, C.W., 127
Pigneur, Y., 310
Pikalek, Ch., 910
Piorun, J., 215
Piskurich, G., 483, 486, 488–491
Plan-driven methods, 17–18
Planten, A., 665
Plewnia, U., 20, 22
Pliskin N., 409
PLM. See Product Lifecycle
Management
Ploch, J., 20, 22
PMI/IPMA certification, 804
Pokorný, J., 992
Pold, S., 822
Postmus, D., 701
Poulter, J., 30
Poulymenakou, A., 742
Power, N., 449
P2P-Fusion project, user content
injection, 1122
Prahalad, C.K, 397, 402
Predicting users' action
experimental results
algorithms, 178
analysis, 180
redundant operations, 179
locality profile
construction model and
experiments,
174–175
definition, 173
dynamic website, 174
model
time-weighting algorithm,
175–176
web access log data, 175
system overview and architecture,
176–177
Preece, A., 468
Premerlani, W., 829
Premerlani, W.J., 954
Problem-solving methods (PSMs), 924
Process capture tool (PCT), 246
Process centered software engineering environments (PCSEE), 1061
Process Configuration Approach (PCA), 466–468
Process performance management (PPM), 238
Product Lifecycle Management (PLM), 1062
Product software industry
 business and product modeling
 ARIS and unified process, 308
 PCD and SSN diagram, 309
 supply network models, 308–309
 business modeling approach
 consistency between PCD and SSN, 315–316
 product context diagram, 310–312
 software supply network diagram, 312–315
 definition, 307
 generic patterns, typology
 product contexts, 318–321
 software supply networks, 321–323
 phraseworld
 LAMP platform, 317
 product context diagram, 317
 software supply network diagram, 318
 web-application, 316, 317
 research method, 309
 types, 308
 validity and reliability, 316
Profit theory, 726
Project Excellence Model, 602–603
Project management
certification
 benefits, 798
 challenges, 798–799
 definition, 797
 motivation, 799
 organization, 797–798
 difficulties, 796
 findings and analysis
main driver, 801–802
 selecting and completing
 certification programme, 801
IS project failure, 795
 limitations, 806–807
 research methodology, 799–800
 training, 797
Project management body knowledge (PMBoK), 798
Project management institute (PMI), 797
Projects IN controlled environment (PRINCE2), 797
Protégé, 651
Protégé 3.3 tool, 1071, 1077, 1078
Prusak, L., 497
Public administration (PA)
 analysis and results, 386–388
 balanced scorecard approach
 advantages, 382
 implementation, 380, 385
 measures, types of, 381
 objectives, 386
 open source software, 383–386
 business intelligence
 definition, 381
 performance measurement, 381
 public sector, specifications, 381
 and strategic management, 381
 electronic government (eGovernment), 379
NPM
 concepts, 379
 features, 379
 open source software
 advantages, 383
 an itch worth scratching, 383
 BASIS project, 384
 concepts, 382
Public Information Bulletin (PIB), 372, 375
Puder, A., 1034
Puigjaner, R., 244
Putnam’s model, 901

Q
Qin, L., 764
QU, Y., 764
Quality framework in information system
Index 588

data quality, 947
meta-model quality
 accuracy, 945
 completeness, 944
 consistency, 944–945
model quality
 conceptual model, criteria, 946
 definition, 945
 factors, 945
requirement quality
 defects, 943
 library management, 943–944
 schematic representation, 942

R
Racer, 651
Radial categories, cognitive semantics, 1027–1028
Rahayu, J.W., 953, 954
Raisinghani, M.S., 41
Ram, S., 679
Ranganathan, A., 1121
Rao, H.R., 394
Rapid creation virtual software
development team (RCVT)
 advantage of, 462
core development process
detailed instructions, 465
 situational method engineering, 465–466
core system architecture
 models of, 463
 SOA architectural approach, 463–464
 system framework, 462
 Windows Workflow Foundation, 464
goal setting, 465
human resource management, 468
project management
 management by objectives, 465
 minimizes human factor risks, 464
to verify and validate, 468–469
Rasmussen, G., 281, 282, 283, 285, 289, 290, 292
RCSM. See Reconfigurable Context-Sensitive Middleware
RCVT. See Rapid creation virtual software development team
Reconfigurable Context-Sensitive Middleware (RCSM), 1122
Redmond, R., 240
Reference Process House (RPH), 1061
Reichgelt, H., 939, 948
Remenyi, D., 664
Renner, A., 992
Requirements analysis methods
 collaborative systems
 community analysis, 270
 design parameters, 269
 identifying patterns, 270–271
 proposed approach, 268
platform and services, 267–268
Requirements Capture Templates (RCTs), 924, 927
Requirements elicitation process
 approaches, 213–214
 discovery-based learning, 214
human knowledge
 cognitive scientists, 217
 conversion model, 219–220
 decision making, 215–216
 definitions, 214–215
 emotional and motivational, 218–219
 formal and informal methods, 220–221
 mental processes, 215
 supporting cognitive, 217–218
 knowledge-intensive, 211–212
 methods and problems, 213
 system development, 212
Requirements engineering and shaping
design interpretation
 classifying differences, 203
 client and server subsystem, 202
 IDU and BU services, 202–203
 tool subsystem, 204–205
 waterfall-style development, 203–204
IS/IT projects, 228
iterative prototyping, 205
literature review
 distributed activity, 196–197
 elicitation process, 197–198
 sensemaking, 198–200
research methods
 case organization, 201
theoretical sampling strategy, 200
sense-making approaches, 227
sensemaking cycle, 206–207
two dimensions, 205–206
Requirements modelling object
filled columns
fill factor estimation, 915
work progress determination, 916
relationship with concepts, 912
thing-type
characteristics, 911
types, 916
Requirements Services Action model (RSA)
interpretation process, 1029–1030
role of, 1030
three-tier model, 1029
Resource allocation adaptation process, 1066
Resource-based view (RBV), 689–690
Resource description framework (RDF), 755
Rest, J., 603, 608
Richers, M., 1075
Rifaut, A., 770
Rijsemus, W., 308
Risk minimization, USC
content moderation, 615
indemnities from users, 614–615
international jurisdiction issues, 615–616
safe harbours
American legislation, 616–617
European legislation, 617–619
Ritter, N., 960, 961
Robey, D., 554, 556
Robinson, M., 449
Robustness testing
analysis of, 1095
test data generation
complex datatypes, 1100
rules, 1098
simple datatypes, 1099
User-derived datatypes, 1099–1100
XML Schema datatypes, 1098
Rokeach, M., 744
Rolland, C., 590
Roman, M., 1121
Romm, N., 5, 6
Romm, T., 409
Rosh, E., 1127
Rose, G.M., 74
Rosemann, M., 110, 113
Rosen, L., 118, 119, 120, 122, 123, 126, 128
Rosenberg, M.J., 486–490, 492
Ross, J.W., 395
Rosset, A., 487, 489–491
Rotthowe, T., 946
Rowstron, A., 1120
RPH. See Reference Process House
Ruiz, P.A, 1123
Rule-based systems
agile software development, 96–98
development stage
anomaly detection, 102
rule interaction problems, 101
rule languages, 101
test coverage, 101
visualization, 103
existing methodologies failure
overview, 94–95
programmers training changes, 93–94
project structure changes, 94
XP methodology, 94
knowledge base creation
methodology
CommonKADS, 95
on-to-knowledge (OTK), 96
XP methodology
core principles, 98–99
exploration phase, 96
iteration phase, 97
iteration planning, 100–101
maintenance and death phases, 97–98
release phase, 97
release planning phase, 97
Rumbaugh, J., 829
Rumbaugh, J.E., 954
Rumpe, B., 51
Rupp, C., 910
Rural ICT projects
CSFs
classifications, 349
sustainability, 342–349
Dwesa case study
advantage, 341
critical success factors, 345–349
WiMAX terminal, 348
information and knowledge, 340
research methodology, 341–342
sustainability
categories, 340, 342
critical success factors, 342–349
definition, 340
significance and concepts, 340
Russo, N., 66, 75
Russo, N.L., 46, 76
Ryanair carriers
baggage checking, 643
charges, 643
complaints, 646
‘Contact Us’ link, 645
Customer Charter, 646
FAQ links, 645–646
Passenger Charter, 646
priority boarding, 647
Web sites, 640
Ryu, K., 299
S
Saari, D., 903
Sachs, P., 11
Safe harbours
American legislation
Communications Decency Act, 617
Digital Millennium Copyright Act, 616–617
European legislation, 617–619
Sagri, M.T., 655
Salber, D., 1118, 1119
Samarati, P., 764
Sanders, E.S., 483, 486, 488–491
Sano, H.-O., 630
Santora, J., 741
Sargent, A. Jr., 690
Sarker, S., 522
Sarros, J., 741
Satyanarayanan, M., 1119, 1123
Saur, C., 232
Savonnet, M., 281, 283, 289, 291, 292
Sawy, O.A.E., 676
Sawyer, S., 106–110, 113, 114
Schiefer, J., 240
Schindler, E., 550
Schlötterer, C., 903
Schon, S., 4
Schuette, R., 946
Schulz, K.W., 978
Schwartz, S.H., 741, 744
Schwartz’s value survey (SVS), 744
Scoring system, 858–859
Scrum software process model, 1059
Sears, D.C., 118, 119, 120, 123
Seidelow, S.Y., 816
Seffah, A., 132
Sein, M.K., 66, 75
Seixas, P.C., 622
Selwyn, N., 125–127
Semantic Service Description Model (SSDM)
graphical illustration, 1040
similarity measurement method, 1043–1044
7-tuple, 1039–1040
Semantic web rule language (SWRL), 756
Semantic Web Services
distributed system, 1033
research efforts, 1034
Service-Oriented Architecture and Grid computing, 1033
Semantic Web technologies
non-functional requirements, 1026
OWL and OWL-S, 1025
Sensemaking
cycles, 199, 206–207
dominant approaches, 198
primary propositions, 200
soft systems methodology (SSM), 199
Serafeimidis, V., 628, 663, 664, 665, 670, 671
Service-oriented architecture (SOA)
conceptual modelling, 252
enterprise system ontology
definitions, 251
inheritance dependency, 252
pre-condition states, 252–253
semantic dependencies, 253
intersubjective aspect
communication action, 253–254
graphical notation, 254–255
pre-condition object class, 254
workflow loop, 256
objective aspect
 inheritance arrow, 258–259
object-oriented approaches,
 257–258
semantic relations, 257
static and dynamic
dependencies, 259–260
system analysis patterns
 iteration, 262
 search, 263
 sequence and interaction loops, 260
 synchronisation, 261
traditional methods, 250–251
zachman framework, 250

Sewry, D., 340
Shanks, G., 945
Shanks, G., 524
Shao, J.H., 468
Shapero, A., 447

Sharable content object reference model
 (SCORM), 886
Sharif, A.M., 670
Sharp, M.W., 549
Shashaani, L., 472
Shehab, E.M., 549
Sheldon, K., 487, 489–491
Shenhar, A.J., 602
Shoniregun, C.A., 818, 820
Siau, K., 551, 552

Siemens Process Framework (SPF)
 hierarchical structure of, 1062
 improvement approaches,
 1060–1061
 instantiated software processes
 requirements, 1065–1066
 workflow system, 1064
PCSEE, 1061
process adaptation, 1063
Product Lifecycle Management,
 1062–1063
Reference Process House, 1061
standardized adaptation process,
 advantages, 1066–1067
 tool support, 1066–1067
 Workflow systems, 1064

Siguaw, J.A., 729
Sillitti, A., 15
Silvius, A.J., 664
Simon, H.A., 395, 402

Simon, J., 782, 783
Simonsson, M., 556
Simple majority (SM) rule, 903
Sindre, G., 945, 952
Singh, R., 240
Single-loop learning, 3–5
Situational method engineering (SME)
 paradigm
 background
 classes, 81
 metamodel, 80–81
 method fragment repository, 80
goal analysis
 AND/OR decomposition, 86
 contributions analysis, 86
 hierarchical tree, 88
 hypothetical software
 engineering
 processes, 88
 mappings between attributes
 and method
 fragments, 87
 means-end analysis, 86
 reliability and agility factors,
 88–89
 values, 87, 88
requirements for method
 construction, 85–86
sample method fragment repository
 metamodel fragment, 82
 process kinds, 82, 83
 relevant life cycle models, 82
 system construction phase, 82
 system definition phase, 81–82
 task kinds, 83
 technique kinds, 83
 work product types, 82, 84

Slater, C., 745
Sleeper, S.Z., 552, 553
Small- and medium-sized enterprises
 (SMEs)
 method deployment
 IBM-based company, 69–70
 issues, 72–74
 nationwide consultancy, 71–72
 research process, 66–67
 small consultancy, 70–71
 small-scale Web-based
 e-business systems, 68
 software vendor, 68–69
SDM drawbacks, 65–66
Small software companies (SSCs), 16, 17, 19
Smith, D., 953
Smith, J., 953
Smithson, S., 626, 628, 663, 664, 665, 670, 671
Social phenomena shape, 868
Society information management (SIM), 782
Soft system methodology (SSM), 746
Soft systems methodology (SSM)
 agile software development
 explicit context analysis, 35
 integration, 36–37
 suitability, 35–36
 basic model
 A-type: software focus, immediate needs, 27–28
 B-type: software focus, immediate needs, 28–29
 C-type: software focus, long-term goal, 29
 D-type: environment focus, long-term goal, 29–30
 co-evolutionary software development, 26–27
 computing-oriented summary
 activity analysis, 34
 co-evolutionary change plan stages, 30
 conceptual model, 33–34
 rich picture, 32
 root definition, 33
 seven-stage soft systems methodology model, 31
Software architecture models
 ACME generic language, 1047
 advantages, 1057–1058
 code generation tool
 Apache Commons Digester, 1055–1056
 Sparx Enterprise Architect modeling tool, 1055
 equivalent Manifold construction architecture model constructs, 1052
scenario model mapping, 1054–1055
UML 2.0 modeling language
 architecture modeling, 1050
 call type message, 1049
 construction steps, 1051–1052
 definition of the components, 1048
 scenario modeling, 1052–1053
 sequence diagrams, 1049
 top-down approach, 1053
Software capability models and assessments, 710–712
Software development issues
 business model, 820
 evaluation and software tools, 818
 methods and collaboration issues, 819
 requirements and needs, 817
Software development job descriptions
 artifact-centric skill framework
 boundary object, 449–450
 functions of, 450
 V model, 449
 cycle of activity, 451
 job descriptions and skills
 awareness of, 452
 programmer, 456–458
 project manager, 454–456
 scenario modeling, 452
 specialized technical knowledge and skills, 451
 systems architect, 453–454
 Skills Framework for an Information Age, 449
Software development methodology
 agile method
 field observations, 8–10
 groupthink, 6
 principle and behaviours, 2
 research approach, 7–8
 single and double-loop learning, 3–5
 triple-loop learning, 5–6
 XP methodology, 5–6
 bureaucratic system, 96–101
 deployment, 1, 2
Software development supply chain concepts
 dependent approach, 701–702
internal and external reuse, 701
specifcity, 702
strategy, 705
decision framework
contceptual diagram, 703
dependent development
strategies, 704–705
specificity influencing factors, 703–704
strategic dimensions, 705
dependent approach
definition, 701–702
with independent strategy, 702
market characteristics, 704
upstream and downstream approaches, 702, 705
independent approach
definition, 701
with dependent strategy, 702
specificity influencing factors, 703
strategic dimensions, 706
Software engineering and art (SArt)
goals, background, and motivation
definition, 810
objectives, 811
projects, 811–812
methodological issues
articles selection, 816–817
information systems research framework, 813
knowledge base, 812
literature review, 813–814
planning phase, 814–815
reporting, 817
research issues
aesthetic issues, 821–822
educational issues, 820–821
social and cultural implications, 822
software development issues, 817–820
Software knowledge systems
constructionist theory, 501
dimensions theory, aspects of, 499–500
dual role of, 496–497
dynamic perspective
asymmetries types, 503
cooperative and iterative
technology
knowledge engineering, 503
DUCA four stages, 505–506
DUCA life cycle, 504–505
knowledge engineering activities, 504
operational prototypes, 504
economic agency theory, 497
global model
different spaces, 500
meta-lifecycle, 500–501
KNOC framework perspectives, 501
knowledge-intensive domains, 498
Leavitt’s model, 497
meaning of, 497
nature of, 497–498
organizational entities, 498
organizational perspective
principal/agent contracts, 501
vertical and horizontal levels, 502
set of items, 496
static perspective
component and connector, 503
specifications types, 502
transaction costs theory, 498
Software markets
characteristics, 700
decision framework
conceptual diagram, 703
dependent development
strategies, 704–705
specificity influencing factors, 703–704
strategic dimensions, 705
supply chain
dependent approach, 701–702
internal and external reuse, 701
specificity, 702
strategy, 705
Software process
ISO/IEC 15504 (1998), 1059
Siemens Process Framework
corporate policy, 1061–1062
improvement approaches, 1060–1061
instantiated software processes, 1063–1064
PCSEE, 1061
process adaptation, 1063
Product Lifecycle Management, 1062–1063
requirements on, 1065–1066
standardized adaptation process, 1066–1067
Software process maturity assessments, 715–716
challenges
short-term learning & long-term wear out, 719
tailorization, 717–718
total usage costs, 718–719
EBAT tool
CMMI level 2, 712–713
history, 713
maturity profile, 715
question types, 713, 714
research method, 714
software consultants, 716–717
methods and tools
groups, 711–712
Problem Diagnosis approach, 712
RAPID based on SPICE, 711
Software process strategy, 18
Soh, C., 549, 550
Soininen, T., 1083
Soja, P., 524
Solar, Context Fusion Network, 1120
Solvberg, A., 945, 952
Somers, T., 523
Sommerville, I., 226
Song, W., 1034
Sonic onyx system, 811
Sourcing decisions, software
applications hosting
aims, 396
analyses and discussion, 401–402
control, 395
e-Government, evolution, 394
ICT governance, 395
ICT outsourcing, flexibility, 396
municipality
decentralisation, effects, 399
decision-making process, 399–400
diversity of software, 399
history, 398
ideology, effects, 398
qualitative content analysis, 398
research design, 398–399
organisation’s strategy, 397, 398
process, 399
propositions, 394
core competence, 395
costs, 397
increase capability, 396
organisation’s strategy, 397, 398
reasons, 400
strategic architecture, 397
Soutou, C., 953, 954
Sowa, J.F., 1107
Soy, S.K., 316
Spaccapietra, S., 977
Spector, M.J., 893
Spedding, T.A., 549
SPF. See Siemens Process Framework
Spielman, B.J., 608
SPI projects assessment. See Software process maturity assessments
Spiral-model software process model, 1059
Sprague, R.H., 539
Sprick, B., 764
SSDM. See Semantic Service Description Model
Stakeholder
consultation, 632
involvement, 664
participation, 631
Stålhane, T., 190
Stamelos, I., 449
Stanescu, L., 1017
Stapleton, L., 746
Statistics generation and synthesis, 817
Staudenmayer, N.A., 939
Stav, E., 1123
Stavrou, A., 1047, 1056
Stohr, E.A., 497
Stolterman, E., 76
Stonebraker, M., 991
Storey, V.C., 1069
Stories, cognitive semantics, 1027
Strategic systemic thinking framework, 227
Strauss, A.L., 200, 409
Stray, S.J., 665
Strong, D.M., 550
Structured requirements specifications
elicitation progress, analysis
classification and structuring, 914–917
decomposition and
completeness, 914
information, 913, 914
progress indicators
filled columns, 918
open questions and open tasks, 919
requirements modelling,
918–919
requirements modelling object,
measures
open questions and open tasks
relationship,
917–918
operation-type, 912
percentage of concepts,
overview, 918
relationship with sources, 917
thing-type glossary, 911
requirement sources, 913
Structured systems analysis and design
methodology (SSADM), 745
Stubblefield, W.A., 891, 894, 898
Stuckenschmidt, H., 659
Students' attitude to IT
parents influence on, 479–480
school and teacher influence on,
478–479
Stuedemann, R., 487
Succi, G., 15
Sumner, M., 522
Sundbo, J., 371
Supramaniam, L., 549
Sutanto, J., 127
Sutcliffe, A., 214, 767, 768
Suter, B., 468
Sybase Power Designer 12.0 tool, 1071
Syed-Abdullah, S., 15
System analysis patterns
iteration, 262
search, 263
sequence and interaction loops, 260
synchronisation, 261
Systems development methods (SDMs)
drawbacks, 65–66
System security
access control model
design time, 759–762
ontology loader, 758
XML pruning engine, 759
definition, 753
framework architecture
encryption and decryption
service, 757–758
key management service,
756–757
management service, 758
RBAC system, 753–754
technology overview
description logic representation,
755
rule based system, 754
rules, 755–756
XML access control, 754

T
Tailoring adaptation process, 1066
Takeuchi, H., 218
Talmy, 1028
Tan, B.C.Y., 127
Taniar, D., 953, 954
Tanzania Revenue Authority (TRA), 354
Targett, D., 664, 665, 670, 671
Tatnall, A., 118
Tax Modernization Program Unit
(TMP), 358
Taxonomy error types, 836
Taxpayer Identification Number (TIN), 357
Tay-Yap, J., 549, 550
Teaching and learning, Virtualisation
technology
classroom experiences, 848–849
configuration and systems
management, 848
student feedback, 850
Team, definition, 39
Team distribution, 17
Technology overview, system security
application based system, 754
description logic representation, 755
rules
business logic, 755
types, 756
Technophobia, Irish study
computer anxiety
age issues, 119
Index

gender differences, 119
measurement instruments, 118–119
intervention techniques, 127
levels
 gender, 125
group, 124
 older adults, 123, 124
results, 126
 students, 123
methodology
 measurement and demographic
 questionnaire, 120–121
participants, 120
procedure, 121
results
 age issues, 123–124, 126
 computer usage, 121–122, 125–126
 gender issues, 124–125, 127
reliability of measures, 122–123
 training programmes, 127
 user involvement, 127–128
Teng, M., 764
Teo, H.-H., 127
Terasse, M.-N., 281, 283, 289, 291, 292
Terminological ontologies, 652
Test data generation
 complex datatypes, 1100
 rules, 1098
 simple datatypes, 1099
 User-derived datatypes, 1099–1100
 Web Server Description Language
 document, 1096
 XML Schema datatypes, 1098–1099
Tesys platform, e-learning
 application, 871
 characteristics, 875–876
 implementation, 870
 levels, 876–877
Tharumarajah, A., 299
The Full Irish. See Bed and breakfast
 (B&B) business
The open group architecture framework
 (TOGAF), 941
Theoretical framework, virtualisation
 technology
collaborative learning, 846–847
mind hadits, 847
social constructionism, 845–846
Thomas, M., 240
Thorne, K., 484
Ticket booking system, implementation
 description
 use case, 287–289
 object/classes comparison matrix, 290
 proposed method, 289
 results comparison
 class similarity, 291–292
 concurrency analysis, 289–291
 replication concerns, 291
Tidd, J., 419, 424, 425
Tierney, K., 128
Tiihonen, J., 1073
Timmermans, H., 341
Tiscornia, D.A., 655
Tofoloni, C., 497, 499–501
Toman, K., 993
Tomura, T., 1075
Tool and platform subsystem, 201, 204–205
Traditional systems analysis
 business development, 229
 contextual inquiry
 infrastructures, 231
 interpret phenomena, 232
 sense-making and
 communication
 efforts, 232–233
 SST framework, 233
 ETHICS methodology, 230
 IS implementation practices, 229–230
 requirements shaping
 IS/IT projects, 228
 sense-making approaches, 227
 technical and human dimensions, 225–226
 user-oriented process, 231
Tran, N., 924
Transaction cost economics (TCE)
 approach, 689
Treatment Action Campaign (TAC), 623
Trice, H.M., 407
Triple-loop learning, 5–6
Troya, J.M., 764
Trust ontology
 concepts, 769–770
definitions, 768
ontological foundation
acquisition, 773
development, 773–776
methodology selection,
771–772
requirements specification
document, 772

Tryfonas, T., 742
Tsai, W., 1095
Tseng, C.C., 281, 282, 283, 286, 289, 291
Tsoukias, A., 449
Tucci, C.L., 310
Tuner, R., 17
Tur, D., 51
Türker, C., 955
Turner, G., 818
Turner, M., 1027

U
UML based web engineering (UWE), 157
Underpinning values, 784–785
Unified modeling language (UML), 830
Unified modelling language and unified process (UML/UP), 746
Unified modelling language (UML), 239
Unni, A., 927
Urban, S.D., 977
Usability evaluation (UE). See Information systems (IS) usability evaluation
Uschold, M., 773
User-generated content (UGC). See User-supplied content (USC)
Users’ action prediction. See Web users’ prediction
User-supplied content (USC)
CDA, 615
legal issues
copyright infringement,
612–613
defamation, 613
other contentious forms of speech, 613–614
notice-and-takedown procedure, 616
online service providers (OSPs), 616–619
phenomenon, 611–612

risk minimization
content moderation, 615
indemnities from users,
614–615
international jurisdiction issues,
615–616
safe harbours, 616–619

V
Vaishnavi, V., 309
Valachich, J.S., 768, 769
Valenti, S., 896
Valor, J., 782
van Aken, J., 786
van der Aalst, W.M.P., 240
van Harmelen, F., 659
van Hillegersberg, J., 587, 576
van Laarschot, R., 659
van Steenbergen, W., 659
Vardi, M., 782, 783
Vasconcelos, J.B.d., 622
Vasilecas, O., 1108, 1114
VAT Information Processing System (VIPS), 357
Vela, B., 953, 954, 977
Venkatraman, N., 361
Verasalo, M., 745
Verburg, R.M., 40
Vessey, I., 523
VHI Healthcare, 646
Victorian ambulance clinical information system (VACIS)
design and implementation, 155
implementation model, 150
joint application design, 153
life cycle, 154
mobile computing application, 147–148
system process, 149
types, 152–153
user participation, 151
Vidgen, R., 939
Vidgen R., 434, 435
View integration
advantages, 964
comparisons, 967
conceptual database schema
final integration, 968–969
intermediate version, 968
definition, 963
developing and managing large databases, 965
linguistic conflicts, resolution techniques
inter-schema property
simplification techniques, 970–971
name conflict resolution techniques, 969–970
phases, 963, 965
schematic, 965
semantic loss
concept name compression, 966, 972
summing up the problem, 971–972
static dependency, adapted and modified representation, 967
Virtual Information systems
development
agile methodologies, 42
background information, 43–44
development project type, 47
methodological practices, 44–46
methodology mixing, 45, 46
methodology usage, 41–42, 45, 46
research methodology
face-to-face or telephone interviews, 43
quantitative and qualitative techniques, 43
sampling method, 42
virtual team challenges, 40–41
Virtualisation technology
physical and logical design, 842
teaching and learning
classroom experiences, 848–849
configuration and systems management, 848
student feedback, 850
theoretical framework
collaborative learning, 846–847
mind habits, 847
social constructionism, 845–846
virtual machine, 842–843
Virtual machine, 842–843
Virtual team, definition, 39
Visual risk assessment technique, 15–22
Vitale, M.R., 308
Vlahavas, I., 660
V-Model software process model, 1059
VMWare workstation, 847
Vloninno, L., 533
Vontas, A., 301
Votta, L.G., 939
Vraný, J., 998

W
Wallace, W.A., 767
Walsham, G., 398, 432, 433
Wand Y., 1069
Wang, B., 1122
Wang, P., 1029
Wang, Y., 1022
Ward and Elvin framework
analysis
content description, 361
context assessing, 360
intent determination, 358–359
intervention process
construction, 361
outcome specification, 359
problems and solutions, 363–364
process management, 361–362
satisfied intent, 362–363
success factors, 364–365
benefits, 355
drivers for change, 357
functions, 356
intervention lifecycle, 355
process and situation after the change
corporate plans, 357–358
IS systems, 358
Modern Tax Administration,
357
Tax Modernization Program Unit, 358
situation before the change, 357
Warneke, H.J., 299
Waterfall software process model, 1059
Watson, H.J., 533
Weather research and forecasting (WRF) model, 978
Web-based systems, 183–184
Weber R., 1069
Weber Y., 409
Web/hypermedia system design
designers/developers profile, 186
development process
design and programming phase, 190–191
methods, 191–192
requirements capture and analysis, 189–190
testing and maintenance, 191
guidelines, 192
phases, 184
projects characteristics
brochureware, 188
database-driven web sites, 187
development practice, 188–189
types and features, 186
proprietary methods, 184–185
research methodology, 185
web-based systems, 183–184
Web mining and adaptive Websites, 170–171
Web ontology language(OWL), 715
Web services
Axis middleware and Tomcat web server, 1102
evaluation, 1101–1102
implementation, 1101
interconnection, 1093
research works, 1095, 1103
robustness testing
analysis of, 1095
definition, 1096
WSDL, 1096–1097
software testing, 1094
test data generation
complex datatype, 1100
schema, 1098
User-derived datatypes, 1099–1100
XML Schema datatypes, 1098–1099
Web users’ prediction
adaptive Websites and recommendation systems, 171
data capturing
access log system, 172–173
collection methods, 171–172
experimental results
algorithms, 178
analysis, 180
redundant operations, 179
locality profiles
construction model and experiments, 174–175
definition, 173
dynamic website, 174
prediction model
time-weighting algorithm, 175–176
web access log data, 175
system overview and architecture, 176–177
web mining, 170
Weil, M.M., 118, 119, 120, 122, 123, 126, 128
Weill, P., 308, 395
Welke, R.J., 743
Wells, A.J., 299
Wenger, E., 6
Wentling, T., 487
Westbrook, J.L., 625
Westelius, A., 549, 554, 556, 557
Westerveld, E., 602, 608
West Gate Bridge
emergent issues, handling of, 518–519
engineering construction project, 515
failure causes, 516
inexperienced in the type of steel construction, 516
Royal Commission, 515
Weston, R.H., 553, 554
Wherry, P., 608
Whitley, E.A., 66, 76
Whittaker, J., 743
whole-part relationship
conceptual types, 958
definition, 954
design templates
constraint-dependent elements, 959
mandatory elements, 958
suitable designs, finding, 959–960
implementation
ORSQL data model approach, 960–961
secondary characteristics, 954, 957
proposed approach
advantages and disadvantages, 961
characteristic values, incompatibility, 957
domain model, 955
principles, 954
Wicks, A.C., 726
Wiederhold, G., 1071, 1075
Wieringa, R.J., 550
Wild, R.H., 483, 486, 488–491
Wilder, C., 522
Willaert, P., 665, 670
Wilson, M., 628
Winter, R., 238, 551
Wong, A.F.L., 118, 119, 126
Wood, R., 939
Wood-Harper, A.T., 747, 939
World wide web consortium (W3C), 755
Worley, J.H., 553, 554
Wyk, K., 742, 743
Wynekoop, J.L., 46

X
Xiaomeng, S., 1072
Xiaopeng, W., 764
XML database management system (DBMS)
building issues, 991
classification, 990–991
definition, 990
file system approach, 992
storage models, 991–992
XML key information service specification (XKISS), 756
XML key management specification (XKMS), 756
XML key registration service specification (XKRSS), 757
XML process description language (XPDL), 237
XP methodology
core principles
explanation and documentation, 99
interactive rule creation, 99
programme first, knowledge second, 98
iteration planning
informal analysis, 100
input and output data, 100–101
knowledge sources, 100
Xu, J., 1095
Xu, L., 307
Xu, W., 1095
Y
Yague, M.I., 764
Yanwe, Z., 300, 301
Yau, S.S., 1122
Yetongnon, K., 281, 283, 289, 291, 292
Yin, R.K., 309, 316
Yin, R.K., 423
Yoon, V., 240
Yu, E., 767
Z
Zachman, J.A., 941, 1107
Zachman framework, 250
Zairi, M., 522
Žák, J., 998
Zhang, G., 159
Zhang, J., 1095
Zhang, L.J., 1095
Zhang, N., 960, 961
Zhang, X., 764
Zhang, Y., 119
Zhou, J., 190, 978
Zhou, S., 978
Zhu, F., 978
Ziemann, P., 1075
Zien, K.A., 418
Zimányi, E., 977
Zimmerman, G.W., 821
Zmud, R.W., 422, 423
Zuckweiler, K.M., 523
zur Muehlen, M., 238, 240
Zwieg, P., 782