Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G</td>
<td>Third Generation wireless technology</td>
</tr>
<tr>
<td>3GPP</td>
<td>The Third Generation Partnership Project</td>
</tr>
<tr>
<td>AOD</td>
<td>Amicable Orthogonal Design</td>
</tr>
<tr>
<td>AST</td>
<td>Antenna Selection Technique</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive White Gaussian Noise</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BLAST</td>
<td>Bell Lab Layered Space-Time</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>CO STBC</td>
<td>Complex Orthogonal Space-Time Block Code</td>
</tr>
<tr>
<td>COD</td>
<td>Complex Orthogonal Design</td>
</tr>
<tr>
<td>const</td>
<td>constant</td>
</tr>
<tr>
<td>DPCCH</td>
<td>Dedicated Physical Control Channel</td>
</tr>
<tr>
<td>DPSK</td>
<td>Differential Phase Shift Keying</td>
</tr>
<tr>
<td>DS-SS</td>
<td>Direct Sequence Spread Spectrum</td>
</tr>
<tr>
<td>DSTBC</td>
<td>Differential Space-Time Block Code</td>
</tr>
<tr>
<td>DSTM</td>
<td>Differential Space-Time Modulation</td>
</tr>
<tr>
<td>e.g.</td>
<td>exempli gratia</td>
</tr>
<tr>
<td>ECK</td>
<td>Exact Channel Knowledge</td>
</tr>
<tr>
<td>EGC</td>
<td>Equal Gain Combining</td>
</tr>
</tbody>
</table>
etc. et cetera
FEC Forward Error Correction
FH-SS Frequency Hoping Spread Spectrum
GCOD Generalized Complex Orthogonal Design
GSM Global System for Mobile Communications
i.e id est
i.i.d. identically independently distributed
IDFT Inverse Discrete Fourier Transform
iff if and only if
ISI Inter-Symbol Interference
LAN Local Area Network
LOS Line Of Sight
LST Layered Space-Time Code
M-ary Multiple Level Modulation
MC-SS Multi-Carrier Spread Spectrum
MIMO Multiple Input Multiple Output
MMS Multi-Modulation Scheme
M-PSK M-ary Phase Shift Keying
MRC Maximum Ratio Combining
MS Mobile Station
OFDM Orthogonal Frequency Division Multiplexing
PAM Pulse Amplitude Modulation
PCU Per Channel Use
PDF Probability Density Function
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
rms root-mean-square
Rx antenna Receiver antenna
SC Scanning Combining
SCK Statistical Channel Knowledge
SER Symbol Error Rate
SNR Signal-to-Noise Ratio
STBC Space-Time Block Code
STC Space-Time Code
STS Symbol Time Slot
STTC Space-Time Trellis Code
Tx antenna Transmitter antenna
w. r. t. with respect to
WCDMA Wideband Code Division Multiple Access
Appendix A
Symbol Error Probability of M-ary PSK Signals

In this section, we derive the approximated symbol error probability of M-ary PSK signals in flat Rayleigh fading channels when SNR per symbol is large enough. The symbol error probability of M-ary PSK signals in L-path Rayleigh fading channels is given below (see equation (14.4-38) in [Proakis, 2001]):

\[
P_M = \frac{(-1)^{L-1}(1 - \mu^2)^L}{\pi(L-1)!} \times \left(\frac{\partial^{L-1}}{\partial b^{L-1}} \left\{ \frac{1}{1 - \mu^2} \left[\frac{\pi(M-1)}{M} - \frac{\mu \sin(\frac{\pi}{M})}{\sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}} \right] \right\} \right)_{b=1} \tag{A.1}
\]

where, by definition:

\[
\mu = \sqrt{\frac{\gamma_c}{\gamma_c + 1}} = \sqrt{\frac{(\gamma_b \log_2 M)/L}{(\gamma_b \log_2 M)/L + 1}} \tag{A.2}
\]

and \(\gamma_c\) and \(\gamma_b\) are the average SNR per channel and per bit, respectively. In flat Rayleigh fading scenario, we have \(L = 1\). Note that:

\[
\cot^{-1} \left(-\frac{\mu \cos(\frac{\pi}{M}) \sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}}{\sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}} \right) = \pi - \cot^{-1} \left(\frac{\mu \cos(\frac{\pi}{M}) \sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}}{\sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}} \right)
\]

then we have

\[
P_M = \frac{(1 - \mu^2)}{\pi} \left\{ \frac{1}{1 - \mu^2} \left[\frac{\pi(M-1)}{M} - \frac{\pi \mu \sin(\frac{\pi}{M})}{\sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}} \right] \right\}
\]

\[
+ \frac{\mu \sin(\frac{\pi}{M})}{\sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}} \cot^{-1} \left(\frac{\mu \cos(\frac{\pi}{M}) \sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}}{\sqrt{1 - \mu^2 \cos^2(\frac{\pi}{M})}} \right) \right\}
\]
When the SNR per symbol satisfies: $\gamma_c \gg 1$, such as $\gamma_c \geq 10$ (i.e., 10 dB), then $\mu \approx 1$. Therefore, we have:

\[
P_M \approx \frac{(1 - \mu^2)\{1 - \mu^2\} \left[\frac{\pi(M - 1)}{M} - \frac{\pi\mu\sin\left(\frac{\pi}{M}\right)}{\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right)}\right]}{\mu\sin\left(\frac{\pi}{M}\right)} + \cot^{-1}\left(\cos\left(\frac{\pi}{M}\right)\right)\}
\]

\[
= \frac{(M - 1)(1 - \mu^2)}{M} \left\{\frac{1}{1 - \mu^2\left[1 - \frac{\mu\sin\left(\frac{\pi}{M}\right)}{\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right)}\right]}\right\}
\]

\[
= \frac{(M - 1)(1 - \mu^2)}{M} \left[\frac{\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right) - \mu\sin\left(\frac{\pi}{M}\right)}{(1 - \mu^2)\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right)}\right]
\]

(A.3)

We can simplify further the above equation by noting that:

\[
1 - \mu^2 = \left[\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right) - \mu\sin\left(\frac{\pi}{M}\right)\right] \times \left[\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right) + \mu\sin\left(\frac{\pi}{M}\right)\right]
\]

Hence, (A.4) becomes

\[
P_M \approx \frac{(M - 1)(1 - \mu^2)}{M} \frac{1}{\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right)} + \mu\sin\left(\frac{\pi}{M}\right)
\]

\[
\times \frac{1}{\sqrt{1 - \mu^2}\cos^2\left(\frac{\pi}{M}\right)}
\]

\[
= \frac{(M - 1)(1 - \mu^2)}{M} \frac{1}{2\mu\sin\left(\frac{\pi}{M}\right)}\mu\sin\left(\frac{\pi}{M}\right)
\]

\[
= \frac{(M - 1)(1 - \mu^2)}{2M\mu^2\sin^2\left(\frac{\pi}{M}\right)} = \frac{(M - 1)}{2M\gamma_c\sin^2\left(\frac{\pi}{M}\right)}
\]

where the last equality is due to the fact that (see (A.2)):

\[
\gamma_c = \frac{\mu^2}{1 - \mu^2}
\]

Therefore, we have

\[
P_M \approx \frac{(M - 1)}{2M(\log_2 M)\gamma_c\sin^2\left(\frac{\pi}{M}\right)}
\]

(A.5)
Appendix B
Proof of the Decision Metrics for Unitary DSTBCs

In this section, we derive the expression of the statistic D_j mentioned in Eq. (6.10). Then, we prove that the detector for the symbol s_j is given by: $\hat{s}_j = \text{Arg}\{ \max_{s_j \in S} \Re\{D_j^*s_j\}\}$. Before proceeding further, it is important to note that:

1. $\text{tr}(\Theta A^H A)$ is real if Θ is a Hermitian matrix, i.e. $\Theta = \Theta^H$. Consequently, $\text{Im}\{\text{tr}(\Theta A^H A)\} = 0$.

2. $\text{tr}(\Omega \Lambda) = \text{tr}(\Lambda \Omega)$ if Ω and Λ are square matrices.

3. $Z_t^H W_{t-1} = W_t^H$.

4. $Z_t = \frac{1}{\sqrt{p}} \sum_{k=1}^{p} (X_k s_k^R + i Y_k s_k^I)$, i.e., $Z_t^H = \frac{1}{\sqrt{p}} \sum_{k=1}^{p} (X_k^H s_k^R - i Y_k^H s_k^I)$.

5. $\{X_k\}_{k=1}^{p}$ and $\{Y_k\}_{k=1}^{p}$ satisfy:

 \begin{align*}
 X_k X_k^H &= I; \quad Y_k Y_k^H = I \quad \forall k \quad (B.1) \\
 X_k X_j^H &= -X_j X_k^H; \quad Y_k Y_j^H = -Y_j Y_k^H \quad \forall k \neq j \quad (B.2) \\
 X_k Y_j^H &= Y_j X_k^H; \quad \forall k, j \quad (B.3)
 \end{align*}

One has:

\begin{align*}
R_t^H R_{t-1} &= (A W_{t-1} Z_t + N_t)^H (A W_{t-1} + N_{t-1}) \\
&= Z_t^H W_{t-1}^H A^H A W_{t-1} + Z_t^H W_{t-1}^H A^H N_{t-1} \\
&\quad + N_t^H A W_{t-1} + N_{t}^H N_{t-1} \quad (B.4)
\end{align*}
If the noise variance is small enough, the term $N_t^HN_{t-1}$ is negligible. From (B.1), (B.2), (B.4) and the 2^{nd}, 3^{rd}, 4^{th} notes as mentioned above, we have the following transforms:

\[
D_j^R \triangleq Re\{tr(R_t^HR_{t-1}X_j)\} \\
\approx \left[Re\{tr\left(\frac{1}{\sqrt{p}} \sum_{k=1}^{p} X_k^H W_{t-1}^H A^H AW_{t-1} X_j s_k^l \right) \} \\
- Re\{tr\left(\frac{1}{\sqrt{p}} \sum_{k=1}^{p} i Y_k^H W_{t-1}^H A^H AW_{t-1} X_j s_k^l \right) \} \\
+ Re\{tr(Z_t^H W_{t-1}^H A^H N_{t-1} X_j)\} + Re\{tr(N_t^H AW_{t-1} X_j)\} \right] \\
= \left[\frac{1}{\sqrt{p}} tr(A^H A) s_j^R \right] \\
+ Re\{tr\left(\frac{1}{\sqrt{p}} \sum_{k=1, k \neq j}^{p} X_k^H W_{t-1}^H A^H AW_{t-1} X_j s_k^l \right) \} \\
- Im\{tr\left(\frac{1}{\sqrt{p}} \sum_{k=1}^{p} X_j Y_k^H s_k^l A^H A \right) \} + Re\{tr(W_t^H A^H N_{t-1} X_j)\} \\
+ Re\{tr(N_t^H AW_{t-1} X_j)\}
\]

Let $\Gamma = \sum_{k=1}^{p} X_k Y_k^H s_k^l$. From (B.3), clearly, $\Gamma = \Gamma^H$, i.e. Γ is a Hermitian matrix. Therefore: $Im\{tr\left(\frac{1}{\sqrt{p}} \sum_{k=1}^{p} X_j Y_k^H s_k^l A^H A \right) \} = 0$. Additionally, if $\{X_k\}_{k=1}^{p}$ satisfy (B.1) and (B.2) individually, then $Re\{tr(\sum_{k=1, k \neq j}^{p} X_k^H W_{t-1}^H A^H AW_{t-1} X_j s_k^l)\} = 0$. Hence:

\[
D_j^R \approx \frac{1}{\sqrt{p}} tr(A^H A) s_j^R + Re\{tr(W_t^H A^H N_{t-1} X_j)\} \\
+ Re\{tr(N_t^H AW_{t-1} X_j)\}
\]
Similarly, we have:

\[D_j^I \triangleq \Re \{ \text{tr}(R_t^H R_{t-1}^i Y_j) \} \]
\[\approx \frac{1}{\sqrt{p}} \text{tr}(A^H A)s_j^I + \Re \{ \text{tr}(W_t^H A^H N_{t-1}^i Y_j) \} \]
\[+ \Re \{ \text{tr}(N_t^H A W_{t-1}^i Y_j) \} \]

The statistic for decoding the symbol \(s_j \) is given below:

\[D_j = D_j^R + iD_j^I \]
\[= \frac{1}{\sqrt{p}} \text{tr}(A^H A)s_j + \Re \{ \text{tr}(W_t^H A^H N_{t-1}^i X_j) \} \]
\[+ \Re \{ \text{tr}(N_t^H A W_{t-1}^i X_j) + i \Im \{ \text{tr}(W_t^H A^H N_{t-1}^i Y_j) \} \} \]
\[+ i \Im \{ \text{tr}(N_t^H A W_{t-1}^i Y_j) \} \quad \text{(B.5)} \]

Decoding the symbol \(s_j \) is equivalent to minimizing the following expression (note that \(|s_j|^2 = 1 \)):

\[|D_j - \frac{1}{\sqrt{p}} \text{tr}(A^H A)s_j|^2 = D_j^*D_j + \frac{1}{p} \langle \text{tr}(A^H A) \rangle^2 \]
\[- \frac{2}{\sqrt{p}} \text{tr}(A^H A) \Re \{ D_j^*s_j \} \]

Therefore, the detector of the symbol \(s_j \) is:

\[\hat{s}_j = \text{Arg} \{ \max_{s_j \in S} \Re \{ D_j^*s_j \} \} \quad \text{(B.6)} \]

The expressions (B.5), (B.6) are the aim of the proof. \(\square \)
References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Index

16QAM, 84, 86, 90, 95
3G mobile communication, 152
8PSK, 75, 77, 84, 86, 90, 95

A
Additive White Gaussian Noise (AWGN), 12, 83, 85
Alamouti
Alamouti code, 23, 44, 46, 107, 129
Alamouti DSTBC, 130, 132–133, 149, 185
Alamouti STBC, 25
Amicable Orthogonal Designs (AODs), 39, 59, 80, 103, 130
Antenna array, 5, xxi, 155, 157–159, 163, 178
Antenna diversity, 50
Antenna selection technique (AST), 2, 5, 7, xxi, 57–58, 119, 122, 124, 129, 155, 181, 190, 201, 203
Antenna selection
algorithm, 122, 135, 145
criterion, 136–137, 139, 143, 146, 148
Antenna spacing, 159
Antenna switching, 119
Antenna weighting, 10
AST/DSTBC scheme, 121, 134, 137, 181
general, 144, 148, 152, 183
restricted, 143, 148, 183
AST/STBC scheme, 120, 124, 129, 146

B
Bandwidth, 12–13, 22, 24–25, 43, 49, 54–55, 171
Bandwidth efficiency, 49, 84, 95
Base station, 50, 53, 119, 121
Baseband MRC, 53
Baseband Rayleigh fading envelope, 172
Baseband system, 10
Baud rate, 133
Beamforming, 10, 54, 119
Bell Lab Layered Space-Time (BLAST), 22
Bessel function, 159, 161
Binary Phase Shift Keying (BPSK), 26
Bit Error Rate (BER), xx, 101
Index

Bit SNR, 83, 86
Burst errors, 77, 94, 96

C
Capacity, 1, 6, 9–10, 12, 14, 16–21, 42–43, 46–47, 55
channel capacity, 6, 12–15, 19–22, 44, 47–48
gain, 22
limitation, 120, 128, 143, 152
normalized, 12–14, 21, 44, 47
of AWGN channels, 19–20
Shannon capacity, 12
theories, 1
true capacity, 42, 44, 46, 48, 55
Carrier frequency, 49, 133, 156, 159, 177, 179
CDMA 2000, 55
Ceiling function, 141
Cellular mobile, 55, 133, 135
Cellular system, 50
Channel coefficients, 132–134, 136, 138, 146
Channel model, 122
Channel realization, 135, 171
Chi-square random variable, 21, 147
Cholesky decomposition, 157, 165–166, 198, 204
Clarke's model, 171
Clifford
algebra, 3
representation theory, 39
Closed loop, 5, 9, xx, 57, 119–120, 128, 203
CO STBCs, 36
non-square, 36–37, 40–42, 69, 79
square, 35–41, 56, 67, 69, 79, 102
Code blocks, 133, 140–141, 193–194, 203
adjacent, 131, 149, 191, 194
consecutive, 129, 132, 142, 190, 193–194
initial, 141–142
next, 140, 193
Code design, 60
Code Division Multiple Access (CDMA), 49
Code rate, 24, 30, 36, 84
Coherence
bandwidth, 49
duration, 138, 140, 146
time, 49, 131, 133, 143, 190, 193
Coloring matrix, 165–167, 169, 198, 204
Complete elliptic integral, 165
Complex matrices, 3, xx, 104–105, 112–113, 118, 201
Complex Orthogonal Designs (CODs), 34, 60, 107, 114
Complex orthogonal STBCs (CO STBCs), 23
Complex orthogonal STBCs (CO STBCs), 34
Constructions
Adams-Lax-Phillips, 31, 38, 56, 118
Geramita-Pullman, 31
Jozefiak, 38, 56, 118
Wolfe, 38, 56, 118
Conventional code, 62, 70, 75–80, 84, 94–96, 98, 102
Correlation
auto-, 171, 174
coefficient matrix, 157
cross-, 164, 171
INDEX

level, 184
normalized auto-, 171–172
properties, 157, 159, 164
Covariance matrix, 157–158, 162–165, 169, 172, 176

D
Decision metrics, 71
Dedicated Physical Control Channel (DPCCH), 128
Delay spread, 159, 177
Delay transmission, 119
Detection
coherent, 119–120, 122, 132–133, 190
differential, xxii, 120, 132–134, 190
Determinant criterion, 22
Determine semi-blindly the best channels, 141
Determines semi-blindly the best channels, 139
Differential phase shift keying (DPSK), 191
Differential Space-Time Block Codes (DSTBCs), 120, 129, 155
Direct Sequence Spread Spectrum (DS-SS), 49
Discrete-time domain, 10
Discrete-time instant, xxi, 58, 173, 176, 204
Discrete-time sample, 171, 173
Discrete-time scenario, 168
Diversity
combining, 50
frequency diversity, 49–50
receive diversity, 13, 19, 21, 49
space diversity, 49–50
time diversity, 49–50
transmit diversity, 14, 18, 21, 49, 53, 128
Doppler
filter, 158, 167, 171, 175
frequency, 133, 153
frequency shift, 5, xxi, 153, 155, 158, 167–168, 175–176, 190, 199, 205–206
Downlink channel, 119

E
Eigen decomposition, 164–167, 169, 198, 204
Eigenvalue, 13–15, 43, 164–166
Eigenvector, 166
Equivalent channel coefficient matrix, 48
Error control coding, 49–50
Error
frequency, 191, 198–199, 205
initial phase, 191
non-initial phase, 191
phase, 156, 191, 199, 205
Euclidean distance, 85
Exact channel knowledge (ECK), 122, 135, 145

F
Feedback
bit, 126, 128, 143–144, 148
channel, 135, 140, 143
ero rate, 150, 153, 186, 197
information, 125–127, 140, 152, 188, 203
loop, 125
Flow chart, 125
Forward Error Correction (FEC), 49
Foschini G. J., 1, 20
Freedom degree, 136
Frequency Hoping Spread Spectrum (FH-SS), 49
Frobenius norm, 70, 123, 136–137, 139

<table>
<thead>
<tr>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gans M. J., 20, 171</td>
</tr>
<tr>
<td>Gaussian random variables, 162–164, 184</td>
</tr>
<tr>
<td>Gaussian</td>
</tr>
<tr>
<td>random processes, 179–180</td>
</tr>
<tr>
<td>random samples, 177</td>
</tr>
<tr>
<td>random sequences, 173</td>
</tr>
<tr>
<td>random variables, 130, 134, 146, 157</td>
</tr>
<tr>
<td>Generalized Complex Orthogonal Designs (GCODs), 34</td>
</tr>
<tr>
<td>Globally optimal value, 83</td>
</tr>
<tr>
<td>GSM, 50, 177–178, 184</td>
</tr>
<tr>
<td>Guard band, 49</td>
</tr>
<tr>
<td>Guard time, 49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermitian transpose, 34, 162</td>
</tr>
<tr>
<td>Hurwitz-Radon number, 27, 29–30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity matrix, 31, 34, 39, 60, 192</td>
</tr>
<tr>
<td>Ill-conditioned, 148</td>
</tr>
<tr>
<td>Imperfect carrier recovery, 2, xxii, 58, 153, 189, 191, 199, 205, 207</td>
</tr>
<tr>
<td>Imperfect channel, xxii, 155</td>
</tr>
<tr>
<td>Indeterminates, 25, 34, 61, 71, 103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jakes W. C., 158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katz M., 119</td>
</tr>
<tr>
<td>Kronecker product, 32–33, 39, 63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layered Space-Time Codes (LSTs), 25</td>
</tr>
<tr>
<td>Liang’s paper, 35–36, 67–69</td>
</tr>
<tr>
<td>Line-Of-Sight (LOS), 49</td>
</tr>
<tr>
<td>Linear processing (LP), 23, 25–26, 41, 113</td>
</tr>
<tr>
<td>Linear Space-Time Codes, 25</td>
</tr>
<tr>
<td>Locally optimal value, 81</td>
</tr>
<tr>
<td>Loss of capacity, 22, 42–43, 46–47, 55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ary PSK, 84, 213</td>
</tr>
<tr>
<td>Mapping, 164–165</td>
</tr>
<tr>
<td>reverse, 165</td>
</tr>
<tr>
<td>scheme, 81</td>
</tr>
<tr>
<td>table, 165</td>
</tr>
<tr>
<td>MatLab, 157–158, 198</td>
</tr>
<tr>
<td>Maximum Doppler frequency, 133, 159</td>
</tr>
</tbody>
</table>
INDEX

Maximum likelihood (ML) decoding, 22, 60, 70, 131
Maximum mutual information, 47–48
Maximum Ratio Combining (MRC), 50, 52–53
Mean value, 21, 137, 147, 170, 173
Mobile phone, 121, 135
Mobile station, 53
Modulation constellation, 85, 202
Monte-Carlo simulation, 148
Multi-Carrier Spread Spectrum (MC-SS), 49
Multi-dimensional diversity, 50
Multi-modulation, 78, 88
Multi-Modulation Schemes (MMSs), 2–3, xx, 57, 78–80, 84
Multimedia communication, 55
Multipath fading, 22, 171
Multiple-Input Multiple-Output (MIMO), 1, 9
Multiple Input Multiple Output (MIMO), 5, xxi, 204
Mutual information, 44–45, 48, 55

N
N-out-of-(N+1) AST, 120, 124–127, 152, 203
N-out-of-M AST, 119–120, 123–124, 152, 203

O
Octonions, 31
Optimal power allocation, 88
Optimal power ratio, 88, 92, 203
Orthogonal designs (ODs), 60
Orthogonal Frequency Division Multiplexing (OFDM), 5, xxi, 155
Overhead, 130, 133, 135–136, 142

P
PCU, 46
Peak-to-mean power ratio, 3, 59–60, 78, 101
Phase Shift Keying (PSK), 23
Phase/frequency recovery errors, 153, 190
Positive definite, 26, 157, 164–165, 178–179, 185, 198
Positive semi-definite, 163–167
Predict semi-blindly the channel properties, 204
Processing time, 126–127, 203
Pulse Amplitude Modulation (PAM), 23, 26

Q
QPSK, 71, 75, 77, 86, 90, 92, 129, 148, 185
QPSK+16QAM MMS, 85, 88, 90–91, 93, 96, 98
QPSK+8PSK MMS, 85–86, 90, 92–93, 95–96, 98
Quadrature Amplitude Modulation (QAM), 23
Quaternions, 31

R
RAKE receiver, 49
Random processes, 158
Rank, 42, 132, 136
Rank criterion, 22, 26
Rayleigh envelopes, 2, 5, 7, xxi, 58, 156–159, 162–165, 167–172, 176–180, 184, 198, 204, 206
Rayleigh fading channel, xxii, 90, 96, 122, 132
correlated Rayleigh fading channel, 182
fast Rayleigh fading channel, 15
flat Rayleigh fading channel, xxii, 90–91, 96, 99, 119, 132
frequency selective Rayleigh fading channel, 119
quasi-static Rayleigh fading channel, 16
Rayleigh fading generator, 172
Real-time scenario, xxi, 58, 158, 167–168, 176, 181
Real orthogonal design, 25
Real orthogonal STBC, 25
Root-mean-square (rms), 159, 177
Roundoff errors, 157–158, 198
Rx antenna, 128, 130, 137

S
Sample lag, 174
Sampling frequency, 171, 174
Sandhu S., 42
Scanning combining, 51
Scatterer, 160
Selection combining, 51
Separation
 frequency, 158, 168, 177
 spatial, 158
Shannon, 1, 12
Signal-to-Noise Ratio (SNR), 51–52, 120, 129
Similar form, 106, 108, 111
Single modulation, 3, xx, 84–85, 88, 91–92, 94, 96, 99
Single modulation schemes, 88, 90
SNR, 86
Space-Time Block Codes (STBCs), 9, 22
Space-Time Codes (STCs), 9
Space-Time Trellis Codes (STTCs), 22, 25
Space-Time Turbo Codes, 207
Spectral efficiency, 1, 24–25, 49–50, 55
Statistical channel knowledge (SCK), 135, 145
STBCs
 non-square real, 31, 33
 square real, 30–31, 33
Sub-channel, 13–14, 43
Sub-matrices, 104, 106, 112, 115
Subset, 143, 145
Symbol error rates (SER), 85
Symbol Time Slot (STS), 11, 75, 122
System model, 10

T
Tacit default matrix, 140
Tarokh V., 22–23, 34–35, 129
Third Generation Partnership Project (3GPP), 9, 55
Time-varying, 122, 129, 131–132
Time benefit, 126, 152
Time delay, 158–159, 168, 177, 204
Tirkkonen O., 39
Tolerance
to frequency errors, 6, 156, 198–199, 205
 to phase errors, 6, 156, 196, 199, 205
Traffic capacity, 1, xix
Training signals, 130, 133, 135–137, 141–142
Training symbols, 133, 141
Transmission coefficients, 122, 126, 155, 184–185, 191
Tx antenna, 95, 125, 136, 203

U
Unitary matrix, 131
Unitary Space-Time Codes, 22
Uplink channel, 128, 152

V
Variable, 158, 162
Variance-changing effect, 158
Variance, 21, 137, 147, 158, 170, 174–175

W
Wallis-Whiteman array, xx, 104–105, 107, 201
Water-filling, 11, 14
Wavelength, 50, 135, 159–160, 163, 182
WCDMA, 55, 128
Weighting factor, 52–53
Weighting matrices, 104, 115, 118, 130, 202
Williamson array, xx, 104–105, 107, 201
Wireless Local Area Networks (LANs), 20
Wishart matrix, 13, 16

Y
Young’s model, 174, 177