Index

1 db compression point 794–6, 809–12
1/f noise up-conversion 562–3

AAF see anti-aliasing filters
absolute errors 19–21
absolute lower boundaries 284–5
absolute robustness 888–90
ACTIF modeling technique 620–3, 627
active filters
 component sensitivity 319–24
 component spread 315–39
 component tolerance 315–39
 digital subscriber lines 726–8, 744
 pole quality factor 325–11
 power consumption 686–9
 robustness 32–50
 selectivity 325–11
 symbolic analysis 954, 955
active loads 805
active mixers 682–5
Adams, R. W. 360–1
“Adaptive retina” chip 132–3
ADC see analogue-to-digital converters
adjoint networks 209–10
ADSL see Asymmetric Digital Subscriber Line
 algorithms 897–901
 Alinikula’s method 865–9
AM-to-PM distortion elimination 873–6
amplifiers
 architectures 211–12
 biasing methods 44–50
 closed-loops 217–22
 floating-gates 130–3
 gain-bandwidth 207–25
 power 842–80
 robustness 28–32
 theory 208–11
 transresistance 210, 213–18, 221–2
amplitude control 765
amplitude response 327, 335
analogue vs. digital processes 725–6
analogue-to-digital converters (ADC) 616, 639–40, 732–5
analysis methods 747–51, 960–1
AND-gates 825–7
annotated layout schematics 994–6
anti-aliasing filters (AAF) 443, 455–6
AOTAC see Asymmetric Operational Transconductance Amplifier Comparators
arbitrary Boolean functions 902–18
architectures
 data converters 594–7, 599–601
 layout analogy 988–9
 mixers 800–17
 open loops 171–3
 robustness 25–7
area 78–9
Asymmetric Digital Subscriber Line
 (ADSL) 732–8
Asymmetric Operational Transconductance Amplifier Comparators (AOTAC) 409, 430
asymptotic–gain 260
atomic (primitive) templates 898
automatic tuning 352–3
autozero floating–gate amplifier (AFGA) 128–9
back-annotation 68–9, 990–1
balanced compensation capacitor branches 483–4
band-gap references 139–64
design 157–63
noise 148–53
power-supply rejection 153–5
resistors 147–8
robustness 50–4
structures 155–67
bandwidth
 efficiency 852–3
 feedback 755–6
 frequency 260–5
 gain trading 227–55
 limiting 933–4, 936
mixers 793–4
see also gain-bandwidth
base-emitter voltages 139–64
baseband circuits 668–92
baseband line codes 728, 729
batteries 665
behavior modeling 597–9, 606–7, 963–4
Bernoulli cells (BC) 369–70
BFL see “Big Fat” inductors
bias 160, 485, 759–60
biasing methods 35–50, 306–8, 431–2, 433–8
BiCMOS fully differential op-amps 970–1
“Big Fat” inductors (BFL) 842
binary-weighted mismatch shaping 650, 651
bipolar cellular neural network 886
bipolar junction transistors (BJT)
 continuous-time filters 347
 gain-bandwidth 227, 235–8
 log-domain filters 374–9
 production issues 9
biquads
 ACTIF technique 622–3
 amplitude response 335
 component sensitivity 320–4
 log-domain filters 369–79
 switched-capacitor 954, 955–6
BJT see bipolar junction transistors
blind-zones 829–31, 834–5, 838
blockers 308–9
Bode plots 269
bonded wafer techniques 1024–8
Boolean functions 902–18
bootstrapping 1004–6
bottom-up verification 606–7
branch variables 195–204
bridged-T networks 331–2
broadbanding 229, 268–70, 277
Brokaw cells 51
buffers 95–8, 329–30
Bode plots 269
bonded wafer techniques 1024–8
Boolean functions 902–18
bootstrapping 1004–6
bottom-up verification 606–7
branch variables 195–204
bridged-T networks 331–2
broadbanding 229, 268–70, 277
Brokaw cells 51
buffers 95–8, 329–30
bulk driven mixers 807–9
Butterworth characteristic 261–3

CAD see computer-aided design
canonical piecewise-linear cellular neural networks 906–9, 917

capacitance
floating-gates 116–17
harmonic resonator oscillators 768–9
IC layout 1001–3
photoreceivers 705
post-amplifier combinations 712–13
capacitors
branches 477–84
component matching 1018–20
component values 865–7, 870–8
frequency-dynamic range-power 299–300
mismatches 485–6
stored charges 481–2
cascade coupled resonator oscillators 771–2
cascade Miller compensation 471–2
CCCS see Current-Controlled Current Source
CCVSS see Current-Controlled Voltage Source
cell reuse in layout 985–6
cellular neural network (CNN) cells 883–918
cellular phone systems 25–7
channel hot carrier injection see hot carrier injection
characteristic polynomials (CP) 261–3

charge
capacitors 481–2
domain processing 474–6
flooding-gates 119, 120–8
injection 301–2
retention 134
sharing 839–42
Chebyshev lowpass filters 336–7
check lists, production strategies 70–1
chip-scale packages (CSP) 1006–7
circuiteer/layouteer teamwork 992–6
circuits
cellular neural networks 886–7
class E power amplifiers 853, 858–62
CMOS VLSI circuits 89–98, 107–8
design 1–5
digital-to-analogue converters 602–3
feedback circuits 182–204
floating-gates 119–28
high-frequency 451–6
layouts 1020–4
output variables 192–3
parameters 107–8
partitioning 182–204
performance 7–74
phase frequency detectors 836–7
physical robustness 63–4
reliability 7–74
sizing 960–1
switched-capacitors 443–56, 492–4
switched-currents 492–4
symbolic analysis 958–60
topology 492–4, 961
transfer functions 183–9
class A log-domain filters 380–3
class A power amplifiers 845–8
class A switched-capacitors 499
class A switched-currents 497–9, 503–6, 510
class AB power amplifiers 845–8
class AB switched-currents 498–9, 506–7, 510
class B power amplifiers 845–8
class C power amplifiers 845–8
class D power amplifiers 848–9
class E power amplifiers 844–5, 848–50, 853–78
class F power amplifiers 848, 850–2
class I, II, III templates 898–901
classification, power amplifiers 842–53
clipping 932–3, 938
clock
drivers 603
frequency 494–9
jitter 552
closed loops 171–6, 217–22
CMOS see Complementary Metal-Oxide Semiconductors
CNN see cellular neural network
coarse tuning 352
collector currents 387–9
Colpitts oscillator 563–4, 567, 572–3
combination programming techniques 124–8
commercial design objectives 9–11
common mode rejection 799–800
common-gate amplifiers 673–8
common-mode feedback (CMFB) 472–4
communications 697–718
commutating switch mixers 681–5
compactness 905–6, 910, 916, 917
companding 303–6, 307, 309–10
comparators 407–39, 776–7
Complementary Metal-Oxide Semiconductors
(CMOS)
comparators 407–39
offsets 429–38
resolution 423–9
speed 423–9
voltage 408–22
mixer design 787–817
oscillator phase noise 568–70
switched-capacitors 445–51
VLSI circuits 75–108
 circuit criteria 89–98
 design criteria 78–86
 future trends 104–7
 glossary 107
 parameters 107–8
 physical criteria 99–102
 power dissipation 84–5
 process criteria 102–4
 structural criteria 86–9
complex poles 264–5
components
 element values 19–21
 matching 301, 485–6, 1012–20
 performance 7–74
 reliability 7–74
 sensitivity 319–24, 327
 size issues 1015–16
 spread 315–39
 tolerance 315–39
 value computation 863–70
composite capacitor branches 477–84
compression point (1db) 794–6, 809–12
computational efficiency 968–9
computer simulators
 computer-aided design (CAD)
 circuit design 2
 computer simulators 923–51
 integrated circuits 953–79, 985–1031
 concise design production strategies 69–70
 connected component detectors (CCD) 894–6
 contacts (connections) 999–1008
 continuous-time filters 341–53
 digital subscriber lines 743–4
 dynamic range 347–9
 log-domain filters 349–50
 order 341–2
 power consumption 687–8
 power estimators 620–7
 symbolic analysis 954, 955
 transconductance-C filters 344–7
 transconductors 350–1
 tuning 351–3
 control ports 191–204
 controlled output currents 215–17
 controlling feedback variables 192–3, 195–204
 conversion gain 793–4, 803–5
 converters see analogue-to-digital…; data…;
digital-to-analogue…
 convex corner detection 899–900, 901
“Corner Models” 64–8
 cost issues, robustness 54–5
 coupled relaxation oscillators 778, 780–4
 coupled resonator oscillators 770–2
 CP see characteristic polynomials
cross-coupled LC oscillators 519–20
CSP see chip-scale packages
current
 amplifiers 210, 213–18, 221–2, 295–7
 bandwidths 383–9
 base-emitter voltages 153–5
 carrying branches 1000–6
 conveyer amplifiers 214–15
 density 998–1000
 feedback 213–14, 248–51
 followers 214–24, 277–8
 integrated LC VCO 533–5
 mirrors 216, 296–7
 source 604–5, 845–28
 steering 592–3, 594–7
 tank voltage amplitudes 568
 voltage conversion 292–5
current source shift (1-shift) 749, 750
Current-Controlled Current Source (CCCS)
 amplifiers 210, 214–18, 221–2
Current-Controlled Voltage Source (CCCVS)
 amplifiers 210, 213–18, 221–2
cyclostationary noise sources 563–4, 572–3
D-flipflops 825–7

DAC see digital-to-analogue converters
damping circuits 762–72
damping factor 174–6, 703–6
DAP see Dependent on Absolute Parameters
data converters
 ADSL 732–8
digital subscriber line techniques 728–41
dynamic range 631–62
experimental results 607–10
high-performance 591–628
interpolation 654–6
Mondriaan tool 604–6
power modeling 613–28
sampled signal reconstruction 653–62
speed 631–62
systematic design 591–610

DDD see determinant decision programs
dead-zone 827–9, 832–4
decade ring counters 1031
decoders 603, 605–6
decomposition trees 972–4
deregeneration
 log-domain filters 357–9
 mixers 809–12
 self-biased comparators 436–7
 transconductance-C filters 346
derenerative feedback see negative ...
delay cells 827–9
deliverables, production strategies 57–8
delta–sigma data converters 653, 657–8
delta–sigma modulators
data converters 657–8
fully coded 946–50
Matlab 939, 941–3, 944
Simulink 929–32, 939–40
switched capacitor 927–9

Dependent on Absolute Parameters (DAP) 18–19, 1012–13
derivation, power estimators 616–19
design methodology
circuits 1–6
CMOS mixers 787–817
CMOS VLSI circuits 76–86
constraints 519–26
flows 592–3
integrated LC VCO 519–26
log-domain filters 360–74
manufacture 7–74
mixers 787–817
determinant decision programs (DDD) 973
deterministic offset 429
device
dimensions 431–2, 1013, 1015–16

 matching 301, 485–6, 1012–15
die areas 78–9
dielectric materials 104
differential operation continuous-time filters 349
differential oscillators 679–81
digital layouts 985–6
digital subscriber lines (DSL)
 ADSL 732–8
 circuits 740–4
data converters 728–41
digital-to-analogue converters 735–7
 front-end design 723–46
 Nyquist-rate converters 740–3
 oversampling data converters 740–3
 system partitioning 723–40
digital VLSI 461–88
digital vs. analogue processes 725–6
digital-to-analogue converters (DAC)
 ADSL 735–7
 behavioral models 597–9, 606–7
 circuits 602–3
 converter layouts 606
design flow 592–3
dynamic range 631–62
 sizing synthesis 599–603
 speed 631–62
top-down verification 597–9
dimensions 14, 431–2, 1013, 1015–16
discrete chip inductors 671–2
discrete multi-tone modulation (DMT) 730–1
discrete-time (DT) 419–21, 954, 955–6
distortion
 increment 755–6
 log-domain filters 390–3
 modeling 625–6
 symbolic analysis 974–6
DMT see discrete multi-tone modulation
 dominant poles 263–5
domino-logic phase frequency detectors 831–42
DONALD symbolic analyzer 960
double-balanced mixers 803–5, 809–12
double-loop limiting amplifiers 767
double-poly see polysilicon-over-polysilicon
double-sideband (DBS) noise figures 797–9
down-bonds 1007
drafting 989–2
drain currents 126–7, 524–5, 714–18
drain voltages 858–60, 868, 869–70
driving oscillator loads 766–7
driving point impedances 189–91
DSB see double-sideband
DSL see digital subscriber lines
DT see discrete-time
DTL see “Dynamic Translinear Circuits”
Index

dual-feedback amplifiers 246–8, 252–5
dynamic biasing 306–8, 433–8
cellular neural networks 884–5
data converters 601–3
logic phase detectors 821, 831–42
range
continuous-time filters 347–9
data converters 631–62
frequency 283–310
speed 631–62
wireless receivers 668–70
resolution 437–8
static circuit criteria 90–1
“Dynamic Translinear Circuits” (DTL) 367–8

early voltages 446–7
early voltages 446–7
echo signals 732–40
edge-triggered JK-flipflops 825
effective number of bits (ENOB) 616–17
electromigration 998–1000
element matching 644
element rotation 644–5
element specifications 1013
ELIN see Externally Linear Internally Nonlinear
electrical high-pass filters 1021–4
emitter contacts 999–1000
emitter degeneration 357–9
emitter-coupled multi-vibrators 775–6, 781–2
energy barriers 117–19, 124–8
ENOB see effective number of bits
evelope elimination and restoration 844
EPROM 115
equivalent noise source 748–9
ESS see exponential state-space
evolution, microprocessors 75–7
exclusive-OR gates 823–4
experimental results
data converters 607–10
integrated LC VCO 541–5
power estimators 619, 627
exponential functions 365–7
exponential state-space (ESS) 364–5
Externally Linear Internally Nonlinear (ELIN)
structures 393–5
extracted behavioral models 606–7
fabrication 672–3, 1024–8
failure
boundary 911–13
tests 72–3
FAMOS see floating-gate avalanche-injection MOS
“FAST” “Corner Models” 65
fault diagnosis 962–3
FDOTAC see Fully-Differential Operational
Transconductance Amplifier Comparator
feedback
amplifiers 246–8, 252–5, 752–6
circuits 169–204
control ports 191–204
driving point impedances 189–91
partitioning 182–204
phase margins 176–9
settling times 179–82
transfer functions 173–6, 183–9
variables 192–3, 195–204
component sensitivity 322–4, 327
loops 171–82
low noise amplifiers 752–6
oversampling data converters 633–6
shunt-shunt type 198–204
FET see field-effect transistors
FGMOD see floating-gate MOS transistors
FGUVMOS see floating-gate UVMOS inverters
field-effect transistors (FET)
continuous-time filters 343–4, 346–7
gain-bandwidth 227–55
prescalers 685–6
figure-of-merit (FoM) 251, 493, 509–14, 792–800
filters
active 315–39
circuits 1023–4
companding 309–10
continuous-time 341–53
digital subscriber lines 738–40
frequency-dynamic range-power 284–8
log-domain 355–401
Monte-Carlo results 334–5, 1022, 1024
power modeling 613–28
robustness 32–50
selectivity 325–32, 341–2
switched-capacitors 444
tunability 342–4, 351–3
finite transmission zeros 380–3
FIR frequency response 452–3
first-order compensated band-gap references
base-emitter voltages 143–4
design example 157–9
noise 151–2
simplified structures 155
first-order oscillators see relaxation oscillators
fixed gain amplifiers 28–32
Flash-EPROM 115
flicker noise
frequency-dynamic range-power 300–1
mixers 815–17
oscillator phase noise 562–3
flicker noise contd.
switched-capacitors 447
wireless receivers 688
flipflop circuits 825–7
floating capacitors 380–3
floating-gate avalanche-injection MOS (FAMOS) 115
floating-gate MOS transistors (FGMOS) 115–35
floating-gate UVMOS inverters (FGUVMOS) 130–3
floating-gates 115–35
“Adaptive retina” chip 132–3
charge retention 134
circuits 119–28
combination programming techniques 124–8
on-chip knobs 121
physics 115–19
floorplans 604
FN see Fowler–Nordheim
collapsed cascode amplifiers 466–7, 939
Folded Operational Transconductance Amplifier
Comparator (FOTAC) 412, 413, 939
follower-based amplifiers 213–24
formal verification 964–5
FOTAC see Folded Operational Transconductance
Amplifier
Comparator Fourier analysis 869
Fowler–Nordheim (FN) tunnelling 118–19, 124–8
frequency compensation
bandwidth 260–5
current followers 277–8
dominant poles 263–5
negative-feedback amplifiers 257–81
nullors 277–8
passive networks 265–7
phantom zeros 275–7
pole placement 265–7
pole-zero cancellation 270–5, 277
resistive broadbanding 268–70, 277
second-order effect addition 277–8
switched-capacitors 469–72
transimpedance amplifiers 278–81
zeros 274–7
dividers 685–6
gain 242–3
instability 551–7
response 350–1
sensitivity 839, 840
tests 838, 839
frequency-dynamic range-power 283–310
amplifiers 295–7
capacitors 299–300
companding 303–6, 307, 309–10
current-to-voltage conversion 292–5
dynamic biasing 306–8
filters 284–8
harmonic oscillators 291–2
oscillators 288–92
parasitic capacitors 299–300
power dissipation 303–8
single-pole low-pass filters 284–5
voltage-to-current conversion 292–5
Frey, D. R. 362–5
front-end design 723–46
front-end small-signal performance 700–7
front-end/post-amplifier combinations 712–13, 714
fully coded delta–sigma modulators 946–50
fully differential amplifiers 472–4
fully differential BiCMOS op-amps 970–1
Fully-Differential Operational Transconductance
Amplifier Comparator (FDO_TAC) 409
fusing currents 998–9
future trends in CMOS VLSI circuits 104–7
GaAsFET see gallium arsenide field-effect
transistors
gain
boosting amplifiers 467–8
cells 43–50
degeneration 436–7
delta–sigma modulators 932, 933, 938
errors 48–50
frequency 242–3, 260
open loops 172–3
gain-bandwidth
amplifiers 207–25, 238–40
closed-loop amplifiers 217–22
concepts 227–34
feedback 243–55
inductors 232–4, 238–41
low-noise amplifiers 238–40
mixers 793–4
noise 227–55
photoreceivers 711–12, 713
production parameters 17
shrinkage 230–2
gain-sensitivity product (GSP) 323–4
gallium arsenide field-effect transistors
(GaAsFET) 227
GASCAP symbolic analyzer 978
generic behavioral models 597–9
Gilbert cells 803–5, 809–12, 822–3
glitch 598–9
Index

global feedback 193–5
glossary, CMOS VLSI circuits 107
Gm-C see transconductance-C
graphical nonlinear programming (GNP) 518–19, 526–37
ground connections 1006–10
GSP see gain-sensitivity product
Gummel and Poon Model 146–7
gyrators 752–3
harmonic
distortion 861, 862, 975–6
oscillators 291–2, 762–72
resonator oscillators 762–72
HCI see hot carrier injection
heterodyne receivers 788–9, 798
hierarchical decomposition 971–4
high-connectivity task algorithms 897–901
high-frequency switched-capacitor circuits 451–6
high-pass filters 1021–4
high-performance
data converters 591–628
dynamic-logic phase frequency detectors 821, 831–42
high-resolution
mismatch shaping 659–62
oversampled data converters 658–9
high-speed
Nyquist-rate converters 616
phase frequency detectors 837–42
high-voltage drivers 127–8
horizontal hole detection 894–6
“HotBJT” 1026–7
hot carrier injection (HCI) 119, 124–5
hybrid amplifiers 724–5
hyper-abrupt junction capacitors 861–78
hysteresis 419–21
I-shift see current source shift
IC see integrated circuits
IDAC symbolic analyzer 960
ideal amplifiers 208–11, 217–18, 863–70
ideal class E power amplifiers 863–70
ideal transformers 752–3
ideal voltage comparators 408–9
idealized band-gap references 150–1
IIR frequency response 452–3
image processing cells 886–7
impedance
amplifiers 676–7
feedback 196–8, 201–4, 752–6
physical criteria 99–102
switched-capacitors 446–7
tapering 329–30, 336
impulse response 557–8
impulse sensitivity function (ISF) 523, 559, 574–9
in-phase coupling 783–4
independent design variables 525–6
indirect conversion receivers 691
inductance 530–5
inductive current sources 805–6
inductors 527–33
amplifiers 842
gain-bandwidth 232–4, 238–41
power dissipation 689–1
initializing simulations 943, 945
input transconductor noise 814–15
instantaneous companding 309–10
integrated circuits (IC) 953–79, 985–1301
layouts
bootstrapping 1004–6
component matching 1015–20
device matching 1012–15
drafting 989–2
ground connections 1006–10
interconnects 996–1006
objectives 1010–12
schematic 60
silicon-on-insulator processes 1024–8
substrates 1006–10, 1024–8
superintegrated 1029–31
thermal resistance 1026–9
production issues 8–9
integrated LC voltage-controlled oscillators
(LC VCO) 517–46
design constraints 519–26
experimental results 541–5
graphical nonlinear programming 518–19, 526–37
objectives 519–26
optimization 535–40
simulations 540–1
interconnects 99–102
internal current bandwidth 383–9
interpolation, data converters 654–6
inverters 130–3, 584–5, 704
irrational capacitor ratio 1019–20
ISAAC symbolic analyzer 953, 966, 974, 976–8
ISF see impulse sensitivity function
isothermal operations 1029–30

JFET see junction field-effect transistors
jitter 552–3, 556–7
JK-flipflops 825
Johnson noise 1009
junction field-effect transistors (JFET) 227
junction-isolation integrated circuits 1006–7

K values 220–3
Kirchhoff Laws 749–50
kT/C see switched sampled capacitors

latches 419–21
layouteer/circuiteer teamwork 992–6
layouts
 circuits 985–1301
 data converters 603–7
 integrated circuits 985–1301
 manufacturing techniques 985–1301
LC oscillator phase noise 565–19
LC VCO see integrated LC voltage-controlled oscillators
LDSS see “Log-Domain State Space”
leakage currents 447–8
LFD see low-pass filters
linear
 current amplifiers 296–7
 feedback circuits 183–7
 programming 518
 shunt capacitance 863
 linear-time-variant mixers 791–2
linearity
 continuous-time filters 342
 log-domain filters 356–60, 380–3
 mixers 809–12
 power amplifiers 852–3
LNA see low noise amplifiers
load isolation 222–4
load noise 814
loaded quality factor 853–62
loading effects 1001–2
log-domain filters
 bipolar junction transistors 374–9
 companding 309–10
 continuous-time filters 349–50
 design 360–74
 distortion 390–3
 finite transmission zeros 380–3
 floating capacitors 380–3
 insights 355–401
 internal current bandwidth 383–9
 linearization 356–60, 380–3
 lossy integrators 390–401
 lowpass biquads 369–79
 modulation index 383–9
 noise 393–401
 synthesis 360–74
“Log-Domain State Space” (LDSS) 369–72, 380–3
logic circuits 823–42
Loop-gain-Poles (LP) product 258, 260–81
loops
 closed 171–6, 217–22
 gain 176–9, 258, 260–81
 open 171–3, 176–9, 217
 poles 259
lossy integrators 355–6, 390–401
low noise amplifiers (LNA)
 design 751–62
 gain-bandwidth 238–40
 mixer design 789
 nullors 752–7
 optimization 39–44
 power consumption 673–8
 production issues 9
 robustness 35–43
low noise design 747–84
 harmonic resonator oscillators 762–72
 relaxation oscillators 772–84
low power oscillators 682
low-gain linear voltage amplifiers 709–12
low-pass filters (LFD) 284–5, 369–79, 821
low-power rail-to-rail circuits 130–2
low-voltage rail-to-rail circuits 130–2
LP see Loop-gain-Poles

manufacture
 considerations 7–74
 techniques 985–1301
mass-production, microdevices 7–9
matching, power 769–70
matching components 301, 485–6, 1012–20
Matlab 938–45, 946, 949
memory
 bypass 778–80
 integrated circuits 75–6
 oscillator phase noise 774–6
 switch noise power 502
metal-over-metal structures 463–4
metal-over-polysilicon structures 464
metal-oxide-semiconductor field-effect transistors (MOSFET)
degeneration 811–12
filters 346
gain-bandwidth 227
gate structures 464–5
mixers 807–9
tunable resistance 343–4
metal-oxide-semiconductor field-effect transistors-C (MOSFET-C) 343–4
metal-oxide-semiconductors (MOS) 115–35, 446–8
metallization capacitances 1001–2
metals 38, 996–1006
MHz operation compensation 876–8
microdevice mass-production 7–9
microprocessors 75–7
Miller compensation
switched-capacitors 469–72
symbolic analysis 959–60, 967–8, 975–6
Miller effect 231–2
mismatch
components 301, 485–6
photoreceivers 714–18
production sensitivities 21–2
shaping 644–53, 659–62
mixers 787–817
architectures 800–17
figures of merit 792–800
linearity 809–12
LO signals 812–13
multipliers 789–92
noise 813–17
power consumption 681–5
mobile phones 666
modeling
“Corner Models” 64–8
distortion 625–6
generic behavior 597–9
Gummel and Poon 146–7
phase noise 557–65
power 613–28
transconductances 624–5
modulation 383–9, 657–8, 667
Mondriaan tool 604–6, 608
monolithic MOS capacitors 461–5
Monte-Carlo results 334–5, 1022, 1024
Moore’s law circuits 75–6
MOS see metal-oxide-semiconductors
MOSFET see metal-oxide-semiconductor field-effect transistors
multi-nested universal cellular neural networks 909–17
multi-stage amplifiers 47–8
multi-stage feedback 248–55
multibit delta-sigma modulation 657–8
multibit quantization 640–4
multichannel optical data links 697–718
multipliers
biasing 46–8
mixers 789–92
phase frequency detectors 822–3
robustness 33–4
multistep voltage comparators 412–16, 425–6, 435–6
n-metal-oxide-semiconductors (wMOS) 121, 126, 808
negative feedback
amplifiers 257–81, 752–6
circuits 170
relaxation oscillators 777–84
neural processing 883–918
NMF see noise modulating function
nMOS see n-metal-oxide-semiconductors
nodes 1009
noise
amplifiers 757–9
analysis tools 747–51
band-gap references 148–53
delta-sigma modulators 928, 930–1
design 747–84
factor 674–7
feedback networks 753
figures 241, 797–9
frequency-dynamic range-power 299–301
gain-bandwidth 227–55
harmonic resonator oscillators 767–70
log-domain filters 393–401
matching 757–9, 767–70
mixers 813–17
multi-stage feedback 248–55
optimizations 757–61
oscillators 551–85, 762–72
photoreceivers 707–9
relaxation oscillators 772–84
resonators 763–4
ring oscillators 581–2
sensitivity in active filters 337–9
shaping 632, 636–9
single-stage feedback 243–8
sources 570–3, 581–4
switched sampled capacitors 928, 930–1, 946–7, 949
switched-capacitors 499–509
switched-currents 499–509
tolerance 82–3
see also flicker...; thermal...
noise modulating function (NMF) 564
noise transfer function (NTF) 634–5
“NOMINAL” “Corner Models” 65
nonlinear mixers 791–2
nonlinear shunt capacitance 861–78
normalized power capability 869–70
Norton equivalent circuits 200
Norton-Thevenin transform 749–50
NTF see noise transfer function
null feedback parameters 188–9
nullors
amplifiers 208–11, 752–7
band-gap references 157–1
frequency compensation 277–8
noise magnification 754–5
numerical component value computation 870–8
Nyquist-rate converters 616, 740–3

objectives

- circuit layouts 1010–12
- integrated LC VCO 519–26
- production strategies 56–7

off-chip tuning 352
offsets
- compensation 429–38
- differential pairs 347
- self-biased comparators 436–7
- voltages 714–18

on-chip
- clock multipliers 450–1
- inductors 689–1
- knobs 121
- supply voltage multipliers 450
- tuning 352–3

one-step processing 901–2
one-time post-fabrication tuning 352
open feedback circuits 179–82
open loops 171–3, 176–9, 217
operational amplifiers, VLSI processes 466–74
Operational Floating Conveyors 216–17
Operational Mirrored Amplifiers 216
Operational Transconductance Amplifiers (OTA)
- architecture 409, 417–18
- delta-sigma modulators 932–8
- filters 620–7
- noise 931–2
- parameters 929

optical communications 697–718
optimization processes
- circuits 925–6
- integrated LC VCO 526–40
- low noise amplifiers 757–61
Matlab 938–45

- power consumption 626–7
- production strategies 22–55
- order, continuous-time filters 341–2
- orientation vectors 907–9
- oscillator phase noise 551–85
- comparators 776–7
- flicker noise 562–3
- frequency instability 551–7
- memory 774–6

oscillators
- frequency-dynamic range-power 288–92
- integrated LC VCO 517–45
- low noise design 762–72
- power consumption 678–81, 682
- time-variant phase noise model 557–65
OSR see oversampling ratio
OTA see Operational Transconductance Amplifiers
output impedance 446–7
output variables 192–3
oversampling data converters 631–62, 740–3
oversampling ratio (OSR) 634–6, 640–4

p-metal-oxide-semiconductors (pMOS) 124–7, 808
packing, design criteria 83
PAD see power added efficiency
paging protocols 667
paging receivers 665–6, 667
PAM see pulse amplitude modulation
parallel
- compensation capacitor branch 482
- connections 760–1
- processing 86–8
- resonators 764
- switched-capacitors 453–4

parameters
- band-gap references 146–7
- closed loops 173–6
- integrated circuit layouts 1012–13
- open loops 171–3
- sensitivity 11–13, 16–22

parasitic
- back-annotation 68–9
- capacitors 299–300, 486–7, 1015–16
- gain-bandwidth 230–2
- integrated circuit layouts 1015–16

partitioning 182–204, 723–40
pass band codes 728–30

passive
- commutating switch mixers 681–5
- component quality 671–3
- components 342–3
- filters 726–8
networks 265–7
RC bandpass filters 325–7
resonators 671–3
tuned circuits 671–3
PE see power efficiency
performance 227–55
amplifiers 207–25
band-gap reference design 139–63
bandwidths 227–55
closed-loop amplifiers 217–22
CMOS VLSI circuits 75–108
digital-to-analogue converters 600–3
feedback circuits 169–204
floating-gates 115–35
frequency compensation 257–81
frequency-dynamic range power 283–311
gain 227–55
noise 227–55
phase frequency detectors 836–42
vectors 493–4
Perry-Roberts log-domain filters 365–7
PFD see phase frequency detectors
PFN see power-frequency-normalized
PFTN see power-frequency-tuning-normalized
phantom zeros 275–7
phase
characteristics 838–9, 841
curves 838, 840
margins 176–9
modulation 560–1
noise 522–5, 539–42, 551–85, 676–7, 773–7
phase frequency detectors (PFD)
circuit operation 836–7
dead-zone 827–9
design issues 827–31
high-performance dynamic-logic 821, 831–42
multipliers 822–3
performance evaluations 836–42
review 822–7
phase-locked loops (PLL) 352–3, 821–42
phasors noise 583
photodiode capacitance 705
photoreceivers 697–718
noise limits 707–9
post-amplifiers 709–114
small-signal performance 700–7
structure 698–9
physical criteria, CMOS VLSI circuits 99–102
physical robustness, circuits 63–4
physical units 14
piecewise-linear cellular neural network
cells 906–9, 917
pin counts 1008
pipelining 86, 88–9
PLL see phase-locked loops
pMOS see p-metal-oxide-semiconductors
poles
active filters 316–18
frequency compensation 258–81
placement 265–7
quality factor 325–11, 341–2
splitting 175, 270–5, 277
polysilicon-over-diffusion structures 462–3
polysilicon-over-polysilicon (double-poly) structures 462
port-to-port isolation 799
positive feedback 169–70, 417–21, 426–8
positive power supply rejection ratio (PSRR) 472
post-amplifiers 709–114
power
amplifiers 842–80
consumption
mixers 805–9
optimization 626–7
phase frequency detectors 841–2
photoreceivers 711–12, 713
switched-capacitors 499
switched-currents 499
wireless circuits/systems 665–92
wireless receivers 668–70
dissipation
CMOS VLSI circuits 84–5
design criteria 79–80
frequency-dynamic range-power 303–8
mixers 682–5, 799–800, 805
modulation 667
on-chip inductors 689–1
wireless receivers 668–92
estimators 614–27
matching 769–70
modeling 613–28
supply
mixers 799–800, 805
rejection 153–5
voltage 103
power added efficiency (PAD) 857–8
power efficiency (PE) 852–3, 857–8, 861–2
power spectral density (PSD) 398–9
power-frequency-normalized (PFN) 544–5
power-frequency-tuning-normalized (PFTN) 544–5
pre-amplified regenerative feedback comparators 421–2
primary physical units 14
processing speeds 887–93, 916
production strategies 7–74
deliverables 57–8
production strategies contd.
 design criteria 80–1
 objectives 56–7
 optimization 22–55
 parametric sensitivity 11–13, 16–22
 re-utilising cell designs 62–3
 robustness 22–55
 time management 58–61
 programming 117–18, 120–8
 propagation 893–7
 propagation delays 827–9
 proportional to absolute temperature (PTAT) 38, 51–5
PSF see power spectral density
PTAT see proportional to absolute temperature
pulse amplitude modulation (PAM) 728, 729
pyramidal cellular neural network cells 904–6, 917

quadrature amplitude modulation (QAM) 728–30
quadrature coupling 780–3
quality factor (Q-factor) 671–3, 853–62
quantization errors 632–3

Radio Frequency Choke (RFC) 842, 859–60
rail-to-rail floating-gates 130–2
random offset 429
range power 283–310
rationalized filter circuits 1023–4
RC see resistor-capacitor
re-utilising cell designs 62–3
real amplifier performances 218–22
received signal strength indication (RSSI) 25–7
reciprocity theory 209–10
reference voltages see band-gap references
regenerative binary memory 774–6, 778–80
regenerative feedback 169–70, 417–21, 426–8
relative robustness 888–90
relative sensitivity 316
relaxation oscillators 288–91, 772–84
reliability 81–2, 887–92
repeaters 101–2
repetitive formula evaluation 961–2
research projects 976
residual offset 436–7
resistances
 feedback circuits 198
 gain error 45–6
 integrated circuits 1002
 resistors 17–18, 631–2, 1016–17
 sheet 38, 997, 1014–15
 resistive broadbanding 229, 268–70, 277
 resistor-capacitor (RC) circuits 99–102, 328–32
 resolution 437–8
resolution-speed 423–9
resonant tunneling diodes (RTD) 914–17
resonators
 filters 286–8
 harmonic oscillator 762–72
 passive component quality 671–3
 phase noise 569–70
RF circuits 668–92
RF receivers 788–9
RFC see Radio Frequency Choke
right-half plane zero 274–5
ring oscillators 574–85
robustness
 cellular neural networks 887–93, 910–13, 917–18
 integrated LC VCO 536–7
 production strategies 22–55
RSSI see received signal strength indication
RTD see resonant tunneling diodes
Rx filters 738–40

SAB see single-amplifier biquads
safety margins 889
sample-and-hold amplifiers (SHA) 477–80
sample-and-hold circuits 301–2
sampled signal reconstruction 653–62
sampled-data filters 743–4
sampled-data signal processing 474–6
sampling frequencies 451–6
SAPEC symbolic analyzer 976–8
saturated transistor noise power 501, 504
saturation region 439
transconductors 346
SBG see simplification before generation
SC see switched-capacitors
scaled drawings 994–6
scaling
 CMOS VLSI circuits 85–6
 design criteria 80–1
 factors 143–6
 impedance 329–30, 336
 process criteria 103
 reference voltage 26–7
 switched-capacitors 445–51
 template robustness 890
SCAPP symbolic analyzer 977–8
SCFL see Source Coupled FET Logic
schematic integrated circuit layouts 994–8
Schottky barrier 1016–17
SCYMBAL symbolic analyzer 976–8
SDG see simplification during generation
second-order compensated band-gap references
 base-emitter voltages 144–6
design example 159–63
noise 152–3
simplified structures 156–7
second-order effect addition 277–8
second-order filters 327, 328–30, 332–5
Seevinck’s integrator 361–2
self-biased comparators 433–8
Semiconductor Industry Association (SIA) predictions 924–5
sensitivity
active filters 315–39
noise 337–9
photoreceivers 702–5, 707
production parameters 11–13, 16–22
sequence generators 649–50
series
compensation capacitor branch 480–2
connections 760–1
reactance 869
resonators 763–4, 767–8
shunt feedback 248–51
settling times 179–82, 495–9, 892–7
SHA see sample-and-hold amplifiers
shadowing 894
shaped sequence generators (SSG) 649–50
sheet resistances 38, 997, 1014–15
shift through twoports 750–1
shot noise see thermal...
shrinkage, gain-bandwidth 230–2
shunt
capacitance 844–5, 861–78
feedback 198–204, 244–55
inductors 233–4, 238–41
series feedback 248–51
shunt feedback 198–204
SI see switched-currents
SIA see Semiconductor Industry Association
sideband noise 552–6, 797–9
signal processing 211–12, 886–7
signal simulations 68
signal time-domain methods 68
Signal to Noise and Distortion Ratio (SNDR) 939–40
signal-to-noise ratio (SNR) 499–509, 640–4
silicon dioxide conductance 118
silicon gate MOS technology 461–3
silicon-on-insulator (SOI) processes 1024–8
simple relaxation oscillators 288–91
simplification before generation (SBG) 971
simplification during generation (SDG) 969–71
simulations
computer-aided design 2, 923–51, 953–79, 985–1031
delta-sigma modulators 929–45
integrated VCO 540–1
Matlab 938–45, 946, 949
Simulink 929–32, 937–40, 946–50
symbolic analysis 976–9
Simulink 929–32, 937–40, 946–50
single balanced mixers 800–2, 815–17
single-amplifier biquads (SAB) 320–4
single-bit delta-sigma modulation 657
single-pole low-pass filters 284–5
single-sideband (SSB) noise figures 797–9
single-stage amplifiers 466–7
single-stage feedback 243–8
single-step voltage comparators 409–13, 423–5, 433–5
size issues
components 91–8, 1015–16
data converters 599–603
transistors 91–8
slew 933–8
“SLOW” “Corner Models” 65–7
small-signal performance 68, 700–7, 710–11
SNDR see Signal to Noise and Distortion Ratio
SNR see signal-to-noise ratio
SOI see silicon-on-insulator
source
degeneration 809–11
followers 470–1
isolation 222–4
noise matching 757–9
Source Coupled FET Logic (SCFL) 685–6
source-drain currents 126–7
specific component matching rules 1016–17
specification choices 925–6
spectra, collector currents 387–9
spectral density 553–6, 814
speed
data converters 631–62
design criteria 79
dynamic range 631–62
photoreceivers 702–5
processing 887–93, 916
resolution 423–9
spiral inductors 690–2
spread, components 315–39
SSB see single-sideband
SSF see Sub-Sampling Factor
SSG see shaped sequence generators
SSPICE symbolic analyzer 966, 976–8
standard cellular neural network cells 883, 884–902, 917
processing speeds 887–93
propagation 893–7
robustness 887–93
settling times 892–7
Index

standard VLSI processes 466–76
static
data converters 600–3
dynamic circuit criteria 90–1
resolution 409
stationary noise approximation 570–2
stored charges 481–2
strategies in production design 7–74
strong channel inversion 438
structural criteria 86–9
structure, photoreceivers 698–9
Sub-Sampling Factor (SSF) 455–6
subsampling 455–6
substrates 582–3, 1006–10, 1024–8
superintegrated integrated circuit layouts 1029–31
supply noise 582–3
supply voltage
 circuits 64
 frequency–dynamic range–power 302–3
 mixers 805–9
 reduction 448–51
 swatch arrays 595–6, 605
 sweeping 64
 switch mixers 681–2
 switch noise 502, 504–5, 815–17
 switch-mode power amplifiers 848–52
switched circuits
 capacitors 443–57, 461–88, 491–514
 CMOS comparators 407–39
 currents 491–514
 digital VLSI technology 461–88
 op-amps 451
switched MOSFET degeneration 811–12
switched sampled capacitors (kT/C) noise 928, 930–1, 946–7, 949
switched-capacitors (SC)
 biquads 954, 955–6
 charge-domain processing 474–6
 circuits 443–56
 clock frequency 494–9
 composite capacitor branches 477–84
 delta–sigma modulators 927–9, 932–8
 digital subscriber lines 743
 digital VLSI technology 461–88
 figure–of–merit 493, 509–14
 frequency 454–6, 469–72
 high–frequency circuits 451–6
 integrators 932–8
 operational amplifiers 466–74
 sampling 451–6
 scaled CMOS technology 445–51
 settling 495–9
 signal–to–noise ratio 499–509
supply voltage reduction 448–51
switched-currents 491–514
switched-currents (SI)
 clock frequency 494–9
 digital subscriber lines 743
 figure–of–merit 493, 509–14
 oscillators 679–81
 power consumption 679–81
 signal–to–noise ratio 499–509
 switched–capacitors 491–514
switching energy 702–4, 706–7, 708
switching systems 596–7
syllabic companding 303–6
symbolic analysis
 applications 958–65
 capabilities 965–76
 circuit behaviour 958–60
 computational efficiency 968–9
 definition 953–6
 distortion 974–6
 fault diagnosis 962–3
 hierarchical decomposition 971–4
 integrated circuits 953–79
 limitations 965–76
 methodology 956–8
 pole–zero 974
 research projects 976
 simplification techniques 969–71
 simulator comparisons 976–9
symbolic approximation 966–8
Symmetric Operational Transconductance
 Amplifier Comparator (SOTAC) 409
SYNAP symbolic analyzer 966, 976–8
synthesis, log–domain filters 360–74
system partitioning 723–40
system poles 258–81
tail noise 581
tank parameters 521–2
tank voltage amplitudes 565–70
TAP see Tolerant to Absolute Parameters
tapering 95–8, 329–30, 336
tapping, harmonic oscillators 767–70
technology robustness choices 27–32
technology scaling 80–1, 85–6, 445–51
telescopic amplifiers 466–7
Tellegen, B. D. H. 208–11
temperature
 base–emitter voltages 139–46
 circuit robustness 64
 dependent resistors 147–8
 design issues 38, 51–5
 independent voltages 141–2
templates 888–92, 898–901
testability, design criteria 81
thermal noise
delta–sigma modulators 930–1
frequency–dynamic range–power 300–1
mixers 814–15
photoreceivers 708–9
thermal resistance 1026–9
Thévenin
impedance 196–8
resistances 198
source voltages 191
thin oxides 116
third-order intercept point 796–7, 809–12
third-order lowpass filters 334–7
three-stage amplifiers 632, 959–60
threshold tuning 123–4
threshold voltages 103
time
constant matching 30–1
management 58–61
phase frequency detectors 830, 837–8
variant phase noise model 557–65
varying noise sources 563–5
timing jitter 552–3, 556–7
TL see translinear loops
tolerance
components 315–39
noise 82–3
Tolerant to Absolute Parameters (TAP) 20–1, 1012–13
top-down verification 597–9
topology
cellular neural networks 884–5
circuits 961
ring oscillators 584–5
robustness 27–32
transceivers
amplifiers 843–80
CMOS mixers 787–817
digital subscriber lines 723–45
dynamic–logic phase–frequency detectors 821–42
front-end design 723–45
low noise design 747–84
mixers 787–817
noise 747–84
phase–frequency detectors 821–42
photoreceivers 697–719
power amplifiers 843–80
power-conscious design 665–92
transconductance
amplifiers 210, 221–2
Gm–C filters 344–7, 744
modeling 624–5
single-stage feedback 243–4
transconductors 350–1, 814–15
voltage–to–current conversion 293–4
transfer functions
feedback circuits 173–6, 183–9
log-domain filters 374–9
loop filters 634
sensitivity 316, 319
transfer sensitivity 317–18
transforms, noise analysis tool 749–51
transience 341–2, 437–8, 934–5
transimpedance
amplifiers 278–81
feedback circuits 201–4
photoreceivers 698–701, 707
single-stage feedback 244–5
transistors
bias point 704
cross-section 1026
floating-gates 126–7
log-domain filters 369
mismatches 714–18
power amplifiers 842–3
production issues 8–9
sizing 91–8
translinear loops (TL) 369–73
transmission zeros 380–3
transresistance amplifiers 210, 213–18, 221–2
tri-state phase frequency detectors 825–7
triode (ohmic) regions 345, 439
tunability
filters 342–4, 351–3
power consumption 670–3
tunneling 117–19, 124–8
twin-T networks 330–1
two stack source coupled mixers 806–7
two-stage amplifiers 468–9, 967–8, 975–6
two-stage shunt series feedback 248–51
twoport shift 750–1
Tx filters 738–40
ultra-violet
UV conductance 118, 122–4, 130–3
UVMOS inverters 130–3
uncoupled cellular neural network 893
uncoupled horizontal line detections 891–2, 893
undamping circuits 762–72
units, primary physical 14
unity–gain buffers 329–30
universal cellular neural network cells 883, 902–18
UV see ultra-violet
V-shift see voltage source shift
variable auxiliary capacitors 874–5
variable gain amplifiers 686–9
variables, feedback circuits 192–3, 195–204
VCCS see Voltage-Controlled Current Source
VCO see voltage-controlled oscillators
VCVS see Voltage-Controlled Voltage Source
verification, symbolic analysis 964–5
versatility, cellular neural networks 911–13, 916, 917–18
very large scale integration (VLSI)
 analogue 887–8
 design methodologies 86
 digital 461–88
 see also Complementary Metal-Oxide Semiconductors...
voltage
 amplifiers
 frequency-dynamic range-power 297–9
 gain-bandwidth 210–13, 216–18, 221–2
 photoreceivers 709–12
 robustness 28–32
 series shunt feedback 248–51
 comparators 408–22, 423–5, 433–5
 current conversion 292–5
 followers 213–24
 nulled feedback parameters 188–9
 op-amps 210–13, 216–18, 221–2
 references see band-gap references
 swing 525
 tank amplitudes 568
 voltage source shift (V-shift) 749
 Voltage-Controlled Current Source (VCCS) 210, 221–2
 voltage-controlled oscillators (VCO) 517–46, 821
 Voltage-Controlled Voltage Source (VCVS) 210–13, 216–18, 221–2

 wafer fabrication 1024–8
 waveforms 384–9, 859–60
 white noise 814
 wideband amplifiers 246–7
 wireless
 circuits/systems 665–92
 communications 665–6
 receivers 668–92
 wires 38, 996–1006

 zero frequency loop gain 178
 zero-bias capacitance 861–78
 zeros see pole-zeros