Appendix A
Algebraic Graph Theory

The necessary results from algebraic graph theory (Merris 1994; Chung 1997) are introduced in this section to address the decentralized formation keeping and cooperative attitude synchronization problems. A directed communication topology can be described by directed graph. A directed graph G_n consists of a finite set of vertices, denoted V, and a set of arcs $A \subseteq V^2$, where $a = (\bar{a}, \bar{b}) \in A$ and $\bar{a}, \bar{b} \in V$. The arc (\bar{a}, \bar{b}) denotes that vertex \bar{b} can obtain the information of vertex \bar{a}. In decentralized control problem for satellite formation, the arc $a; b$ denotes that satellite β can measure relative state of satellite α with respect to satellite β. In attitude synchronization application, the arc (\bar{a}, \bar{b}) denotes that satellite \bar{b} can obtain attitude information of satellite \bar{a}. It is assumed that the graph has no self-loops, meaning that $(\bar{a}, \bar{b}) \in A$ implies $\bar{a} \neq \bar{b}$. If every possible arc exists, the graph is said to be complete.

A path on G_n of length N from \bar{x}_1 to \bar{x}_{N+1} is an ordered set of distinct vertices $\{\bar{x}_1, \ldots, \bar{x}_{N+1}\}$ such that $(\bar{x}_{i-1}, \bar{x}_i) \in A$ for all $i \in [2, \ldots, N+1]$. A graph in which a path exists from any vertex to any other vertex is said to be strongly connected. A spanning tree in G_n is a graph in which exists a vertex \bar{a} such that there is a directed path from vertex α to every other vertex in G_n.

The adjacency matrix of G_n denoted A is a square matrix of size n with entries

$$
\begin{align*}
 a_{i,j} &= 0 & \text{if } (\bar{z}_j, \bar{z}_i) \in A \\
 a_{i,j} &= 0 & \text{otherwise}
\end{align*}
$$

where the non-negative $a_{i,j}$ is subsequently chosen to be the control weight parameter between the ith and jth satellite. For decentralized formation keeping, $w_{i,j} a_{i,j}$ can be used to balance fuel consumption among satellites. Note that $a_{i,i} = 0$ from (A.1).

The in-degree matrix of G_n is the diagonal matrix D with diagonal entries

$$
d_{i,i} = \sum_{j=1, j\neq i}^{n} a_{i,j}, \ i = 1, \ldots, n
$$
Following Merris (1994), the Laplacian \(L \in \mathbb{R}^{n \times n} \) of the graph \(G_n \) is defined as follows:

\[
L = D - A
\]

(A.3)

Note that a graph with the property that for any \((\vec{a}, \vec{b}) \in A \), the arc \((\vec{b}, \vec{a}) \in A \) as well is said to be undirected. In the satellite formation application, this corresponds to having bidirectional relative measurement or communication. It is valid to assume \(a_{i,j} = a_{j,i} \) in the case of the undirected communication-sensing topology. Under this assumption, the Laplacian \(L \) is a symmetrical matrix, which simplifies the stability analysis of cooperative control system. However, in the case of directed communication-sensing topology, \(L \) is generally not symmetric because \(a_{i,j} = a_{j,i} \) does not hold.

The following results are used in Chaps. 6 and 7 to derive stability proof for the proposed controllers design.

Proposition A.1 (Merris 1994) Zero is an eigenvalue of \(L \). The associated eigenvector is all the ones vector \(1^T \).

Proposition A.2 (Merris 1994) For a digraph with \(N \) vertices, all the eigenvalues of \(L \) have nonnegative real part less than or equal to \(2(N - 1) \) (use Gershgorin’s theorem). Moreover, except for the eigenvalue zero, the real part of all other eigenvalues is positive.

Proposition A.3 (Merris 1994) If \(G_n \) is undirected, then all the eigenvalues of \(L \) are real. Moreover, the least nonzero eigenvalue \(\lambda_2 \) of \(L \) grows monotonically with the number of arcs. More precisely, adding edges never decreases \(\lambda_2 \).

Proposition A.4 (Ren et al. 2005) If and only if \(G_n \) has a spanning tree, zero is an eigenvalue of algebraic multiplicity one for the Laplacian \(L \). The associated eigenvector is all the ones vector \(1^T_n \). The associated left eigenvector is \([v_1, v_2, \ldots, v_n] \), where \(\sum_{i=1}^{n} v_i = 1 \), and \(v_i \geq 0, i = 1, 2, \ldots, n \).
Appendix B
Optimal Guaranteed Cost Control

This section introduces a control method called the optimal guaranteed cost control, which is applied to a linear norm-bound uncertain system; details are given in Li (1985).

Consider a class of linear uncertain systems described by the following state-space equation:

\[
\dot{x}(\theta) = (\bar{A} + \Delta \bar{A})x(\theta) + (\bar{B} + \Delta \bar{B})\bar{u}(\theta), \quad \bar{x}(0) = \bar{x}_0
\]

(A.4)

where \(\theta\) is the free variable, \(\dot{x}(\theta)\) is the derivative of the state variable \(\bar{x}\) with respect to \(\theta\), \(\bar{A}\) and \(\bar{B}\) are known constant real matrices of appropriate dimensions, \(\Delta \bar{A}\), and \(\Delta \bar{B}\) are matrix-valued functions representing time-varying parameter uncertainties in the system model. The parameter uncertainties considered here are assumed to be norm-bounded and of the form:

\[
[\Delta \bar{A} \quad \Delta \bar{B}] = D F(\theta) [E_1 \quad E_2]
\]

(A.5)

where \(D, E_1\) and \(E_2\) are known constant real matrices of appropriate dimensions, which represent the structure of uncertainties. Suppose the uncertain matrix \(F(\theta)\) is of the following block diagonal form:

\[
F(\theta) = \text{diag}\{F_1(\theta), F_2(\theta), \ldots, F_l(\theta)\}
\]

(A.6)

where \(F_k(\theta) \in R^{j_k \times j_k}\) and satisfies

\[
F_k^T(\theta)F_k(\theta) \leq I_{j_k \times j_k}, \quad k = 1, 2, \ldots, l.
\]

(A.7)

where \(I_{j_k \times j_k}\) denotes the identity matrix of dimension \(j_k\). For

\[
\varepsilon = [\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_l], \quad \varepsilon_k > 0, \quad k = 1, 2, \ldots, l
\]

(A.8)
Define

\[\tilde{M} = \text{diag}\{ \varepsilon_1 I_{i_1 \times i_1}, \varepsilon_2 I_{i_2 \times i_2}, \ldots, \varepsilon_l I_{i_l \times i_l} \} \]
(A.9)

\[\tilde{N} = \text{diag}\{ \varepsilon_1^{-1} I_{j_1 \times j_1}, \varepsilon_2^{-1} I_{j_2 \times j_2}, \ldots, \varepsilon_l^{-1} I_{j_l \times j_l} \} \]
(A.10)

Then

\[\text{DF}(\theta)[E_1 \ E_2] = D\tilde{M}F(\theta) [\tilde{N}E_1 \ \tilde{N}E_2] \]
(A.11)

Associated with the system in (A.4) is the following cost function, where \(\bar{Q} \) and \(\bar{R} \) are given positive definite symmetric matrices.

\[J = \int_0^\infty \left[\bar{x}^T(\theta)\bar{Q}\bar{x}(\theta) + \bar{u}^T(\theta)\bar{R}\bar{u}(\theta) \right] d\theta \]
(A.12)

Definition A.1 Consider the uncertain system in (A.4), if there exists a control law \(\bar{u}^*(\theta) \) and a positive scalar \(J^* \) such that for all admissible uncertainties, the closed-loop system is stable and the closed-loop value of the cost function in (A.12) satisfies \(J \leq J^* \), then \(J^* \) is said to be a guaranteed cost and \(\bar{u}^*(\theta) \) is said to be a guaranteed cost control law for the uncertain system in (A.4).

The objective of this section is to design a state-feedback guaranteed cost control law \(\bar{u}(\theta) = K\bar{x}(\theta) \) for the uncertain system in (A.4).

Theorem A.1 (Li 1985) Given the system described (A.4) and the associated cost function in (A.12), if the following optimization problem

\[\min_{\varepsilon, \ W, \ X, \ M} \text{Trace}(M) \]
(A.13)

subject to

\[\begin{bmatrix} \bar{A}X + \bar{B}W + (\bar{A}X + \bar{B}W)^T & (E_1 X + E_1 W)^T & X & W^T & D\tilde{M}^- \ \\ E_1 X + E_1 W & -\bar{N}^{-1} & 0 & 0 & 0 \\ X & 0 & -\bar{Q}^{-1} & 0 & 0 \\ W & 0 & 0 & -\bar{R}^{-1} & 0 \\ MD^T & 0 & 0 & 0 & -\bar{M} \end{bmatrix} < 0 \]
(A.14)

\[\begin{bmatrix} M & \ I \\ \ I & \ X \end{bmatrix} > 0 \]
(A.15)
has a solution $\varepsilon^*, W^*, X^* > 0$, $M^* > 0$, then the state-feedback control law is the optimal guaranteed cost controller as follows:

$$
\bar{u}(\theta) = W^*(X^*)^{-1}\bar{x}(\theta)
$$

(A.16)

and the associated guaranteed cost is as follows:

$$
\bar{J} \leq \text{trace}(X^{-1}) = \bar{J}^*
$$

(A.17)

where W is matrix variable, and X, M are positive definite matrix variables.

The above problem is a convex optimization problem subject to linear matrix inequalities constraints and can be solved by using LMI toolbox in MATLAB.
Appendix C
Nomenclature

Subscripts and superscript

\(j \) The \(j \)th deputy satellite
\(f \) Final value
\(\tilde{r} \) Scaled variable
\(\ddot{r} \) Secular part of orbit element variables
\(\dot{r} \) Time-varying variables
\(\dot{r} \) First derivative
\(\ddot{r} \) Second derivative
\(v \) The \(v \)th phase in the trajectory
\(0 \) Initial value
\(0 \) Reference or chief satellite

The following list of symbols is alphabetical—lowercase and then upper case; Arabic; and then Greek letters.

\(a \) Semimajor axis
\(\mathbf{a} \) Control acceleration vector
\(a_x \) Control acceleration in \(x \) direction in LVLH frame
\(a_y \) Control acceleration in \(y \) direction in LVLH frame
\(a_z \) Control acceleration in \(z \) direction in LVLH frame
\(c_o \) \(\cos(o) \)
\(\dot{d} \) Disturbance torque
\(d \) Distance between satellites
\(\dot{d}_{\text{max}} \) Possible maximum relative distance during the maneuver
\(\dot{d}_{\text{safe}} \) Assumed safe distance between satellites
\(e \) Eccentricity
\(\mathbf{e} \) Euler axis
\(f \) True anomaly
\(g_0 \) Sea-level acceleration due to gravity
\(h \) Angular momentum vector
\(\vec{h} \) Magnitude of angular momentum vector
\(i \) Inclination
\(i \) Index (general)
\(j \) Index (general)
\(m \) Satellite mass
\(q \) Relative position vector in LVLH frame
\(\vec{q} \) Error quaternion
\(q \) Vector part of error quaternion
\(q_0 \) Scalar part of error quaternion
\(r \) Position vector of reference or chief satellite
\(r \) Geocentric distance of reference or chief satellite
\(s_o \) \(\sin(o) \)
\(s_j \) The \(j \)th component of multi-satellite sliding vector
\(t \) General time
\(u \) Thrust direction
\(u \) Control torque
\(v_{jx} \) Component of velocity vector of the \(j \)th member satellite in ECI frame
\(v_{jy} \) Component of velocity vector of the \(j \)th member satellite in ECI frame
\(v_{jz} \) Component of velocity vector of the \(j \)th member satellite in ECI frame
\(x \) Radial difference between two objects in LVLH frame
\(\dot{x} \) Unit vector along radial direction in LVLH frame
\(y \) Along-track difference between two objects in LVLH frame
\(\dot{y} \) Unit vector along along-track direction in LVLH frame
\(z \) Cross-track difference between two objects in LVLH frame
\(\dot{z} \) Unit vector along cross-track direction in LVLH frame
\(D \) Reference frame for satellite reference attitude
\(E \) Orbital energy
\(F_j \) Magnitude of constant thrust of the \(j \)th member satellite
\(H \) Polar component of the orbital angular momentum
\(I_{sp} \) The specific impulse of the engine
\(J \) Inertia matrix of satellite
\(J_2 \) Geopotential coefficient representing Earth’s oblateness
\(K_j \) Kinetic energy of the \(j \)th member satellite
\(R \) Rotation Matrix
\(r_c \) Radius of circular formation
\(R_e \) Earth equatorial radius
\(S \) Multi-satellite sliding vector
\(S_0 \) Reference satellite or chief satellite
\(S_j \) The \(j \)th member satellite
\(L_j \) Lagrangian of the \(j \)th member satellite
\(L \) Laplacian matrix in algebraic graph theory
\(M \) Satellite mean anomaly
\(N \) Number of LGL points
\(N_s \) Number of deputy satellites

204 Appendix C: Nomenclature
Appendix C: Nomenclature

T Nodal orbital period
T Magnitude of constant thrust
T_c Period of chief satellite
U Gravitational potential
\hat{X} Unit vector in Earth-centered inertial (ECI) frame
\hat{Y} Unit vector in ECI frame
\hat{Z} Unit vector in ECI frame
α_x Satellite steering acceleration
α_z Satellite orbital acceleration
ρ Position vector in LVLH frame
ρ Magnitude of position vector in LVLH frame
θ True latitude
ϕ Geocentric latitude of satellite
φ Euler angle
η Quaternion
η Vector part of quaternion
η_0 Scalar part of quaternion
ϕ Geocentric latitude of satellite
Ω Right ascension of ascending node
ω Vector of orbital angular velocity
ω Argument of perigee
ω Angular velocity
ω_d Desired angular velocity
$\dot{\omega}$ Angular velocity error
ω_x Component of orbital angular velocity
ω_y Component of orbital angular velocity
ω_z Component of orbital angular velocity
μ Earth gravitational constant
λ Eigenvalue

References

Li Y (1985) Robust control: an LMI approach. Tsinghua University, Beijing, China