7. W. Maly, Y.-W. Lin, M. Marek-Sadowska, OPC-Free and Minimally Irregular IC Design Style, in Proc. 44th ACM/IEEE Design Automation Conference DAC ’07, 4–8 June 2007, pp. 954–957


41. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)


52. C. Schluender, W. Heirigs, W. Gustin, H. Reisinger, On the impact of the NB1i recovery phenomenon on lifetime prediction of modern p-MOSFETs, in *IEEE International Integrated Reliability Workshop (Final Report)*, 2006, pp. 1–4


60. R. Chau, S. Datta, A. Majumdar, Opportunities and challenges of III–V nanoelectronics for future high-speed, low-power logic applications, in IEEE Compound Semiconductor Integrated Circuit Symposium, 2005
89. M. Yamaguchi, S. Bae, K.H. Kim, K. Tan, T. Kusumi, K. Yamakawa, Ferromagnetic RF integrated inductor with closed magnetic circuit structure, in International Microwave Symposium Digest, 2005
104. R. Zimmermann, Binary adder architectures for cell-based VLSI and their synthesis, PhD thesis, ETH Zurich, 1997
113. B. Heyne, C.-C. Sun, J. Goetze, S.-J. Ruan, A computationally efficient high-quality CORDIC based Loefller DCT, in European Signal Processing Conference, 2006
116. C.-C. Sun, B. Heyne, S.-J. Ruan, J. Goetze, A low-power and high-quality cordic based Loeffler DCT, in International Symposium on VLSI Design, Automation and Test, 2006, pp. 1–4
Symbols
2's complement, 17, 114
3-to-2 compressor, 137
4-to-2 compressor, 146

A
Activity factor, 8
Adiabatic losses, 7, 69
Adiabatic signal test, 149
Adiabatic system, 8
Area consumption, 16
Asynchronous oscillator, 67, 73

B
Ballistic transport, 36
Bias temperature instability, 23
Bitplane structure, 146
Brent-Kung PPA, 121
BTI, 23

C
Carbon nanotubes, 23, 30, 36
Carrier mobility, 12
Carry-lookahead adder, 99
Carry-propagate adder, 140
Carry-save adder, 113, 137, 146
Carry-select adder, 113, 116
Cascode voltage switch logic, 9
Charging path resistance, 12
Chirality, 23, 37, 40
CLA, 99
CNT, 23, 30, 36
CNT-based field effect transistor, 23
CNTFET, 23, 36, 38
Complex gates, 128
Conditional-sum adder, 113
Conversion efficiency, 68
Coordinate rotation digital computer, 137, 138
CORDIC, 137, 138, 142
CPA, 140
Crosstalk, 18
CSA, 113, 137, 140
CSEA, 116, 123
CVSL, 9, 15

D
DCT, 71, 137, 139, 142
Degradation, 23
Discrete cosine transformation, 71, 137, 139
Drain-induced barrier lowering, 30
Dual-rail encoding, 15, 145, 146

E
ECRL, 6, 9
Efficiency, oscillator, 78
Efficiency, system, 78
Efficient charge recovery logic, 6, 9, 65
Electromigration, 20
Energy dissipation, 5, 7
Energy losses, 77
Energy reduction factor, 88
Energy saving factor, 8
Equivalent circuit, 7, 86
ERF, 88
ESF, 8, 33, 153
Evaluate interval, 9, 150

F
Fan-out, 48
Finite impulse response filter, 145
FIR, 145
Four-phase power-clock, 65, 67
Fully-depleted SOI, 30
Index

H
Han-Carlson PPA, 122, 126, 152
HCI, 23, 51
Hold interval, 9, 150
Horner scheme, 146
Hot carrier injection, 23, 51

I
Inherent pipelining, 17, 114, 128
IR-drop, 19

J
JFET, 43
Junction FET, 43

K
Kogge-Stone PPA, 121

L
Ldi/dt-drop, 20
Latency, 128, 130, 134
Leakage currents, 10
 Leakage losses, 11, 83

M
Minimum power-down time, 85
Minimum transition time, 7
Multi-gate FET, 30
Multiplier, 113

N
NBTI, 51, 52, 58
Negative bias temperature instability, 51
Nested RCA, 136
Noise margin, 15
Non-adiabatic losses, 11
Novel devices, 23

O
OESF, 45
On-resistance, 31, 32, 84, 130
Optimum frequency, 33, 34
Overall energy saving factor, 45

P
Parallel-prefix adder, 113, 119, 123
PBTI, 51, 52, 61
PFAL, 8
Positive bias temperature instability, 51, 61
Positive feedback adiabatic logic, 8, 65
Power-clock, 9, 17, 65, 83

Power-down mode, 107
PPA, 113, 119, 120, 123
Predictive technology model, 24
Prefix problem, 119
PTM, 24

R
RCA, 113, 116, 123, 132, 136, 137, 140, 145
Recover interval, 9, 150
Resonance frequency, 68, 69, 102
Resonant loading, 66
Ripple-carry adder, 113, 115, 123

S
Scaling, 83
SCE, 30
Short channel effects, 30, 36
Single walled carbon nanotubes, 23, 36
Sklansky PPA, 120, 146
Stepwise charging, 65
Supply voltage, functional limit, 14
SWCNT, 36
Switching overhead, 84
Switching probability, 5
SWNT, 23
Synchronization frequency, 68, 69, 107
Synchronization losses, 72
Synchronization signals, 68
Synchronization signals, generation, 72
Synchronous oscillator, 67, 73, 107

T
Tank capacitor, 66
Technology energy saving factor, 45
TESF, 45
Transition time, 7

V
Vector merging adder, 140, 146
Vertical slit field effect transistor, 23, 30, 43
VESFET, 23, 30, 43
VMA, 140
Voltage scaling, 13, 126, 145, 152
Vth roll-off, 30

W
Wait interval, 9

X
XOR, 16, 128