References

References

Davidzon, A. (n.d.). Attempts atoliths refitting in layers V-5 and V-6, GBY.

References

Mienis, H. K., & Ashkenazi, S. (2011). Lentic Basommatophora molluscs and hygrophilous land snails as indicators of habitat and climate in the Early-Middle Pleistocene (0.78 Ma) at the site of Gesher Benot Ya’aqov (GBY), Israel. Journal of Human Evolution, 60, 328–340.

Rabinovich, R., Yom-Tov, Y., Ashkenazi, S., Mienis, H., Zohari, I., & Biton, R. (2008b). Sub-program No. 2 – Zoology. Habitat and zoological biodiversity reconstruction of a 0.78 Ma old site along its 100 kyr sequence, in view of climate change. First scientific progress interim report for the Israel Science Foundation, Center of Excellence Program, pp. 30–63.

Speith, J. D. (2004). Hunting pressure, subsistence intensification, and demographic change in the levantine late Middle Paleolithic. In N. Goren-Inbar & J. D. Speith (Eds.), *Human paleoecology in the Levantine Corridor* (pp. 149–166). Oxford: Oxbow Press.

Site Index

A
Ain Mallaha, see Eynan
Akhalkalaki, 24, 31
Atapuerca, 23–24, 34, 36, 226, 230
 Gran Dolina, 230

B
Boxgrove, 1, 23, 230

D
Dmanisi, 24, 31

E
Evron, Evron Quarry, 27, 30–31, 226
Eynan, 27, 229

G
Gesher Benot Ya‘aqov (GBY), see Subject Index

H
Hayonim Cave, 84–87, 230
 Dama butchering, 84, 230
Holon, 23, 26–28, 30–31, 33–34, 36, 226, 228, 230

I
Isernia, 23, 36, 230

K
Kebara Cave, 230
Koobi Fora, 1
 FxJj 50, 1
Ksar Akil, 23, 47

L
Latamne, 27, 29–31, 224

M
Misliya Cave, 230

O
Olduvai Gorge, 1
 FLK Zinanthropus, 1
Oumm Zinat, 27, 29–30

P
Petralona, 224

Q
Qesem Cave, 230
Quneitra, 228

R
Revdadim Quarry, 26–28, 30

S
Schöningen, 1
Selvella, 24, 34
Sima del Elephante, 230
Swanscombe, 23, 34

T
Tabun, 23, 27, 31, 34

U
‘Ubeidiya
 cut marks, 2
 taphonomic analysis, 2
‘Ubeidiya Formation, 2
Untermassfeld, 36, 225

V
Vallonnet, 24, 34, 36

W
West Runton, 24, 34, 36

Y
Yarimburgaz, 224
Subject Index

A

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acheulo-Yabrudian</td>
<td>230</td>
</tr>
<tr>
<td>Africa</td>
<td>1–3, 10, 18, 93, 223–225</td>
</tr>
<tr>
<td>African Rift System</td>
<td>3, 223, 225</td>
</tr>
<tr>
<td>Age</td>
<td>47–50, 60, 229</td>
</tr>
<tr>
<td>Ageing</td>
<td>16</td>
</tr>
<tr>
<td>Determination</td>
<td>31</td>
</tr>
<tr>
<td>Estimation</td>
<td>15</td>
</tr>
<tr>
<td>See also Teeth, eruption profiles</td>
<td>88–89</td>
</tr>
<tr>
<td>Amphibians</td>
<td>21, 223–224, 226–227, 229, 246</td>
</tr>
<tr>
<td>Anaerobic environment</td>
<td>41</td>
</tr>
<tr>
<td>Anatidae</td>
<td>229</td>
</tr>
<tr>
<td>Animal</td>
<td></td>
</tr>
<tr>
<td>Animal-induced damage, see Modifications</td>
<td></td>
</tr>
<tr>
<td>Exploitation</td>
<td>84, 230, 245</td>
</tr>
<tr>
<td>Modifications, see Modifications</td>
<td></td>
</tr>
<tr>
<td>Antler</td>
<td>32–34, 37, 47, 49–50, 52, 54, 56, 66, 88, 227, 229, 246</td>
</tr>
<tr>
<td>Anvil</td>
<td>75, 97</td>
</tr>
<tr>
<td>Artifacts, lithic artifacts, flint artifacts</td>
<td></td>
</tr>
<tr>
<td>Breakage</td>
<td>233</td>
</tr>
<tr>
<td>“Life history”</td>
<td>229, 232–233</td>
</tr>
<tr>
<td>Patination</td>
<td>233</td>
</tr>
<tr>
<td>See also Patina</td>
<td></td>
</tr>
<tr>
<td>Preservation</td>
<td>233–234</td>
</tr>
<tr>
<td>Size</td>
<td>233, 240</td>
</tr>
<tr>
<td>Weathering</td>
<td>227</td>
</tr>
<tr>
<td>Artiodactyl</td>
<td>16, 88, 226</td>
</tr>
<tr>
<td>See also by species</td>
<td></td>
</tr>
<tr>
<td>Aurignacian</td>
<td>84–85</td>
</tr>
<tr>
<td>Avifauna</td>
<td>225–226, 229</td>
</tr>
<tr>
<td>See also by species</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basalt</td>
<td>240, 247</td>
</tr>
<tr>
<td>Cleavers</td>
<td>240, 247</td>
</tr>
<tr>
<td>Microartifacts</td>
<td>240, 247</td>
</tr>
<tr>
<td>Slabs</td>
<td>5</td>
</tr>
<tr>
<td>Base camps</td>
<td>231</td>
</tr>
<tr>
<td>See also Campsite</td>
<td></td>
</tr>
<tr>
<td>Bear</td>
<td></td>
</tr>
<tr>
<td>Bear, see Ursus</td>
<td></td>
</tr>
<tr>
<td>Behavior</td>
<td></td>
</tr>
<tr>
<td>Behavioral modernity</td>
<td>248</td>
</tr>
<tr>
<td>Behavioral modes</td>
<td>5, 230</td>
</tr>
<tr>
<td>See also Hominin</td>
<td></td>
</tr>
<tr>
<td>Benot Ya’akov Formation</td>
<td>3–6, 10</td>
</tr>
<tr>
<td>Biogeographical origin</td>
<td>223–225</td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td></td>
</tr>
<tr>
<td>Biostratigraphic landmarks</td>
<td>59</td>
</tr>
<tr>
<td>Biotic exchange</td>
<td>3</td>
</tr>
<tr>
<td>Biotic modifications, see Modifications</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td>Anhinga rufa</td>
<td>226, 229</td>
</tr>
<tr>
<td>Aquatic</td>
<td>226</td>
</tr>
<tr>
<td>Biogeographical origin</td>
<td>223–225</td>
</tr>
<tr>
<td>Grassland</td>
<td>246</td>
</tr>
<tr>
<td>Migratory</td>
<td>225</td>
</tr>
<tr>
<td>Paleoenecology</td>
<td>229</td>
</tr>
<tr>
<td>Bison</td>
<td>21–22, 29–30, 65, 224</td>
</tr>
<tr>
<td>Boar, see Sus</td>
<td></td>
</tr>
<tr>
<td>Body-size groups</td>
<td></td>
</tr>
<tr>
<td>Body-size group A (BSGA)</td>
<td>16, 38, 42, 45–46, 50, 57–58, 63–64, 68, 70, 74, 89–90, 239, 246</td>
</tr>
<tr>
<td>Body-size group B (BSGB)</td>
<td>16, 38, 42–43, 45–46, 50, 58, 61, 63–64, 70, 75, 90, 229</td>
</tr>
<tr>
<td>Body-size group C (BSGC)</td>
<td>16, 38–39, 42, 44–45, 53, 59, 61, 63–64, 70, 72–76, 89–90, 227</td>
</tr>
</tbody>
</table>
Body-size groups (cont.)
 Body-size group F (BSGF), 16, 38–39, 42, 45–46, 77, 90

Bone
 abrasion, see Bone preservation
 analyses, see Bone analyses
 breakage, see Bone breakage
 color, 41, 238
 damage, 17–19, 41, 75, 140, 176, 228
 density, 16, 61, 248
 deposition, 91, 230
 formation processes of, 230
 fragmentation, 15–16, 50, 61, 77, 227
 long bones, see Long bone
 marrow extraction, see Marrow
 modification, see Modifications
 percussion, 97
 preservation, see Bone preservation
 sorting, 16
 See also Fluvial, transport
 splinters, 21, 38, 95
 striation, see Striations
 surface, see Bone surface
 taphonomy, see Taphonomy
 transport, 2, 16, 229
 See also Fluvial, transport

Bone analyses
 age analysis, see Age
 measurements, 50
 sex analysis, sex determination, see Sex profiles
 surface modification, 18–20, 43, 90, 94–95, 125,
 144–146, 155, 157, 164, 169, 199, 201–203,
 205–212, 215, 217, 219, 221–222, 231
 taphonomic, 231
 See also Taphonomy

Bone breakage
 for marrow, 75, 238
 long bone breakage, see Long bones

Bone preservation
 abrasion, 41, 203, 205, 231, 246
 burning, 18
 color, see Bone color
 corrosion, 43
 discoloration, 17
 erosion, 17
 exfoliation, exfoliated surfaces, 205
 pitting, 17
 rolling, 43
 root marks, 17
 shininess, 17
 smoothness, 17
 surface, 41, 94, 176, 183, 187, 222, 231
 See also Bone-surface preservation
 weathering, 41

See also Weathering

Bone surface
 experiments, see Experiments
 modifications, 19–20, 43, 90, 94–95, 125, 144–146, 155,
 157, 164, 199, 201–203, 205–213, 215, 217, 219,
 221–222, 231
 See also Modifications
 morphology, 184
 polishing, 231
 preservation, 16, 18, 22, 41–43, 94, 203, 227, 231

Bone survivorship, 47
 See also Dama

Bos
 B. oldowayensis, 30
 B. primigenius, 30, 224
 Bos sp., 21–22, 29–30, 42, 45–46, 55, 58, 61, 63, 65,
 75–76, 89, 224, 226
 cut marks, 75
 disarticulation of carcasses, 76
 fluvial transport, 16, 63–65
 See also Fluvial, transport
 MNI, 58
 NISP to MNI ratio, 49, 58, 61
 nutritional values, 65
 See also Nutritional values

Bovidae (bovid, bovids), 21–22, 29–30, 38, 224
Bovine, Bovinae, 16, 38, 59, 76, 89
Bovini, Bovini indet., 55, 61, 65
Burial
 experiment, 98–101, 125, 199, 230
 post-, 17, 91, 230
 pre-, 17, 91
 processes, 91, 230, 232, 246
Burned flint, 5, 83, 240, 242–243
Butchering
 butchery marks, 85, 230
 butchery patterns, 75, 85
 filleting, 77, 83
 sequence, 75, 88, 215, 229, 247
 skinning, 229
 strategies, 223
 traces, 215, 232

C
Campsite, 228
 See also Base camps
Canid, 21–22
Caprinae
 Capra, 31
 Caprini, 21–22, 29, 31, 45–46, 59
 Caprini indet., 21–22, 31, 45–46, 56
Carcass processing, 83, 216, 228
 See also Butchering
Subject Index

Carcass transportation patterns, 231
Carnivore(s)
 - damage signs, 17, 67, 70, 84, 87
 - gnawing, see Gnawing, gnaw marks
 - modifications, 18, 67, 228
Cervidae (Cervids)
 - Cervidae gen. et sp. indet., 31
 - Cervidae sp., 21–22, 37, 88, 226
 - Cervus elaphus, Red Deer, 31, 224, 226
 - C. cf. elaphus, 21–22, 31–32, 55, 61, 65, 75–76
Chaîne opératoire, 4–5
Chelonians, 223
 See also Turtle
 See also Basalt, cleavers
Climate
 - climatic changes, 225
 - palaeoclimate reconstruction, 225
Conjoining bone fragments, conjoins, 238–240
Coquina, 4, 6–7, 11, 19–20, 98–99, 229, 232, 237, 244–246
Core tools, 233, 235
Crustaceans, crabs, 21, 223
Cut marks
 - of Body-size group C, 38, 75–76
 - of Body-size group D, 39, 75, 77, 227
 - of Body-size group E, 39, 75–76
 - of Body-size group F, 39, 75, 77
 - of Bos sp., 75
 - of Cervus cf. elaphus, 75
 - of Dama, 75
 - of Equids, 75
 - of Megaloceros sp., 75
 - on long bones, 75–76

D
Dama
 - age composition of, 88
 - ageing, 47
 - antler, 33, 246
 - See also Antler
 - body-part distribution, 45
 - bone density, 61
 - bone flakes, 77
 - bone preservation, 227
 - bone survivorship, 47
 - butchery, 75, 228
 - carcass processing conical fractures cut marks, 75
 - D. cf. mesopotamica, 22
 - D. dama cf. mesopotamica, 31, 33
 - D. dama mesopotamica, D. mesopotamica, 19, 23–24, 33–34, 47, 84
 - Dama-size group, 89, 238
 - See also Body-size groups, Body-size group D (BSGD)
 - defleshing, 19
 - disarticulation, 78–79
 - exploitation, 83, 94
 - filleting, 76–77
 - fluvial transport, 63
 - hominin-induced damage marks, 83, 228
 - long bone fragmentation, 77
 - longitudinally split phalanges, 246
 - marrow extraction, 77
 - MAU, 54–56
 - MNE, 52–57
 - MNI, 49–50
 - Modifications, see Modifications
 - NISP, 45, 63, 70
 - nutritional values, 65
 - See also Nutritional values; MGU; Percussion mark
 - seasonality, 88
 - sexing, 47
 - shed and unshed antlers, 49, 229
 - skinning, 85, 228–229
 - striations, 17
 - susceptibility to fluvial transport, 16, 63
 - See also Deer, fallow deer
 - Dead Sea Rift, 3, 21, 223, 225
 - Deer
 - Antler, 50, 227
 - See also Antler
 - bone-density values of, 61
 - Fallow deer, 16, 19, 31, 39, 47, 51, 88, 228
 - See also Dama
 - Giant deer, 16, 38–39, 55, 59, 76, 89
 - large deer, 31, 224
 - Megaloceros sp, see Megaloceros, Megalocerine
 - Mesopotamian Fallow deer, 31
 - nutritional values, 16, 65–67, 77, 228
 - See also Nutritional values
 - Red deer, 16, 31, 38, 55, 59, 76, 89
 - Diet, dietary value, 5, 65, 225–226, 229–230, 246, 248
 - Duration of occupation, 232

E
 - éclats de taille de bifaces, 233
 - Economic utility, 16
 - See also Utility indices, Nutritional values
 - Elephant
 - Elephas, 22, 26–27
 - enamel, 25, 29–30, 38, 50
 - E. trogontherii, 25–26
 - fluvial transport, 16, 63
 - hyoid, 26, 239
Elephant (*cont.*)

- lamellar frequency, 25
- MAU, 50
- MNE, 50
- MNI, 50
- NISP, 50
- nutritional values, 65
 - See also Nutritional values

Palaeoloxodon antiquus, 22, 25–27

Proboscideans, 26–27

Stegodon, 22, 26–27

S. cf. trigonocephalus, 27

P. antiquus, 22, 25–27

P. wildei, 26

M. aurop走到, 50

M. non, 50

NISP, 50

NISP, 50

Nutritional values, 65

See also Nutritional values

P. antiquus, 22, 25–27

Proboscideans, 26–27

Splinters, 38

Stegodon, 22, 26–27

S. cf. trigonocephalus, 27

Tusk, 25–26, 38, 50, 63, 244

Environment

- environmental agents, 63
- environmental changes, 227
- environmental conditions, 2, 20, 91, 94, 222, 225–226
- paleoenvironmental setting, 226, 245

Epipaleolithic, 21, 30, 47, 230

Equus, horse

- ageing, 28
- ass, 28–29, 66, 226
- equids, 28, 61–62, 67
- equid bone density, 61
- equid cut marks, 87
- *E. africanus*, 28
- *E. africanus*, 28, 45–46, 60–61, 66, 75, 226
- *E. cf. altidens*, 29
- *E. cf. caballus*, 22, 29
- *E. cf. tabeti*, 29
- *E. hydruntinus*, 28–29

- Fluvial transport, 16
- See also Fluvial, transport
- hemionine (*E. hydruntinus*), 28
- marrow, 66
- MNI, 60–61
- modifications, see Modifications
- NISP, 60–61
- nutritional values, 66–67
 - See also Nutritional values
- seasonal age and sex fluctuation, 88
- skeletal-element representation, 61–62

Ethnoarchaeology, Ethnographic data, 1, 231

Europe, 1–3, 6, 21, 23, 25–26, 31, 223–225, 228–229, 246

Experimental archaeology, experimental studies, 1

Experiments

- burial, see Burial, experiment

butchery, 17–18

- long-term burial under random conditions, 20, 94
- scratching, 97
- sediment movement, 19
- shoreline conditions, 94
- taphonomic, experimental taphonomy, 19
- tumbling, 20, 99–141, 143–149, 199–203, 205, 231

F

- Fire, 5, 75, 216, 225, 240
- Fish, 5–6, 21, 223, 226, 230, 243, 245
- Flat splinters, 38–39, 50–51, 55, 65
- Flight distance, 223
- Flora, Mediterranean, 246

Floral components

- exploitation of, 230
- fruit, 230
- nuts, see Nuts (cracking)
- plant resources, 230
- vegetal elements, 246

Fluvial

- regime, 63
- settings, 232
- susceptibility to fluvial transport, 63
- transport, 16, 63–65
 - See also Bone, sorting; Bone, transport
- Voorhies groups, 63–65

Foraging

- models, 230–231
- opportunities, 230

G

- Galerian fauna, 223
- Game availability, 91, 94

Gazella

- ageing, 30
- Gazelle, 30
- MNI, 60
- striations, 89
- Gender, 5, 223, 248

Geoarchaeology, 1

- Gesher Benot Ya'aqov (GBY)
 - archaeobotanical remains, 4
 - bark, 4, 9–10, 12
 - cyclostratigraphic record, 9
 - environmental setting, 230
 - excavations methodology, 10–12
 - fossil fauna, 6
 - fruits, 4, 9
geological structure, 10
geology, 3, 15, 23
hominin skeletal remains, 4
sediment composition, 3–7, 9–10, 12–14
sediment sorting, 12–14
seeds, 4, 9
stratigraphy, stratigraphic sequence, 6, 10
wood, 4–5, 9–10, 12
Giant cores, 5
Gnawing, gnaw marks
carnivore, 18
carnivore teeth marks, 18
rodent, 227–228
See also Modifications
Grease, 16, 19, 65–66, 77, 82, 228
See also Nutritional values

H
Habitat
forest, 226
grassland, 226, 246
marshland, 226
microhabitat, 226
open parkland, 226
parkland, 226
reconstruction, 223, 246
river valleys, 226
riverine, 226
swamps, 6, 226
tree savanna, 246
 trophic habits, 226
woodland, 226, 246
Hack marks, 83–84, 246
Hammer, soft hammers, 227
Handaxes, 4–5, 233, 247
Hare, 16, 39, 77
Hearth, 5, 240, 247
Hippopotamus/Hippopotamus
ageing, 229
flat splinters, 38
fluvial transport, 63–64
See also Fluvial, transport
gestation, period of, 87–88
H. amphibius, 27
H. behemoth, 22, 27
H. gorgops, 27
long bone, 38, 50, 76
mating, 88
mineral density values (i.e., bone density), 61–62
MNI, 50
nutritional values, 65, 229
See also Nutritional values
skeletal-element representation, 50
Holocene, 25
Hominin
activities, 1–2, 20, 75, 216, 238, 247–248
behavioral abilities, 1
brain expansion, 2
decision making, 231
diet, 65, 229–230, 246
diffusion/migration, 2–3
evolution, 1
exploitation, 94, 227
faunal subsistence, 88
hominin-induced butchering traces, see Modifications
hominin-induced modification, see Modifications
Levantine hominins, 2
mobility, 5, 247
Plio-Pleistocene hominins, 1–2
Subsistence, 2, 215, 229, 247
Homo sapiens, 84
Horse, see Equus, horse
Hula Lake/(paleo-)Lake Hula, 5, 9, 19, 229, 232, 246–247
Hula Valley
hydrological conditions, 3
sedimentological conditions, 99, 199
Human, see Hominin
Hunter-gatherers
living, 231
paleo-hunter-gatherers, 230
recent, 228
Hunting
Middle Pleistocene, 1, 229
by Neanderthals, 2
specialized hunting, 1
Hystrix, H. cf. indica, 225

I
Impact fractures, 97, 230
Invertebrates, 21, 223
See also Crustaceans, crabs; Mollusks

J
Jordan River, 3–4, 6–10, 12, 233
Jordan Valley, 1–2, 27, 231

K
Kill site, 228
Knapping, 4–5, 234
L
Lake
Lake Hula, see Hula Lake/(paleo-)Lake Hula
Margin, 5, 63, 216, 230–232, 247–248
paleo-, 5, 9, 19, 226, 229, 246–247
Lepus, L. capensis, 225
Levant
biogeographical signal of, 223
Levant Corridor, 3, 223–225
Levantine fauna, 223
Lithic
assemblages, 2, 5–6, 12, 223, 232–237, 244–246
taphonomic history, 232–237
techno-typological characteristics, 233
Long bone
abrasion of, 99
breakage, 76–77, 238
cut marks, 75
flake scars, 76
fragments, 19, 38, 49–51, 77, 98, 143, 151, 199, 203, 215, 238
percussion marks, 75–77, 81, 97, 238
striations, 44, 94, 99
See also Striations
Lower Paleolithic, 22, 30–31, 230
Levantine, 22, 31
M
Malacological assemblage, 9, 19
See also Mollusks
Mammalian taxa, 245
African, 6, 21
Eurasian, 6, 21
Marrow
extraction, 1, 44, 75–77, 83, 85, 97, 143, 227–228, 230, 246–247
extraction diagnostic traces, 75
extraction undiagnostic traces, 75
indices, 82
processing, 2, 76
splitting/split, 216
Matuyama-Brunhes Boundary, 5–6, 226
MAU, see Skeletal-element representation
Mauremys caspica, 226, 229
See also Turtle, Chelonians
Meat
drying—biltong, 232
stripped meat, 232
utility indices, 16
Mediterranean
flora, 246
species, 224, 226
Mega fauna, 75–76, 229
Megaloceros
Megalocerine, 31, 224
Megalocerini sp., 21
Megaloceros sp., 21–22, 31–32, 76, 226
MGUI, 16, 65–66, 228
See also Nutritional value
Microartifacts
and fire, 240
basalt, 240, 247
burned flint microartifacts, 83, 240, 242–243
spatial organization, spatial distribution, 240
Micromammalian/Micromammals
Mimomys cf. ostromensis, 225
M. savini-M. ostromensis, 225
Microtus guentheri, 225
Mus macedonicus, 225
Spalax ehrenbergi, 225
Middle Paleolithic, 21
MNE, see Skeletal-element representation
MNI, 15, 45, 47–50, 58, 60–61
ageing, see Age, ageing
sexing, 47
Mobility, 5, 216, 232, 247
Modern humans, 228
Modifications
animal, 18, 70, 87, 227
animal and hominin, 87–88
anthropogenic bone damage, 75
biotic, 67, 227
bone flakes, 75–76
carnivore damage, 19
conical fractures, conical impact fracture, conical impact marks, 190
cut marks, see Cut marks
digested bones, digestion, 68
gnawing, gnaw marks, gnawing marks, 17–18, 101, 226–227
See also Gnawing, gnaw marks
hack marks, 83–84, 246
hominin, 89
hominin-induced, 75, 88
impact marks, 18, 97, 190
jagged edges, 18
microstriations, 18
See also Striations
percussion marks, 18, 75–77, 228, 246
pitting, 17, 68, 157
puncture marks, 18, 192, 208
retouches, 18
scratches, 17
tooth marks, tooth pits, 17
Mollusks
fragmentation, 18, 41, 140, 150, 227
See also Experiments, trampling
Melanopsis, 9, 97–98, 143, 232
scratches, 97
See also Experiments, scratching
Theodoxus, 9, 232
V. apamaea galileea and Bellamya sp., 7, 232
Viviparus, 4, 7, 10, 97–98, 143, 229, 232
Mortality profiles
natural death sites, 2
natural mortality, 2
Mousterian, 21, 230

N
Neanderthals, 2, 228, 230
hunting by, see Hunting
Niche
reconstruction, 225
requirements, 225
NISP, see Skeletal-element representation
Nutritional values
Binford's normed utility indices, 65
Bos sp., 65
correlation with %percussion marks, 66
Dama, 65
See also Dama
deer, 66
elephant, 65
See also Elephant
equids, 66
See also Equus, horse, Equids
GUI (General Utility Index), 66
See also Utility indices
hippopotamus, 65
See also Hippopotamus/Hippopotamus
MGUI (Modified General Utility Index), 65–66
See also Utility indices
of marrow and grease, 65
See also Utility indices
Nuts (cracking), 75

O
Organic remains, 3, 243
Out of Africa, 2–3, 225

P
Pachyderm, 75, 138
See also Elephant, Hippopotamus/Hippopotamus
Paleoclimate reconstruction, 225–227
Paleoecology, 225
See also Climate
paleo-Lake Hula, see Hula Lake/(paleo-)Lake Hula
Palaeoloxodon antiquus, see Elephant
Patina, 236
Pelorovis, 30, 55, 224
P. turkanensis, 30
Percussion mark, 18, 75–77, 81–83, 85, 89, 93, 97, 215, 222, 228, 230, 233, 238, 246
Periosteum
preservation, 110, 199, 205, 209, 231
removal, 97, 100, 113, 115, 117, 125, 138, 143, 182, 190, 192, 199–203, 205–208, 211, 215, 231
Phalanges, 27, 34, 47, 53, 63, 77, 80, 83, 246
splitting, 216, 228
Phantom hearths, 5, 240, 247
See also hearth
Pitted stones, 5, 75
Pollen, 246
Porcupine, 17–18
See also Hystrix, H. cf. indica
post-depositional processes, 16, 232, 236–237, 240, 242, 244, 247
Preservation, see Bone preservation
Prey
Availability, 223
choice strategies, 223
density, 229
exploitation, 223, 231
-predator relationships, 229
Proboscidean, see Elephant
Procavia syriaca, 225
Protein, 2
See also Nutritional values

R
Raw material, 1, 5, 50, 87, 93, 233–236, 240, 242, 247
basalt, see Basalt
flint, see Flint
limestone, see Limestone
of butchering tools, 87
Refitting, 238–240
of bones, 238
See also Conjoining bone fragments
of stone artifacts, 240
Retouch, 18, 237
Return rate, 223
gnawing, see Gnawing, gnaw marks
tooth pits, 87
See also Micromammal/Micromammals
Subject Index

S
Scavenging, 2, 216, 247
 opportunistic scavengers, 1
Scratching, 20, 94
 Experiment, 97–98, 199
Seasonality, 47, 88, 229–230
 season of occupation, 88–89, 245
 seasonal differences, 88
Sedimentology, 1
 sediment composition, 151, 227, 230
 sediment movement, 19–20, 138
 sedimentological setting, 245
Sex profiles, 88–89
Sexual dimorphism, 25
Shell, 5, 19, 94, 99, 143, 150, 199, 203, 240
 preservation, 143
 See also Mollusks
Site formation processes, 1, 2, 63, 93–222, 231–232, 245
Size sorting, 233
Skeletal elements, calculation of
 MAU, calculation, 16
 MNE, calculation, 15, 50
 MNI, calculation, 15, 47, 58, 60
 NISP values, calculation, 15
Social
 behavioral patterns, 232
 interaction, 223
 organization, 1
Spatial distribution, Spatial arrangement, Spatial
 organization
 of burned flint, 242
 of crab remains, 242
 of different raw materials, 242
 of mammal bones, 242
 of microartifacts, see Microartifacts
Spearman’s rho correlations, 66
Specialized hunting, see Hunting
Stone artifacts, see Artifacts, lithic artifacts, flint artifacts
Striations
 agents responsible for, 213
 clusters of, 213
 criteria for differentiating, 70
 experimental studies, 222
 flat-based, 43–44, 95
 formation, 20, 94, 151, 201, 203, 211, 213, 222–223, 227, 231, 247
 See also Experiments, tumbling; Experiments, trampling
 frequency, 44–45, 89, 227, 247
 on buried bones, 231
 “micro-striations”, 43–44
 overlapping, 192, 213
 “peeling striations”, 157
 striated bones, 17, 44–46, 89, 91
 tapering striation, 192
 u-shaped, 44–45, 125, 132
 v-shaped, 157, 165, 171, 203
Subsistence strategies, 1–2, 215, 227–232, 247
 hunting, see Hunting
 marrow-processing, see Marrow
 scavenging, see Scavenging
Sus
 age determination, 53, 89
 period of death, 89
 skeletal elements, 27
T
Taphonomy
 biotic agents, 41
 bone damage, 41, 75
 See also Modifications
 non-biotic agents, 41
 taphonomic agents, 227, 229, 232, 234, 242, 246
 taphonomic biases, 16
 taphonomic experiments, see Experiments
 taphonomic reconstruction, 55
Tectonic activity, 3, 10
Teeth
 age analysis, age determination, 47
 eruption, 15–16, 37, 47, 60
 measurements, 27, 31, 33
 sex analysis, sex determination, 16
 wear, 47, 55
Thanatocoenosis, 41, 70
Transport, 2, 5, 16, 63–64, 215, 228–229, 231, 242, 247
 bone transport, see Bone, transport
 Tumbling experiment, 20, 99–149, 199–203, 205, 230–231
Turtle, 6, 21, 223, 226, 229, 245
 freshwater (Mauremys caspica), 226, 229
 See also Chelonia
U
UNM, 21–22, 41–42, 45–46, 70–71, 73, 75, 90
Upper Paleolithic, 84, 230
Ursus, bear, 21–22, 25, 61, 223, 226
 Ursus sp., 21–22, 25, 226
Utility indices
 Grease utility index, 16
Subject Index

Marrow utility index, 16, 66, 228
Marrow utility index, 16
Modified general utility index (MGUI), 16, 65–66, 228

See also Nutritional values

V
Vertebrates, 21, 223
Viviparus, see Mollusks
Vulpes, 223
Vulpes sp., 21–22, 25

W
Waterlogged deposits, 41
nature, 5, 18, 227
Weathering
around the edges of the bones, 43
climatically induced, 157, 165, 176, 203, 205, 222, 231
post-depositional, 238, 240
See also Bone, preservation; Experiments, trampling
Winnowing, 63, 67, 227, 233, 246
See also Fluvial, transport
Wood, 4–5, 9–10, 12, 237, 243, 246
See also Gesher Benot Ya’aqov (GBY)

Z
Zebra, 28, 66–67, 88
Equus burchelli antiquarum, 29
marrow, 67