References

18. www.esterel-tecnologies.com
21. www.mathworks.com
38. H. Oh, N. Dutt, S. Ha, Memory optimal single appearance schedule with dynamic loop count for synchronous dataflow graphs, in Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC’06), Yokohama City, Jan 2006
40. S. Stuijk, M. Geilen, T. Basten, Minimising buffer requirements of synchronous dataflow graphs with model checking, in Proceedings of Design Automation Conference (DAC’05), New York, June 2005
56. R. Budde, G.M. Pinna, A. Poigne, Coordination of synchronous programs, in *Proceedings of International Conference on Coordination Languages and Models*, LNCS 1594, Apr 1999
69. F. Maraninchi, Operational and compositional semantics of synchronous automaton compositions, in *Proceedings of International Conference on Concurrency Theory (CONCUR’92)*, LNCS 630, Aug 1992
References

101. W. Hwu, Many-core computing: can compilers and tools do the heavy lifting?, in 9th International Forum on Embedded MPSoC and Multicore, MPSoC’09, 2009

102. Tensilica Xtensa processor, www.tensilica.com

104. M. Schoeberl, Schedule memory access, not threads, in 10th International Forum on Embedded MPSoC and Multicore, MPSoC’10, 2010

106. L. Bauer et al., KAHRISMA: a multi-grained reconfigurable multicomputer architecture, in 10th International Forum on Embedded MPSoC and Multicore, MPSoC’10, 2010

108. Z. Salcic, D. Hui, P. Roop, M. Biglari-Abhari, REMIC – design of a reactive embedded microprocessor core, in Asia-South Pacific Design Automation Conference, Shanghai, Jan 2005

Index

A
AND states, 25–27, 31, 107, 127
Argos, 4, 5, 13, 14, 28–29, 43, 45, 62, 71, 78, 169, 170, 172

B
Balance equations, 12

C
Calculus of communicating systems (CCS), 2, 20, 68, 75
Communicating sequential processes (CSP), 2, 16–20, 45, 75, 103
Control-dominated systems, 3, 14

D
Data-dominated systems, 3, 14, 103, 126
DFCharts
 asymmetric asynchronous parallel operator, 57
 distributed systems, 4, 6, 55, 56
DFCharts
 data transfer between FSM and SDFG, 112–113
 finite state machine with datapath (FSMD), 47
 local variable, 47, 107
 operators, 43–46, 56, 57, 62, 65, 71, 75, 78, 156, 169, 171
 rendezvous state, 45, 47, 57, 65, 172
 shared variable, 47, 49, 107, 110–112, 117–118, 154
 transition priorities, 46–47, 154
DFCharts implementation
design flow, 4, 6, 92, 126, 143, 161, 171
frequency relay implementation results, 162–167
FSM scheduler, 157–159
FSM thread (FT), 147, 152–155
global tick, 146–150, 152, 155, 159, 161, 165
local tick, 146, 150, 152, 154, 155, 159
master processor, 138, 139, 147–149, 151, 159, 163–165
master tick handler, 159–162
processor tick, 146, 157, 159
SDF scheduler, 147
SDF thread (ST), 147, 161
slave processor, 147, 148, 151, 159, 163, 164
slave tick handler, 162, 163
DFCharts in systemC and esterel
buffers and firing rules for dataflow, 95–96
concurrent processes, 93, 94, 100
data transformations, 98–99
HCFSM with synchronous reactive communication, 96–98
multiple processes inside a state, 99–100
numerical results, 100–102
rendezvous communication, 94–95, 100
Discrete event model, 14–16, 96

E
Embedded computing system, 1
Esterel, 3–6, 13, 14, 28–33, 65, 68, 92–103, 105, 123, 135, 145, 161, 170, 172
F
Firing rule in synchronous dataflow graph, 12–13, 95, 103

Formal definitions
asynchronous parallel operator, 57, 73–77
deterministic FSM, 46, 68–69
finite state machine with variables, 66–70
FSM transitions, 67–68
hiding function, 70
hiding operator, 77–78
reactive FSM, 73, 77, 81
refinement operator, 78–82
rendezvous mapping function, 67
synchronous parallel operator, 70–73
syntax to semantics mapping, 82–84

Frequency relay
frequency and rate of change calculations, 52–53
peak detection, 51–52, 95, 101
switch control, 53–54, 99, 101
threshold modification, 54–55
top level, 51, 57, 99–101, 116–119

G
Global clock, 15, 62, 94
Globally asynchronous locally synchronous system (GALS), 4, 127, 129

H
Heterochronous dataflow (HDF), 41
Heterogeneous reactive architecture (HETRA), 6, 125–141, 170, 171
Heterogeneous system on chip (HSoC), 130, 135, 137, 138
Hybrid reactive architecture (HiDRA)
application to architecture mapping, 139
functional unit, 138, 139, 144, 145
master processor, 138, 139
slave processor, 148, 159

J
Java DFCharts classes
FSM classes, 105–113
library classes, 199–122
SDFG classes, 113–116
top level classes, 116–118

K
Kahn process networks (KPN), 5, 9–15, 34, 39, 84, 86, 92, 95, 172

L
Lustre, 3, 4, 13, 14, 33–34, 161

M
Marking in Petri nets, 21, 22
Mealy machine, 9
Monotonicity, 11
Moore machine, 9
Moore’s law, 2, 125
Multiclock Esterel, 65, 92, 96
Multiclock FSM, 6, 61, 63–65, 67, 75, 170
Multiple clocked recurrent systems (MCRSs), 14
Multiprocessor systems on chip (MPSoC), 125, 127, 135

N
Network on chip (NoC), 127, 128

O
OR states, 25–27, 73, 76, 110

P
Petri nets, 2, 20–24
Power aware ReMIC
block diagram, 136
power control instruction set, 137
Productivity gap, 2
Ptolemy, 4, 6, 16, 37–41, 103, 115, 116, 120

R
ReMIC
block diagram, 134, 136
reactive functional unit (RFU), 133, 146
reactive instruction set, 133
Rendezvous communication, 56, 94–95, 100
Index

S
Star charts, 38
State based formalisms (SBF), 14
Statecharts, 4, 9, 24–28, 98
State transition diagram, 7, 8
Synchronous/reactive model, 3, 13–14, 19, 29, 97, 103, 129, 132
Synchrony hypothesis, 13, 29, 96, 103
SystemC, 4, 6, 34–37, 93–103, 123, 145, 170
SystemJ, 172, 173

T
Tagged signal model semantics of DFCharts, 61, 170
Transaction level modelling (TLM), 37