References

[40] Leonhard W (2001) Control of electrical drives, 3rd edn. Springer

[61] Speed Laboratory (2010). http://www.speedlab.co.uk/software.html

[64] Taylor WH (1839) Obtaining motive power, 8255

Abbreviations

ASM induction machine
CFO calculation of field orientation
DC direct current
DCM DC machine
DFO direct field orientation
DITC direct instantaneous torque control
DSP digital signal processors
FOC field oriented control
IFO indirect field orientation
IRTF ideal rotating transformer
ITF ideal transformer
MA maximum ampere
MF maximum flux
MMF magneto-motive forces
MTPA maximum torque per ampere
MTPF maximum torque per flux
PM permanent magnet
PMSM permanent magnet synchronous machine
PWM pulse width modulation
SM synchronous machine
SR switched reluctance
SRAF SR axial flux
SRM switched reluctance machine
UFO universal field-oriented
List of symbols

\(a\)
acceleration

\(\Theta\)
angle in mechanical degrees

\(\theta\)
angle in electrical degrees

\(C\)
capacitance

\(I\)
current

\(i\)
current

\(D\)
diode

\(e\)
back e.m.f.

\(E\)
energy

\(W\)
energy

\(F\)
force

\(\psi\)
flux linkage

\(f\)
frequency

\(Z\)
impedance

\(l\)
incremental inductance

\(L\)
inductance

\(J\)
inertia

\(K\)
parameter

\(k\)
factor (e.g. winding factor)

\(\kappa\)
current ratio (e.g. between short circuit current and maximum current in PM machines)

\(\chi\)
leakage factor

\(m\)
mass

\(\phi\)
magnetic flux

\(M\)
mass

\(N\)
number (e.g. Number of segments)

\(T\)
period

\(\text{pf}\)
power factor

\(P\)
power

\(p\)
power

\(p\)
pole pair number
List of symbols

- \(r \) distance
- \(R \) radius
- \(r \) radius
- \(X \) reactance
- \(R \) resistance
- \(T \) simulation time
- \(s \) slip
- \(\Omega \) angular speed in mechanical degrees
- \(\omega \) angular speed in electrical degrees
- \(n \) speed
- \(S \) switch
- \(t \) time
- \(T \) torque
- \(V \) volume
- \(v \) velocity
- \(U \) voltage
- \(u \) voltage
- \(n \) winding number
- \(x \) auxiliary variable
- \(z \) auxiliary variable
- \(s \) laplace operator
- \(c \) damping coefficient
- \(K_i \) integral gain (e.g. of current controller)
- \(K_p \) proportional gain (e.g. of current controller)
- \(m \) modulation ratio
- \(\nu \) voltage ratio
- \(s \) displacement vector
- \(\tau \) time constant
- \(\kappa \) torsion coefficient
- \(\zeta \) damping factor
- \(Sw \) switching signal
List of indices

\hat{X} amplitude
X^A point in control diagram
$X^{\alpha\beta}$ fix stator coordinates
X^{av} average
X^B point in control diagram
X^b base (e.g. base speed)
X^{bS} base with constant stator flux (e.g. base speed with constant stator flux)
X^C point in control diagram
X^{comp} comparator
X^c control (e.g. reference current for the current controller)
X^D point in control diagram
X^D dead time
X^{dq} field oriented coordinates
X^E point in control diagram
X^F point in control diagram
X^f falling edge
X^l limit (e.g. stator frequency limit)
X^{limit} limit
X^e linear
X^{max} maximum (e.g. maximum current)
X^{noload} no-load (e.g. no-load current)
X^{nom} nominal or rated (e.g. rated stator current)
X^n normalized (e.g. normalized stator current)
X^ω operating point of DC machine (indicates maximum flux-linkage for a given speed and voltage)
X^{pn} positive-negative (e.g. positive-negative sequence impedance matrix)
X^* reference (e.g. reference current)
X^{ripple} ripple
X^r rise edge
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^r</td>
<td>in rotor flux oriented coordinate system</td>
</tr>
<tr>
<td>X^{sc}</td>
<td>short circuit (e.g. short circuit current)</td>
</tr>
<tr>
<td>X^{sp}</td>
<td>speed, single-phase (e.g. single-phase machine impedance matrix)</td>
</tr>
<tr>
<td>X^s</td>
<td>in stator flux oriented coordinate system</td>
</tr>
<tr>
<td>X^v</td>
<td>operating point of DC machine (indicates the no-load speed)</td>
</tr>
<tr>
<td>X^{xy}</td>
<td>rotor-oriented coordinates</td>
</tr>
<tr>
<td>X^0</td>
<td>point in control diagram</td>
</tr>
<tr>
<td>X_a</td>
<td>armature quantity (e.g. armature current)</td>
</tr>
<tr>
<td>X_{a1}</td>
<td>indicates the on-time of the first space vector at SVM</td>
</tr>
<tr>
<td>X_{a2}</td>
<td>indicates the on-time of the second space vector at SVM</td>
</tr>
<tr>
<td>X_a^{α}</td>
<td>aligned rotor position</td>
</tr>
<tr>
<td>X_{α}</td>
<td>real component of quantity in stator coordinates</td>
</tr>
<tr>
<td>X_A</td>
<td>amplitude</td>
</tr>
<tr>
<td>X_{aux}</td>
<td>auxiliary (e.g. auxiliary winding of single-phase induction machine)</td>
</tr>
<tr>
<td>X_B</td>
<td>bandwidth</td>
</tr>
<tr>
<td>X_{β}</td>
<td>imaginary component of quantity in stator coordinates</td>
</tr>
<tr>
<td>X_b</td>
<td>bottom</td>
</tr>
<tr>
<td>X_C</td>
<td>capacity</td>
</tr>
<tr>
<td>X_c</td>
<td>center</td>
</tr>
<tr>
<td>X_c^{c}</td>
<td>centripetal</td>
</tr>
<tr>
<td>X_o</td>
<td>characteristic value</td>
</tr>
<tr>
<td>X_{conv}</td>
<td>converter</td>
</tr>
<tr>
<td>X_c^{i}</td>
<td>correction</td>
</tr>
<tr>
<td>X_f</td>
<td>counter</td>
</tr>
<tr>
<td>X_{cw}</td>
<td>compensation winding</td>
</tr>
<tr>
<td>X_d</td>
<td>real component of quantity in field oriented coordinates</td>
</tr>
<tr>
<td>X_{DC}</td>
<td>DC (e.g. DC link voltage)</td>
</tr>
<tr>
<td>X_δ</td>
<td>delta</td>
</tr>
<tr>
<td>X_e</td>
<td>indicates an inertia due to translational load</td>
</tr>
<tr>
<td>X_e^{e}</td>
<td>electric (e.g. electrical frequency)</td>
</tr>
<tr>
<td>X_{eq}</td>
<td>equal</td>
</tr>
<tr>
<td>X_f</td>
<td>excitation (e.g. excitation flux)</td>
</tr>
<tr>
<td>X_f^{f}</td>
<td>frequency</td>
</tr>
<tr>
<td>X_{hom}</td>
<td>homopolar (e.g. homopolar inductance)</td>
</tr>
<tr>
<td>X_{in}</td>
<td>input (e.g. input power)</td>
</tr>
<tr>
<td>X_l</td>
<td>inductive</td>
</tr>
<tr>
<td>X_{1i}</td>
<td>integral (e.g. integral component)</td>
</tr>
<tr>
<td>X_{101}</td>
<td>switching states for given voltage vector</td>
</tr>
<tr>
<td>X_k</td>
<td>integer variable used as counter (e.g. time step in discrete system)</td>
</tr>
<tr>
<td>X_l</td>
<td>line (e.g. line voltage)</td>
</tr>
<tr>
<td>X_{1L}</td>
<td>load (e.g. load torque)</td>
</tr>
<tr>
<td>X_M</td>
<td>transformed main quantity</td>
</tr>
<tr>
<td>X_m</td>
<td>main quantity (e.g. main inductance)</td>
</tr>
<tr>
<td>X_m^{m}</td>
<td>measured</td>
</tr>
<tr>
<td>Index</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>\mathbf{X}_m</td>
<td>mechanical (e.g. mechanical position)</td>
</tr>
<tr>
<td>\mathbf{X}_{min}</td>
<td>minimum</td>
</tr>
<tr>
<td>\mathbf{X}_-</td>
<td>negative sequence (indicates a negative rotational direction)</td>
</tr>
<tr>
<td>\mathbf{X}_M</td>
<td>model based quantity</td>
</tr>
<tr>
<td>\mathbf{X}_o</td>
<td>characteristic value (e.g. eigenfrequency)</td>
</tr>
<tr>
<td>\mathbf{X}_{off}</td>
<td>off</td>
</tr>
<tr>
<td>\mathbf{X}_{on}</td>
<td>on</td>
</tr>
<tr>
<td>\mathbf{X}_{out}</td>
<td>output (e.g. output power)</td>
</tr>
<tr>
<td>\mathbf{X}_{ph}</td>
<td>phase, e.g. number of phases</td>
</tr>
<tr>
<td>\mathbf{X}_D</td>
<td>phase (e.g. phase voltage)</td>
</tr>
<tr>
<td>\mathbf{X}_1</td>
<td>phase 1</td>
</tr>
<tr>
<td>\mathbf{X}_a</td>
<td>phase a</td>
</tr>
<tr>
<td>\mathbf{X}_2</td>
<td>phase 2</td>
</tr>
<tr>
<td>\mathbf{X}_b</td>
<td>phase b</td>
</tr>
<tr>
<td>\mathbf{X}_3</td>
<td>phase 3</td>
</tr>
<tr>
<td>\mathbf{X}_c</td>
<td>phase c</td>
</tr>
<tr>
<td>\mathbf{X}_4</td>
<td>phase 4</td>
</tr>
<tr>
<td>\mathbf{X}_d</td>
<td>phase d</td>
</tr>
<tr>
<td>\mathbf{X}_i</td>
<td>phase index</td>
</tr>
<tr>
<td>\mathbf{X}_a</td>
<td>motoring pinion</td>
</tr>
<tr>
<td>\mathbf{X}_r</td>
<td>generating pinion</td>
</tr>
<tr>
<td>\mathbf{X}_+</td>
<td>positive sequence (indicates a positive rotational direction)</td>
</tr>
<tr>
<td>\mathbf{X}_\pm</td>
<td>positive and negative sequence (indicates a positive and negative rotational direction)</td>
</tr>
<tr>
<td>\mathbf{X}_p</td>
<td>power (e.g. power circle)</td>
</tr>
<tr>
<td>\mathbf{X}_p</td>
<td>proportional (e.g. proportional component)</td>
</tr>
<tr>
<td>\mathbf{X}_{pu}</td>
<td>torque pulses e.g. number of torque pulses</td>
</tr>
<tr>
<td>\mathbf{X}_{PWM}</td>
<td>pulse-width modulation</td>
</tr>
<tr>
<td>\mathbf{X}_q</td>
<td>imaginary component of quantity in field oriented coordinates</td>
</tr>
<tr>
<td>\mathbf{X}_R</td>
<td>transformed rotor quantity</td>
</tr>
<tr>
<td>\mathbf{X}_r</td>
<td>rotor quantity (e.g. rotor resistance)</td>
</tr>
<tr>
<td>\mathbf{X}_{rp}</td>
<td>rotor pole</td>
</tr>
<tr>
<td>\mathbf{X}_{run}</td>
<td>run (e.g. run winding of single-phase induction machine)</td>
</tr>
<tr>
<td>\mathbf{X}_s</td>
<td>sampling (e.g. sampling time)</td>
</tr>
<tr>
<td>\mathbf{X}_{seg}</td>
<td>segments</td>
</tr>
<tr>
<td>$\mathbf{X}_{\text{sense}}$</td>
<td>controlled</td>
</tr>
<tr>
<td>\mathbf{X}_{sl}</td>
<td>slip (e.g. slip frequency)</td>
</tr>
<tr>
<td>\mathbf{X}_S</td>
<td>transformed stator quantity</td>
</tr>
<tr>
<td>\mathbf{X}_s</td>
<td>stator quantity (e.g. stator resistance)</td>
</tr>
<tr>
<td>\mathbf{X}_{step}</td>
<td>step</td>
</tr>
<tr>
<td>\mathbf{X}_σ</td>
<td>stray or leakage (e.g. stray or leakage flux)</td>
</tr>
<tr>
<td>$\mathbf{X}_{\text{supply}}$</td>
<td>supply e.g. supply current</td>
</tr>
<tr>
<td>\mathbf{X}_π</td>
<td>vector which contains the duty cycles/ switching signals of all phases</td>
</tr>
<tr>
<td>\mathbf{X}_t</td>
<td>tangential</td>
</tr>
</tbody>
</table>
X_i indicates a certain instant in time
X_t top
X_{total} total
X_u unaligned rotor position
X_w winding
X_x real component of quantity in rotor-oriented coordinates
X_y imaginary component of quantity in rotor-oriented coordinates
X_0 zero
$X_{\text{air-gap}}$ air-gap (e.g. air-gap power)
\vec{X} phasor
χ space vector
Index

A
amplitude modulation ratio 22
anti-windup 62
asymmetrical half-bridge converter 384
augmented model based control 63
auxiliary winding 273
average voltage 21

B
backward time discretization 63
Blondel diagram 174, 181

C
calculation of field orientation (CFO) 313
capacitor-run machines 273
co-energy 369
comparator 22
concentrated winding 363
constant power region 145
current control
augmented model based control 63
current control 55
DC machine 131
field oriented control 217, 311
hysteresis current control 55, 67
induction machine 303
model based current control 58, 73
non-salient synchronous machine 195
salient synchronous machine 213
separately excited DC machine 138
switched reluctance machine 396
synchronous machine 193
voltage-to-frequency (V/f) 303
current control 55
controller principles 193
controller
asymmetrical half-bridge 384
full-bridge converter 23
half-bridge converter 19
power converter 6
switched reluctance machine 394
three-phase converter 28
corner point 141, 326
current control 55
current-controlled synchronous machine 217
current-speed diagram 202

dc machine 131
dead time 38
direct field-oriented control (DFO) 313
direct instantaneous torque control 409
drive
design 11
dynamics 108
operational drive boundaries 323
technology trends 3
drive saturation point 141, 326

E
electrical machine 3
embedded control 8
encoderless control 313

F
field weakening mode 143
field winding 132

field-oriented control
 current-controlled synchronous machine 217
induction machine 311
synchronous machine 193
voltage-source connected synchronous machine 219
flux linkage 97
frequency modulation ratio 22
frequency spectrum 81
full-bridge converter 23

G

gear transmission 113

H

half-bridge converter 19
Heyland diagram 269
hysteresis current control 55, 67

I

ideal rotating transformer 99
idle mode 19
incoming phase interval (IPI) 412
indirect field-oriented control (IFO) 313
induction machine
 field-oriented control 311
induction machine drives
 voltage-to-frequency (V/f) 303
inertia 100
interior permanent magnet machine 175

K

Kloss formula 304

L

law of inertia 109
leakage inductances 247
linear motion 109
load 151

M

maximum output power point 174
maximum torque per ampere (MTPA) 199, 213, 327
maximum torque per flux linkage (MTPF) 199, 216, 326
model based current control 58, 73
motoring 174
multi-phase machine 392

N

Newton’s first law 109
Newton’s second law 109
Newton’s third law 112
non-salient synchronous machine 165
 generic model 167
 rotor-oriented model 169
 steady-state analysis 171
 symbolic model 166

O

operational drive boundaries 139, 323
outgoing phase interval (OPI) 412

P

PI controller 61
 anti-windup 62
power converter 6
 power factor 174
pull out (stall) torque 174
pull out torque 305
pulse width modulation 22

R

rack and pinion set of gears 111
rotational motion 110
rotor 97
 rotor angle 99
 rotor flux orientation
 synchronous machine 194
 rotor teeth 363
 rotor-oriented model
 non-salient synchronous machine 169
 salient synchronous machine 178
run winding 273

S

salient synchronous machine 175
 generic model 177
 rotor-oriented model 178
 steady-state analysis 180
sampling interval 19
sensorless control 313
short pitched winding 363
single-phase induction machine 273
slip 269
slip frequency 245, 305
space vector modulation 18, 33
split-coil machines 273
squirrel-cage rotor 239
stator 97
stator teeth 363
steady-state analysis
 non-salient synchronous machine 171
 salient synchronous machine 180
single-phase induction machine 277
step angle 392
switched reluctance drive 396
switched reluctance drives
torque 368, 372
synchronous machine 103, 193
 control 193
 field-oriented control 193
 interior permanent magnet machine 175
 non-salient 195
 rotor flux orientation 194
 salient 175

T
tree-phase converter 28
torque 99, 368, 372
triangular 22
turn-off angle 386
turn-on angle 386

U
universal field-oriented model 258
universal stationary frame oriented model 257

V
vector control module 241
vernier principle 366
voltage-source connected synchronous machine
 field-oriented control 219
voltage-to-frequency (V/f) control 303

W
windup 62

Z
zero leakage inductance model 241