AbdAlla S, Lother H, Abdel-Tawab AM et al (2001b) The angiotensin II AT2 receptor is an AT1 receptor antagonist. Biol Chem 276:39721-39726


Barber MN, Sampey DB, Widdop RE (1999) AT2 receptor stimulation enhances antihypertensive effect of AT1 receptor antagonist in hypertensive rats. Hypertension 34:1112-1116


Carey RM (2005b) Cardiovascular and renal regulation by the angiotensin type 2 receptor: The AT2 receptor comes of age. Hypertension 45:840-844
Chang RSL, Lotti VJ (1990) Two distinct angiotensin II receptor binding sites in adrenal revealed by new selective non peptide ligands. Mol Pharmacol 29:347-351
Collister JP, Soucheray SL, Osborn JW (2002) Chronic hypotensive effects of Losartan are not
Collister JP, Hendel MD (2003) Role of the subfornical organ in the chronic hypotensive re-
sponse to Losartan in normal rats. Hypertension 41:576-582
Conchon S, Monnot C, Teutsch B et al (1994) Internalization of the rat AT1A and AT1B re-
ceptors: Pharmacological and functional requirements. FEBS Lett 349:365-370
the rat AT1A angiotensin receptor plays a key role in G Protein coupling specificity and tran-
Conlin PR, Spence JD, Williams B et al (2000) Angiotensin antagonists for hypertension: are
there differences in efficacy? Am J Hypertens 13:418-426
Cook MD, Phillips MI, Cook VI et al (1993) Angiotensin II receptor subtypes on adrenal ade-
Cook CL, Weiser MC, Schwartz PE et al (1994) Developmentally timed expression of an em-
Correa FMA, de Oliveria AM, Viswanathan M et al (1994) Autoradiographic localization and
characterization of angiotensin II receptor subtypes in rat thymus. Peptides 15:821-824
Correa SAA, Zalcberg H, Han SW et al (2002) Aliphatic amino acids in helix VI of the AT1
receptor play relevant role in agonist binding and activity. Regul Pept 106:33-38
Cote F, Do T, Laflamme L et al (1999) Activation of the AT2 receptors of angiotensin II indu-
ces neurite outgrowth and cell migration in microexplant cultures of the cerebellum. J
Biol Chem 274:31686-31692
subtypes in the pre- and postjunctional actions of angiotensin II at rat sympathetic neu-
roeffector sites. Br J Pharmacol 114:1057-1063
Crackower MA, Sarao R, Oudit GY et al (2002) Angiotensin-converting enzyme 2 is an es-
tolerability. Losartan hemodynamic study group. Circulation 91:691-697
Cui T, Nakagami H, Iwai M et al (2000) ATRAP, novel AT1 receptor associated protein, enhan-
ces internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Bio-
chem Biophys Res Comrnun 279:938-941
ble therapeutic implications of AT1 receptor blockers. J Hum Hypertens 16:S64-S70
Curnow KM (1996) Human type-1 angiotensin II (AT1) receptor gene structure and func-
Dahlof B, Devereux R, deFaire U et al (1997a) The Losartan Intervention for Endpoint Re-
duction (LIFE) in hypertension study. Rationale, design and methods. Am J Hypertens
10:705-713
Dahlof B, Lindholm LH, Carney S et al (1997 b) Main results of the Losartan versus amlodi-
pine (LOA) study on drug tolerability and psychological general well-being. J Hypertens
15:1327-1335
Dahlof B, Devereux RA, Kjeldsen SE et al ((2002a) Cardiovascular morbidity and mortality
in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a ran-
domized trial against Atenolol. Lancet 359:995-1003
Dahlof B, Zanchetti A, Diez J et al (2002b) Effects of losartan and atenolol on left ventricu-
lar mass and neurohormonal profile in essential hypertensives with left ventricular hy-
pertrophy. J Hypertens 20:1855-1864


Diep QN, Li J-S, Schiffrin EL (1999) In vivo study of AT1and AT2 angiotensin receptors in apoptosis in rat blood vessels. Hypertension 34:617-624


Diz DI, Westwood BM (2000) Deficiency of endogenous angiotensin-(1-7) in the nucleus tracti solitaii of (mREN2)27 transgenic rats may account for diminished baroreceptor reflex function. Hypertension 36:681


production in vascular smooth muscle and glomerular cells. Curr Opin Nephrol Hypertens 6:88-105
Ferrario CM (2006 b) Role of angiotensin in cardiovascular disease - Therapeutic implications of more than a century of research. J Renin-Angiotensin-Aldosterone Syst 7:3-14
Fontes MAP, Silva LCS, Campagnole-Santos MJ et al (1994) Evidence that angiotensin-(1-7) plays a role in the central control of blood pressure at the ventrolateral medulla acting through specific receptor. Brain Res 665:175-180
Griffiths CD, Morgan TO, Delbridge LM (2001) Effects of combined administration of ACE inhibitor and angiotensin II receptor antagonist are prevented by a high salt intake. J Hypertens 19:2087-2095
Handa RK (1999) Angiotensin-(1-7) can interact with the rat proximal tubule receptor system. Am J Physiol 277:F75-F83
Hanesworth JM, Sardinia MF, Krebs LT et al (1993) Elucidation of a specific binding site for angiotensin II(3-8), angiotensin IV, in mammalian heart membranes. J Pharmacol Exp Ther 46:1510-1512
Harada K, Sugaya T, Murakami K et al (1999 a) Angiotensin type 1A receptor knockout mi-
ce display less ventricular remodelling and improved survival after myocardial infarction. Circulation 100:2093-2099
Hein L, Stevens ME, Barsh GS et al (1997 b) Overexpression of the AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci USA 94:6391-6396
Henrion D, Kubis N, Levy BL (2001) Physiological and pathophysiological functions of the AT2 subtype receptor of angiotensin II. From large arteries to microcirculation. Hypertension 38:1150-1157
Horiuchi M, Akishita M, Dzau VJ (1999b) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613-621
Inagami T, Mizukoshi M, Guo Den-Fu (1994) Angiotensin II Receptor: Molecular Cloning,
Bibliografia


Inoue Y, Nakamura N, Inagami T (1997) A review of mutagenesis studies of angiotensin II type 1 receptor, the three-dimensional receptor model in search of agonist and antagonist binding site and the hypothesis of a receptor activation mechanism. J Hypertens 15:703-714


Leclerc PC, Auger Messier M, Lanctot PM et al (2002) A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for angiotensin II plays an important role in receptor trafficking and signaling. Endocrinology 143:4702-4710


McClellan KJ, Markham A (1998a) Telmisartan. Drugs 56:1039-1046
McMurray JJV, Ostergren J, Pfeffer M et al (2003 b) Clinical features and contemporary management of patients with low and preserved ejection heart failure: baseline characteristics of patients in the Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur J Heart Fail 5:261-270


Meredith PA (2000) ACE inhibition and AT1 receptor blockers: efficacy and duration in hypertension. Heart 84 (S 1):139-141

Messerli FH, Chiadika SM (2005) Stroke prevention: not all antihypertensive drugs are created equal. J Renin-Angiotensin-Aldosterone Syst 6 (S 1):S4-S11


Bibliografia

racterization of an atypical gerbil angiotensin II type-1 receptor and its mRNA expres-
Munzenmaier DH, Greene AS (1995) Opposing actions of angiotensin II on microvascular
growth and arterial blood pressure. Hypertension 27:760-765
Munzenmaier DH, Greene AS (2006) Chronic angiotensin II AT1 receptor blockade increa-
Muratani H, Ferrario CM, Averill DB (1993) Ventrolateral medulla in spontaneously hyper-
tensive rats: role of angiotensin II. Am J Physiol 264:R388-R395
Murphy TJ, Alexander RW, Griending KK et al (1991) Isolation of a cDNA encoding the va-
scular type-1 angiotensin II receptor. Nature 351:233-236
Mustafa T, Lee JH, Chay SY et al (2001) Bioactive angiotensin peptides: focus on Angioten-
sin IV. J Renin-Angiotensin-Aldosterone Syst 2:205-210
giotorensin-(1-7)-stimulated arachidonic acid release and prostanoid synthesis in rabbit
aortic smooth muscle cell. J Pharmacol Exp Ther 284:388-398
tor antagonizes the growth effects of the AT1 receptor: gain-of-function study using
gene transfer. Proc Natl Acad USA 92:10663-10667
subtypes to blood pressure regulation in salt depleted spontaneously hypertensive rats.
FASEB J 1284:R164-R173
753, a new angiotensin receptor antagonist, in healthy subjects. Eur J Clin Pharmacol
42:333-335
cion 31 (pt 2):194-200
Naveri L (1995) The role of angiotensin receptor subtypes in cerebrovascular regulation in
the rat. Acta Physiol Scand 155 (S 630):1-48
function and density in hypercholesterolemic men. Circulation 100:2131-2134
inhibitor-1 and tissue factor mRNA expression without changing that of tissue plasmi-
nogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells.
Thromb Haemost 77:1189-1195
Nishimura H, Yerkes E, Hohenfellner K et al (1999) Role of the angiotensin type 2 receptor
gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men.
Mol Cell 3:1-10
Nishimura Y, Ito T, Saavedra JM (2006) Angiotensin II AT1 blockade normalizes cerebrova-
sascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats.
Stroke 31:2478-2486
Scholkens BA (eds) Angiotensin. Springer-Verlag Berlin Heidelberg, vol 1, pp 31-70


Prasad A, Tupas-Habib T, Schenke WH et al (2000) Acute and chronic angiotensin-1 recep-
Quian H, Pipolo L, Thomas WG (2001) Association of β-arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Mol Endocrinol 15:1706-1719


Schambye HT, Hjorth SA, Bergsma DJ et al (1994) Differentiation between binding sites for angiotensin II and nonpeptide antagonists on the angiotensin II type 1 receptors. Proc Natl Acad Sci USA 91:7046-7050


Schneider MD, Lorell BH (2001) AT2, Judgment day. Which angiotensin receptor is the culprit in cardiac hypertrophy? Circulation 97:1952-1959


Siragy HM, Carey RM (1999 c) Protective role of angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension 33: 1237-1242


Thomas WG (1999) Regulation of angiotensin II type 1 (AT1) receptor function. Regul Pept 79:9-23


Tigerstedt R, Bergman PG (1898) Niere und kreislauf. Scand Arch Physiol 8:223-271


Touyz RM, Endemann D, He G et al (1999 b) Role of AT2 receptors in angiotensin II-stimulated contraction of small mesenteric arteries in young SHR. Hypertension 33:366-372

Bibliografia

Bibliografia


Widdop RE, Gardiner SM, Kemp PA et al (1992) Inhibition of the hemodynamic effects of angiotensin II in conscious rats by AT2 receptor antagonists given after the AT1 receptor antagonist EWP3074. Br J Pharmacol 107:873-880
Wong PC, Timmermans PBMM (1991) Nonpeptide angiotensin II receptor antagonists: insurmountable angiotensin II antagonism of EXP3892 is reversed by the surmountable antagonist Dup753. J Pharmacol Exp Ther 258:49-57
Bibliografia


Xiao C Li, Widdop RS (2004) AT2 receptor-mediated vasodilatation is unmasked by AT1 receptor blockade in conscious SHR. Br J Pharmacol 142:821-830


Zhu M, Gelband CH, Moore JM et al (1998) Angiotensin II type 2 receptor stimulation of
neuronal delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid. J Neurosci 18:679-686
### Sigle a singola lettera ed a tre lettere per gli aminoacidi

<table>
<thead>
<tr>
<th>Aminoacido</th>
<th>Una lettera</th>
<th>Tre lettere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanina</td>
<td>A</td>
<td>Ala</td>
</tr>
<tr>
<td>Arginina</td>
<td>R</td>
<td>Arg</td>
</tr>
<tr>
<td>Asparagina</td>
<td>N</td>
<td>Asn</td>
</tr>
<tr>
<td>Acido aspartico</td>
<td>D</td>
<td>Asp</td>
</tr>
<tr>
<td>Cisteina</td>
<td>C</td>
<td>Cys</td>
</tr>
<tr>
<td>Glutamina</td>
<td>Q</td>
<td>Gln</td>
</tr>
<tr>
<td>Acido glutamico</td>
<td>E</td>
<td>Glu</td>
</tr>
<tr>
<td>Glicina</td>
<td>G</td>
<td>Gly</td>
</tr>
<tr>
<td>Istitina</td>
<td>H</td>
<td>His</td>
</tr>
<tr>
<td>Isoleucina</td>
<td>I</td>
<td>Ile</td>
</tr>
<tr>
<td>Leucina</td>
<td>L</td>
<td>Leu</td>
</tr>
<tr>
<td>Lisina</td>
<td>K</td>
<td>Lys</td>
</tr>
<tr>
<td>Metionina</td>
<td>M</td>
<td>Met</td>
</tr>
<tr>
<td>Fenilalanina</td>
<td>F</td>
<td>Phe</td>
</tr>
<tr>
<td>Prolina</td>
<td>P</td>
<td>Pro</td>
</tr>
<tr>
<td>Serina</td>
<td>S</td>
<td>Ser</td>
</tr>
<tr>
<td>Treonina</td>
<td>T</td>
<td>Thr</td>
</tr>
<tr>
<td>Triptofano</td>
<td>W</td>
<td>Trp/Try</td>
</tr>
<tr>
<td>Tirosina</td>
<td>Y</td>
<td>Tyr</td>
</tr>
<tr>
<td>Valina</td>
<td>V</td>
<td>Val</td>
</tr>
<tr>
<td>Non specificato o non noto</td>
<td>X</td>
<td>Xaa</td>
</tr>
</tbody>
</table>
Indice analitico

ACCESS 145
ACE2 e antagonisti AT1 (AT1RA) 124-125
ACE2 e recettori AT2 67 segg.
ACE2 e SARS 69
Ang- (1-7) e recettori AT2 69, 125
Ang 1-9 67
Antagonisti competitivi e non competitivi 112
Antagonisti sormontabili ed insormontabili 112
Associazione AT1RA/ACEI 138
AT1P 76
ATRAP 37
Beta arrestine 34 segg.

CAKUT 72
CALM 145
Caveole 36-37
CHARM 141

Dimerizzazione 86
Dinamina 35
DIRECT 122

ELITE 1 e 2 140 segg.
EXP 3179 119

“Flessibilità” dei recettori del SRA 101

IDNT 143

IRAP 5
IRMA2 143
LIFE 132 segg.
“Magic tait” 14
MARVAL 143
Mas Oncogene e recettori AT1 88
Mas Oncogene e recettore Ang- (1-7) 7
MOSES 146
ONTARGET 139
OPTIMAAL 142
PPAR-γ 119
Proteina ATBP 50 58

Rab 5a 36
Rab 7 36
Recettore AT1 e apoptosi 85
Recettore AT2 e cascata vasodilatatrice 65
Recettori AT2 e inibizione ACE 66
RENAAL 143
ROS 49

SCOPE 135

VAL-HEFT 141
VALIANT 142
VALUE 136
Finito di stampare nel mese di marzo 2007