

Commercial Regulatory Authority (2010): Regulations for International Truck Transportation - Interpretation and Handling. Mr. Lieb (Gewerbeaufsichtsamt Oberbayern), Interview from 05.02.2010.

Federal Ministry for Labor and Social Affairs, Germany (2009): Arbeitszeitgesetz from 22.09.2009.

http://www.kba.de/ch_005/nn_124592/DE/ZentraleRegister/EGKontrollgeraet/Karten/karten_node.html?__nn=true, last viewed: 03.08.2010.

Appendix
Appendix

A Pseudocode of MNS Improvement Neighborhoods

01: Refresh Tabu List according to actual system time
02: Calculate decreasing cost ranking for all vehicle tours
03: WHILE (simulation_time < t_fixtime) {
04: Identify feasible pair of vehicles for neighborhood operation, preferably a combination of a
05: 'cheap' and an 'expensive' vehicle tour, taking into account the Tabu list
06: -> vehicle_a and vehicle_b
07: Determine the exchangeable requests for vehicle_a and vehicle_b
08: -> exchangeable_req_a and exchangeable_req_b
09: Calculate the initial cost for the tours of vehicle_a and vehicle_b
10: -> initial_cost
11: Set best_cost = 999 999 999; best_tourroute_a = NULL; best_tourroute_b = NULL
12: FOR (i=0; i<exchangeable_req_a; i++) {
13: FOR (j=0; j<exchangeable_req_b; j++) {
14: IF (request_i is compatible with vehicle B && request_j is compatible with vehicle A) {
15: Extract requests i and j from the tours of vehicle_a and vehicle_b, respectively
16: Apply Best-Reinsertion for request i into tour B
17: Apply Best-Reinsertion for request j into tour A
18: Calculate the new cost for the tours of vehicle_a and vehicle_b
19: -> new_cost
20: IF (new_cost < best_cost) {
21: best_cost = new_cost
22: best_tourroute_a = new tour of vehicle A
23: best_tourroute_b = new tour of vehicle B
24: }
25: }
26: }
27: }
28:
29: FOR (i=0; i<exchangeable_req_a; i++) {
30: IF (request_i is compatible with vehicle B) {
31: Extract request_i from the tour of vehicle_a
32: Apply Best-Reinsertion for request_i into tour B
33: Calculate the new cost for the tours of vehicle_a and vehicle_b
34: -> new_cost
35: IF (new_cost < best_cost) {
36: best_cost = new_cost
37: best_tourroute_a = new tour of vehicle A
38: best_tourroute_b = new tour of vehicle B
39: }
40: }
41: }
42:
43: FOR (j=0; j<exchangeable_req_b; j++) {
44: IF (request_j is compatible with vehicle A) {
45: Extract request_j from the tour of vehicle_b
46: Apply Best-Reinsertion for request_j into tour A
47: Calculate the new cost for the tours of vehicle_a and vehicle_b
48: -> new_cost
49: IF (new_cost < best_cost) {
50: best_cost = new_cost
51: best_tourroute_a = new tour of vehicle A
52: best_tourroute_b = new tour of vehicle B
53: }
54: }
55: }
56: IF (best_cost < initial_cost) {
57: Set tour of vehicle A = best_tourroute_a
58: Set tour of vehicle B = best_tourroute_b
59: }

Table 1: Pseudocode: λ-1 interchange (neighborhood I)
01: Calculate decreasing cost ranking for all vehicle tours
02: WHILE (simulation_time < t_fixtime) {
03: Choose a vehicle, according to decreasing cost ranking
04: -> current_vehicle
05: Determine the exchangeable requests for current_vehicle
06: -> exchangeable_requests
07: Calculate the initial cost for the tour of current_vehicle
08: -> initial_cost
09: Extract the exchangeable requests from the vehicle's tour
10: -> extracted_tour
11: Generate all sequence permutations for possible re-insertion of the exchangeable requests
12: -> permutations
13: Set best_cost = initial_cost; best_tourroute = initial_tourroute
14: FOR (i=0; i<permutations; i++) {
15: Apply Best-Reinsertion of exchangeable_requests into extracted_tour
16: in the sequence of permutation i
17: -> new_tour
18: Calculate the cost for new_tour of current_vehicle
19: -> new_cost
20: IF (new_cost < best_cost) {
21: best_cost = new_cost;
22: best_tourroute = new_tour
23: }
24: }
25: Set tour of current_vehicle = best_tourroute
26: }

Table 2: Pseudocode: intraroute optimal sequence (neighborhood II)

01: Calculate the current plan's objective value
02: -> initial_objective
03: Duplicate the current plan for back-up
04: -> initial_solution
05: Calculate decreasing cost ranking for all vehicle tours
06: Initialize a list all_exchangeable_requests
07: WHILE (simulation_time < t_fixtime) {
08: FOR (i=0; i<number_of_vehicles; i++) {
09: Choose most expensive vehicle, according to decreasing cost ranking
10: -> current_vehicle
11: Determine exchangeable requests for current_vehicle
12: -> exchangeable_requests
13: Append exchangeable_requests to the list all_exchangeable_requests
14: Extract exchangeable_requests from current_vehicle's tour
15: }
16: WHILE (size_of_all_exchangeable_requests > 0) {
17: Remove first request of all_exchangeable_requests
18: -> first_request
19: Apply Best-Reinsertion for first_request over all vehicle tours
20: }
21: BREAK
22: }
23: IF (Re-Insertion of all extracted requests was successful) {
24: Calculate the new plan's objective value
25: -> new_objective
26: IF (new_objective > initial_objective) {
27: Reconstruct initial_solution
28: }
29: }
30: ELSE {
31: Reconstruct initial_solution
32: }

Table 3: Pseudocode: complete solution rebuild (neighborhood III)
Appendix B Parameterization - Detailed Results

Appendix B contains the detailed planning results of the parameterization process in Section 5.5.1. The adapted MNS procedure is applied to the real-life test scenario.

<table>
<thead>
<tr>
<th></th>
<th>empty travel time</th>
<th>delay</th>
<th>break/wait</th>
<th>operating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>penalty cost “delay”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Table 4: Parameterization of penalty costs (simulation speed $s = 5$, improvement neighborhoods I:II 66:33, anticipation horizon 10 min) - Detailed Results (in hours)

<table>
<thead>
<tr>
<th>penalty cost “traveling empty”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Table 5: Parameterization of penalty costs (simulation speed $s = 1$, improvement neighborhoods I:II 66:33, anticipation horizon 10 min) - Detailed Results (in hours)
Table 6: Parameterization of anticipation horizon (simulation speed s = 5, improvement neighborhoods I:II 66:33, penalty costs (30,5)) - Detailed Results (in hours)

<table>
<thead>
<tr>
<th>anticip. horiz.</th>
<th>empty traveling</th>
<th>delay</th>
<th>break/wait</th>
<th>operating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>24450</td>
<td>175323</td>
<td>485956</td>
<td>738249</td>
</tr>
<tr>
<td>10 min</td>
<td>24246</td>
<td>170913</td>
<td>485496</td>
<td>737585</td>
</tr>
<tr>
<td>30 min</td>
<td>24610</td>
<td>170142</td>
<td>488326</td>
<td>740780</td>
</tr>
<tr>
<td>60 min</td>
<td>24545</td>
<td>173351</td>
<td>486564</td>
<td>738953</td>
</tr>
<tr>
<td>90 min</td>
<td>24561</td>
<td>177846</td>
<td>485891</td>
<td>738295</td>
</tr>
<tr>
<td>120 min</td>
<td>24591</td>
<td>187401</td>
<td>486199</td>
<td>738633</td>
</tr>
</tbody>
</table>

Table 7: Parameterization of anticipation horizon (simulation speed s = 1, improvement neighborhoods I:II 66:33, penalty costs (30,5)) - Detailed Results (in hours)

<table>
<thead>
<tr>
<th>%I -%II</th>
<th>empty traveling</th>
<th>delay</th>
<th>break/wait</th>
<th>operating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-0</td>
<td>24193</td>
<td>162010</td>
<td>484880</td>
<td>736916</td>
</tr>
<tr>
<td>75-25</td>
<td>24171</td>
<td>159541</td>
<td>485833</td>
<td>737847</td>
</tr>
<tr>
<td>66-33</td>
<td>23966</td>
<td>158126</td>
<td>485019</td>
<td>736155</td>
</tr>
<tr>
<td>50-50</td>
<td>23937</td>
<td>159509</td>
<td>485865</td>
<td>737646</td>
</tr>
<tr>
<td>33-66</td>
<td>24076</td>
<td>168449</td>
<td>486213</td>
<td>738133</td>
</tr>
<tr>
<td>25-75</td>
<td>24042</td>
<td>164628</td>
<td>485491</td>
<td>737377</td>
</tr>
<tr>
<td>0-100</td>
<td>26193</td>
<td>220953</td>
<td>491455</td>
<td>743096</td>
</tr>
</tbody>
</table>

Table 8: Parameterization “allocation of improvement time” (simulation speed s = 5, anticipation horizon 10 min, penalty costs (30,5)) - Detailed Results (in hours)

<table>
<thead>
<tr>
<th>%I -%II</th>
<th>empty traveling</th>
<th>delay</th>
<th>break/wait</th>
<th>operating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-0</td>
<td>24008</td>
<td>154654</td>
<td>487019</td>
<td>738870</td>
</tr>
<tr>
<td>75-25</td>
<td>24071</td>
<td>167129</td>
<td>486340</td>
<td>738254</td>
</tr>
<tr>
<td>66-33</td>
<td>24171</td>
<td>159541</td>
<td>485833</td>
<td>737847</td>
</tr>
<tr>
<td>50-50</td>
<td>24164</td>
<td>166108</td>
<td>484947</td>
<td>736955</td>
</tr>
<tr>
<td>33-66</td>
<td>24081</td>
<td>161118</td>
<td>484747</td>
<td>736671</td>
</tr>
<tr>
<td>25-75</td>
<td>24152</td>
<td>166242</td>
<td>485971</td>
<td>737966</td>
</tr>
<tr>
<td>0-100</td>
<td>26055</td>
<td>214509</td>
<td>489198</td>
<td>743096</td>
</tr>
</tbody>
</table>

Table 9: Parameterization “allocation of improvement time” (simulation speed s = 1, anticipation horizon 10 min, penalty costs (30,5)) - Detailed Results (in hours)