Subject Index

Acetylcholine 248
- esterase (AChE) 247
Activated microglial cells 83
Adenosine A₁ receptors 235
Adrenalecctomy 252
Adrenoceptors 235
AF-64A treated rats 245, 247, 248
- ACh 248
- aluminium accumulation 248
- ChAT activity 248
- corticotropin releasing factor mRNA 251
- degeneration retrograde process 248
- glutamate 248
- 5-HIAA 248
- 5-HT 248
- MAO-B activity 248
- MHPG 248
- NA 248
- somatostatin 248
Age-related alterations on synaptosomal ATPase activities 159, 163, 166
Ageing
- cell necrosis during aging 127
- dysfunction of the brain cholinergic system during aging 189, 134
- effects of ageing on exploratory activity 98, 102
- effects of ageing on motor activity 97, 102
- effects of ageing on learning ability 106, 108
- effects of ageing on memory 107, 108
- trophic factors 209, 211
Aluminium 123, 124, 129
Alzheimer’s disease (AD) 24, 25, 61, 63, 176, 231, 245
- animal model 113, 174, 196, 213, 219, 245, 263
- brain energy metabolism in AD 89, 263
- early onset familial AD 90
- neurotrophins in AD 212
- postmortem examination 233
- sporadic AD 260
AMPA receptor 195, 200
γ-aminobutyric acid (GABA) receptor 237, 239
Amyloid
- deposits 21, 35, 220
- neurotoxicity 128
Amyloid β-protein precursor (APP)
- APP695 cDNA 221
- expression of the APP transgene 223, 225
- function 22, 29, 37
- processing 22, 24, 32, 220, 232
- secretion 23, 24, 25, 232
Animal model 113, 174, 213, 219, 245
- administration of tissue or homogenates of human brain 113, 122
- AF-64A-model 245, 248, 249
- four vessel occlusion model of ischemia 33, 38
- icv injection of bromopyruvate 113, 123, 129
- icv injection of streptozotocin (STZ) 209, 213, 263
- intrastriatal and intracortical injections of volkensin 231
- lesions of the nucleus basalis of Meynert (NBM) 189, 191, 195, 196
- neurotoxic lesion by chronic ethanol intake 174, 178
- overload of toxic elements (aluminium) 113, 123, 129
- transgenic mice 219
Astrocytes 184
- intracortical and intrahippocampal grafting 184
ATPases
- Ca²⁺-ATPase 159, 160, 166
- Ca²⁺, Mg²⁺-ATPase 160
- Mg²⁺-ATPase 159, 161, 166, 167
- Na²⁺, K²⁺-ATPase 159, 160, 166
- synaptosomal ATPases 159, 160
Axonal sprouting 63

Basic fibroblast growth factor 12, 35, 37
Biocytin labeling 64, 65, 68
Brain cell survival in rats
 - after administration of aluminium 123, 124
 - after implantation of human brain tissue fragments 122, 127
 - after injection of bromopyruvate 123
 - during chronological aging 115, 129
Brain-derived neurotrophic factor 215
Brain insulin receptor 259
Brain parenchyma
 - general involution of the brain parenchyma 112
Brain tissue slice 21, 24
Bromopyruvate 123
Calbindin immunocytochemistry 64
Calcium
 - activity-evoked neuronal calcium influx 77
 - calcium homeostasis (loss of) 32, 34, 35, 73, 74
 - calcium regulation in aging 30
 - intracellular free calcium 6, 8, 9, 30, 35
 "Cells cultured from brain" (CCFBs) 92
Cerebral arterio-venous differences
 - of glucose and lactate 261, 262
 - of oxygen and CO₂ 261, 262
Cerebral insulin receptor 260
Cerebral ischemia 4
 - transient global ischemia 38, 79
Choline acetyltransferase (ChAT) 209, 210, 213, 247, 248
 - ChAT activity in the aging brain 211
Cholinergic system
 - cholinergic basal forebrain 173, 180, 196
 - cholinergic dysfunction during aging 189, 190, 192
 - cholinergic dysfunction induced by lesions of the NBM 191
 - cholinergic hypofunction model 246
 - "cholinergic" transplants 183
 - partial cholinergic deafferentation 181
Chromogranin A 249
Circadian biorhythms 98, 103
Circannual biorhythms 107, 108
Complex slice cultivation 64
Cortical pyramidal neurones 231, 237
Cultured fibroblast model 87, 88
Cytotoxic hypoxia 5, 11, 13
Defined neuronal damage 1, 4
E2k gene in early onset familial Alzheimer disease 90
Entorhinal-hippocampal system 61
Ethanol
 - actions on cholinergic neurotransmission 177
 - chronic intake 173
 - ethanol-induced degeneration 180
Excitotoxicity 29, 34, 35, 52
 - excitatory amino acid mediated processes 49
 - excitotoxic challenge 5, 7
Fibroblast-like cells from brain 92
Fluidity of the neuronal membrane 152
Fluorescence imaging technique 73, 74, 81, 83
Free radicals 10, 30, 37, 83
Glucocorticoids 31, 34, 245, 251
Glucose metabolism 129, 209
 - cerebral glucose/energy metabolism 209, 259
 - experimental impairment of cerebral glucose metabolism 213, 263
Glucose-6-phosphatase (G6Pase) 262
Glutamate 33
 - glutamate-induced neurodegeneration 7, 11
 - glutamate receptor subtypes 200, 204
 - glutamate toxicity 52, 54
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity 262
Glycine 55, 56
G-protein function 22, 91
Granule cells 61, 65
Hexokinase 262
Hippocampal slice preparation 73, 74
Hypoglycemia 34
Hypoxia 159, 166
 - chronic intermittent mild hypoxia 159, 161, 163
 - chronic intermittent severe hypoxia 159, 161, 163

Subject Index
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual performance scores</td>
<td>134</td>
</tr>
<tr>
<td>Interface technique</td>
<td>68</td>
</tr>
<tr>
<td>Intracerebroventricular (icv) streptozotocin (STZ)</td>
<td>209, 213, 263</td>
</tr>
<tr>
<td>Ion-sensitive electrodes</td>
<td>73, 74, 76</td>
</tr>
<tr>
<td>Ischemia</td>
<td>4</td>
</tr>
<tr>
<td>- ischemia-induced intracellular calcium rise</td>
<td>73, 81</td>
</tr>
<tr>
<td>- transient global ischemia</td>
<td>38, 79</td>
</tr>
<tr>
<td>Kainate receptor</td>
<td>195, 200, 235</td>
</tr>
<tr>
<td>Kainic acid toxicity</td>
<td>54</td>
</tr>
<tr>
<td>α-ketoglutarate dehydrogenase complex (KGDHC)</td>
<td>89, 90</td>
</tr>
<tr>
<td>Korsakoff syndrome</td>
<td>176</td>
</tr>
<tr>
<td>Learning disposition</td>
<td>104</td>
</tr>
<tr>
<td>Magnesium</td>
<td>55, 56</td>
</tr>
<tr>
<td>MAP-2 immunoreactivity</td>
<td>38</td>
</tr>
<tr>
<td>Maturation and/or differentiation status of the cultures</td>
<td>52, 56</td>
</tr>
<tr>
<td>Membrane fluidity measurements</td>
<td>147</td>
</tr>
<tr>
<td>Memory function</td>
<td>145, 173</td>
</tr>
<tr>
<td>- impairment by chronic intake of ethanol</td>
<td>173</td>
</tr>
<tr>
<td>- memory function and glutamatergic neurotransmission</td>
<td>145</td>
</tr>
<tr>
<td>- memory function and hippocampal integrity</td>
<td>133</td>
</tr>
<tr>
<td>- spatial reference memory</td>
<td>135</td>
</tr>
<tr>
<td>- stress influences on memory</td>
<td>107, 108</td>
</tr>
<tr>
<td>- working memory performance</td>
<td>134</td>
</tr>
<tr>
<td>Morris water maze (MWM)</td>
<td>134, 137</td>
</tr>
<tr>
<td>Morpho-behavioral correlation</td>
<td>140, 142</td>
</tr>
<tr>
<td>Morphometric analysis</td>
<td>137, 138</td>
</tr>
<tr>
<td>Mossy fibers</td>
<td>61, 65, 68</td>
</tr>
<tr>
<td>Muscarinic receptors</td>
<td></td>
</tr>
<tr>
<td>- density of muscarinic receptors</td>
<td>139, 141, 142, 195, 198, 202</td>
</tr>
<tr>
<td>- m1 to m4 mAChR mRNA</td>
<td>195, 197, 202</td>
</tr>
<tr>
<td>- muscarinic m1 and m3 receptor subtypes</td>
<td>21, 23, 24</td>
</tr>
<tr>
<td>- muscarinic receptor autoradiography</td>
<td>197, 202, 235</td>
</tr>
<tr>
<td>Myelin sheath</td>
<td>122</td>
</tr>
<tr>
<td>Nerve growth factor</td>
<td>12, 35, 209, 211, 213</td>
</tr>
<tr>
<td>Neurodegenerative changes</td>
<td></td>
</tr>
<tr>
<td>- degeneration of CA 3 pyramidal cells</td>
<td>138, 139, 142</td>
</tr>
<tr>
<td>- neurodegeneration in the cholinergic basal forebrain</td>
<td>173</td>
</tr>
<tr>
<td>Neurofibrillary degeneration</td>
<td>29, 32, 113</td>
</tr>
<tr>
<td>- tangles</td>
<td>34</td>
</tr>
<tr>
<td>Neuronal rarefaction</td>
<td>127</td>
</tr>
<tr>
<td>- viability</td>
<td>6, 14</td>
</tr>
<tr>
<td>Neuroprotection by</td>
<td></td>
</tr>
<tr>
<td>- adenosin</td>
<td>73, 75, 77, 79</td>
</tr>
<tr>
<td>- nerve growth factor</td>
<td>12, 35, 37</td>
</tr>
<tr>
<td>- propentofylline</td>
<td>73, 81, 83</td>
</tr>
<tr>
<td>Neurotoxic lesion</td>
<td></td>
</tr>
<tr>
<td>- by chronic ethanol intake</td>
<td>178</td>
</tr>
<tr>
<td>- glutamate toxicity</td>
<td>52, 54</td>
</tr>
<tr>
<td>Neurotrophins</td>
<td>212</td>
</tr>
<tr>
<td>Nicotine receptors</td>
<td>235, 237</td>
</tr>
<tr>
<td>N-methyl-D-aspartate (NMDA)</td>
<td></td>
</tr>
<tr>
<td>- age-related decline of NMDA-receptor density</td>
<td>145, 147, 148</td>
</tr>
<tr>
<td>- agonist affinity</td>
<td>148, 149</td>
</tr>
<tr>
<td>- agonists of the glycine site</td>
<td>145, 154</td>
</tr>
<tr>
<td>- involvement in the cognitive decline in aging</td>
<td>149, 151</td>
</tr>
<tr>
<td>- laminar distribution of NMDA, AMPA, and kainate receptors</td>
<td>201</td>
</tr>
<tr>
<td>- NMDA antagonists</td>
<td>5, 7, 8</td>
</tr>
<tr>
<td>- non-NMDA antagonists</td>
<td>7, 8, 15</td>
</tr>
<tr>
<td>- NMDA calcium influx</td>
<td>77</td>
</tr>
<tr>
<td>- NMDA receptor binding assay</td>
<td>146</td>
</tr>
<tr>
<td>- NMDA toxicity</td>
<td>52</td>
</tr>
<tr>
<td>Nootropics</td>
<td>155</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>263</td>
</tr>
<tr>
<td>Nucleus basalis of Meynert (NBM)</td>
<td>189, 195</td>
</tr>
<tr>
<td>NMB lesion (unilateral)</td>
<td>201</td>
</tr>
<tr>
<td>- effect on acetylcholinesterase-staining</td>
<td>198</td>
</tr>
<tr>
<td>- effect on M1- and M3-muscarinic acetylcholine receptors</td>
<td>202</td>
</tr>
<tr>
<td>- effect on NMDA, AMPA, and kainate receptor binding</td>
<td>200</td>
</tr>
<tr>
<td>Open field</td>
<td>98</td>
</tr>
<tr>
<td>Organotypic complex slice culture</td>
<td>61, 63</td>
</tr>
<tr>
<td>Oxygen deprivation</td>
<td>4</td>
</tr>
<tr>
<td>Passive avoidance</td>
<td>146</td>
</tr>
<tr>
<td>Perforant path</td>
<td>62, 68</td>
</tr>
<tr>
<td>Phosphatidylethanolamine</td>
<td>262</td>
</tr>
<tr>
<td>Phosphatidylserine</td>
<td>262</td>
</tr>
<tr>
<td>Phosphofructokinase activity</td>
<td>262</td>
</tr>
<tr>
<td>Phospholipase C-linked receptors</td>
<td>233, 240</td>
</tr>
<tr>
<td>Phosphorylase a (PLa)</td>
<td>262</td>
</tr>
</tbody>
</table>
Postmortem examination 233
Primary neuronal cultures 1, 2
Protein kinase C 21, 22, 23, 73, 74, 79
Psychometric parameters 97
Pyramidal neurones
 (number/sq. mm) 236, 237
Pyruvate dehydrogenase complex
 (PDHC) 89, 90, 123
Pyruvate kinase 262
8-arm radial maze (RAM) 136, 138
Radical scavengers 10
Reactive gliosis 128
Receptor autoradiography 195, 231, 234
Receptor desensitization 259
Refraction of dendrites 63
Refsum's disease 88
Rotation-mediated aggregating brain cell
culture 47, 48, 57, 58
Senile plaques 111, 112
Serotonin (5-HT) levels 263
 receptors (5-HT\textsubscript{1A} and 5-HT\textsubscript{2}) 232, 237
Spatial reference memory
 performance 135
Spontaneous motor activity 97
Sporadic Alzheimer's disease 260
Stellate neurons 61, 65
Streptozotocin (STZ) 209, 260
Stress influences on learning ability 105, 106, 108
 — on memory 107, 108
Synaptophysin 249
Synaptosomes
 — preparation of synaptosomes 161
 — synaptosomal ATPases activities 159
 — synaptosomal plasma membranes 159, 160, 167
 — synaptic vesicles 159, 160, 166, 167
Three-dimensional organotypic
cultures 47
Transforming growth factors 12
Transgenic mice 219, 222
 — expression of APP transgene 223, 225
 — generation of transgenic mice 222
 — immunohistochemical analysis in the
transgenic mice 224
Transketolase (TK) 89, 90
Transplantation of neurons and glial
cells 182
 — "cholinergic" transplants 183
 "Trisynaptic pathway" of the
 hippocampus 62
Trophic factors
 — during normal brain aging 209
 — neuroprotective drug effects 12, 35, 37, 209, 215
Vacuolated necrotic cells 111, 116, 124, 127
Volkensin 231
Working memory performance 134
P. Riederer, J. Fritze, M.B.H. Youdim

Neuroprotection in Neurodegeneration

Soft cover öS 910,-, DM 130,-
Reduced price for subscribers to “Journal of Neural Transmission”:
Soft cover öS 819,-, DM 117,-
ISBN 3-211-82542-8
(Journal of Neural Transmission, Supplement 43)

Prices are subject to change without notice

This volume gives an in depth overview of current knowledge and future research strategies concerning ischemic and degenerative diseases of the central nervous system as well as suggestions for treatment of these diseases. Problems of basic and clinical research in Alzheimer's disease, Parkinson's disease, aging and stroke are addressed by internationally acknowledged experts in the field. Specifically, the putative role of oxidative stress, radicals including nitric oxide, calcium, glutamate and other excitotoxins, growth factors, adenosine, acetylcholine, as well as the potential therapeutic effects of the MAO-B inhibitor l-depenyl, glutamate receptor antagonists and calcium channel blockers are covered.
E. Tolosa, R. Duvoisin, F. F. Cruz-Sanchez (eds.)

Progressive Supranuclear Palsy: Diagnosis, Pathology, and Therapy

Soft cover DM 135,-, öS 945,-
ISBN 3-211-82541-X

Prices are subject to change without notice

This monograph summarizes recent developments in clinical and basic research in progressive supranuclear palsy (PSP). This disorder is the second most common cause of parkinsonism seen in practice. Only recently we have been able to diagnose it regularly in living patients. There is an outpouring of new interest in PSP in many research centers around the world and this volume is an expression of this research interest. Different clinical and basic subjects on PSP are covered in this monograph by individual experts in the field, incorporating their latest advances in research. With this book the reader will be able to have on hand the most recent advances on PSP covering areas such as epidemiology, neuropathology and neurophysiological, and neuroimaging aspects, as well as recent advances in neurochemistry, neuropathology and treatment of this disorder.

(Special Edition of “Journal of Neural Transmission”, Supplement 42, 1994)