References


24. T.L. Deliyannis, Y. Sun, J.K. Fidler, Continuous-Time Active Filter Design (CRC Press, Boca Raton, 1999)


34. D. Gangopadhyay, T.K. Bhattacharyya, A 2.3 GHz gm-boosted high swing class-AB ultra-wide bandwidth operational amplifier in 0.18 µm CMOS, in IEEE International Midwest Symposium on Circuits and Systems (2010), pp. 713–716
41. N. Haron, S. Hamdioui, Why is CMOS scaling coming to an END? in International Design and Test Workshop (2008), pp. 98–103
42. J. Harrison, N. Weste, 350 MHz opamp-RC filter in 0.18 µm CMOS. Electron. Lett. 38(6), 259–260 (2002)
52. V.V. Ivanov, I.M. Filanovsky, Operational Amplifier Speed and Improvement (Kluwer Academic, Dordrecht, 2004)
73. Z. Li, J. Ma, M. Yu, Y. Ye, Low-noise operational amplifier design with current driving bulk in 0.25 µm CMOS technology. Int. Conf. ASIC 2, 630–634 (2005)
74. W. Li, L. Xia, Y. Huang, Z. Hong, A 0.13 µm CMOS UWB receiver front-end using passive mixer, in *IEEE Asia Pacific Conference on Circuits and Systems* (2008), pp. 288–291
References


88. Z. Pan, P. Jiang, L. Zhang, C. Mao, Low flicker noise and high linearity passive mixer in 0.18 µm CMOS for direct conversion receiver, in Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (2009), pp. 21–24


103. W. Sansen, Mixed analog-digital design challenges, in IEE Colloquium on Systems on a Chip (1998), pp. 1/1–1/6
105. F. Schlögl, H. Zimmermann, Opamp with 106 dB DC gain in 120 nm digital CMOS, in European Solid-State Circuits Conference (2003), pp. 381–384
106. F. Schlögl, H. Zimmermann, 1.5 GHz OPAMP in 120 nm digital CMOS, in European Solid-State Circuits Conference (2004), pp. 239–242
107. F. Schlögl, H. Dietrich, H. Zimmermann, 120 nm CMOS operational amplifier with high gain down to ±0.3 V supply, in IEEE International Systems-on-Chip Conference (2003), pp. 121–124
References

Index

Symbols
1 dB compression point, 71, 146
1/f noise, 17, 131, 146
120 nm CMOS, 18
3rd harmonic, 31
3rd harmonic distortion, 29, 32
3rd harmonics, 68
3rd-order input intercept-point, 41
3rd-order intercept point, 41
3rd-order intermodulation, 41
3rd-order intermodulation product, 28
65 nm CMOS, 20, 131, 135, 141

A
AC characteristics, 134, 140, 144
Acoustic wave filters, 4
All-pass filters, 7
Amplitude frequency response, 50, 54, 58, 82
Analog-digital converter, 73
Average input referred integrated noise density, 144
Average integrated noise density, 140
Average spectral output noise density, 111

B
Band-pass filter, 6
Band-stop filter, 7
Bandwidth, 123
Base band, 73
BAW filters, 4
Bessel filter, 10
Bessel low-pass filter, 44, 128
Blocker, 39
Bluetooth, 44, 73, 119, 153
Bondpads, 22
Bootstrapping, 124
Breakdown voltage, 18
Buffer amplifier, 36
Bulk acoustic wave filters, 4
Butterworth filter, 8

C
Capacitance multiplication, 106, 111
Capacitance multiplication factor, 69, 107
Capacitance multiplication technique, 81
Capacitance tuning network, 133
Capacitors, 19
Carrier mobility, 21
Cascading, 124
Cascode, 142
Cascode transistor, 52, 100, 108
Cascoded current mirror, 100
Cascoded operational amplifier, 126
Cascoding, 124
Chebyshev filters, 10
Class AB, 124, 125
Class-AB amplifier, 131
Clock feed-through, 39
CMFB, 35, 37, 86, 131
CMOS Miller operational amplifier, 126
CMRR, 46, 123
Common-mode amplifier, 35
Common-mode feedback, 35, 77, 129, 142
Common-mode feedback loop, 35
Common-mode gain, 37, 123
Common-mode input range, 122
Common-mode range, 126
Common-mode rejection ratio, 46, 122, 123
Common-mode voltage, 35, 131
Compensation, 36, 122, 124
Compensation capacitance, 124
Compensation capacitor, 77, 102
Compensation network, 136
Contacts, 22

H. Uhrmann et al., Analog Filters in Nanometer CMOS,
Springer Series in Advanced Microelectronics 45,
DOI 10.1007/978-3-642-38013-6, © Springer-Verlag Berlin Heidelberg 2014
Continuous-time filters, 3, 39
CT filters, 40
Current consumption, 54, 102, 109, 124, 138, 144, 147
Current mirror, 37, 44, 68, 93
Current noise, 70
Current-mode circuits, 68
Current-mode common-mode feedback circuit, 126
Current-mode filter, 40, 44, 65, 68, 73, 77, 81, 83, 111
Current-mode filter, 40, 44, 65, 68, 73, 77, 81, 83, 111
Cut-off frequency, 27, 29, 35, 40, 44, 49, 55, 61, 63, 65, 69, 70, 72, 74, 77, 81, 82, 86, 95, 105, 107, 109, 111, 133, 151

D
DAC, 73
DC characteristics, 109, 131, 134, 138, 140, 144
DC measurement, 96, 102
DC transfer characteristics, 49, 54, 58
DC-transfer characteristics, 79, 82, 86
Deep-sub-micron CMOS, 13, 44, 112
Degeneration factor, 29
Differential operational amplifier, 36, 125
Differential OTA, 37
Digital CMOS technology, 76, 125
Digital filters, 4, 39
Digital video broadcasting, 120
Digital-analog converter, 73
Direct conversion receiver, 145
Distortion, 18, 28, 32, 34, 40, 46, 134
Distributed filters, 5
Down-conversion mixer, 46
Drain induced barrier lowering, 15
DVB-H, 120
DVB-T, 120
Dynamic range, 39, 40, 42, 44, 63, 67, 72, 74, 135

E
Early voltage, 22, 25, 122
Electromechanic filters, 4
Electronic filters, 3
Electrostatic discharge, 18
Elliptic filters, 10
Equalization filters, 7
ESD, 18
ESD protection, 18
Excess phase, 27

F
Feed-forward operational amplifier, 125
Feed-forward path, 129
Feedback loop, 40
Figure of merit, 40, 72, 116, 123, 135, 138
Filter characteristics, 54
Filter gain, 47
Filter order, 70
Filter parameters, 78, 84
Finite impulse response filter, 4
FIR filter, 4
First-order opamp RC filter, 139
First-order opamp RC low-pass filter, 132
Folded cascode, 84
Folded cascode opamp, 126
FOM, 41, 63, 111, 117, 147, 151
Four-stage operational amplifier, 129
Frequency response, 28, 103, 109, 122, 131, 138
Frequency spectrum, 46
Fully differential operational amplifier, 125, 129

G
gm-C filter, 3, 27, 32, 40, 42, 47, 65, 127
Gain bandwidth product, 123, 138
Gain boosting, 124
Gain enlargement techniques, 124
Gate leakage current, 17
Gate oxide breakdown voltage, 18
GBW, 123, 124, 150
gm-RC filter, 81
GPS, 119

H
HD3, 28, 29, 32, 96, 104, 135
High-bandwidth communication, 46
High-gain stages, 136
High-k dielectrics, 16, 17
High-voltage operational amplifier, 145

I
I-path, 39, 60
Ideal high-pass filter, 6
Ideal low-pass filter, 5
IIP3, 41, 42, 72, 87, 105, 111, 146
IIR filter, 4
IM3, 28, 46, 55, 71, 81, 82, 87, 104, 135
In-band distortions, 39
Infinite impulse response filter, 4
Input capacitance, 27
Input intercept point, 41
Input noise level, 41
Input offset current, 122
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input referred average noise density</td>
<td>111</td>
</tr>
<tr>
<td>Input referred spectral noise density</td>
<td>131, 138,</td>
</tr>
<tr>
<td></td>
<td>140, 144</td>
</tr>
<tr>
<td>Input resistance</td>
<td>38, 122</td>
</tr>
<tr>
<td>Integrated in-band noise</td>
<td>72</td>
</tr>
<tr>
<td>Integrated noise</td>
<td>39, 56, 135</td>
</tr>
<tr>
<td>Integrated output noise</td>
<td>44, 81</td>
</tr>
<tr>
<td>Interference</td>
<td>39, 46</td>
</tr>
<tr>
<td>Intermodulation</td>
<td>39</td>
</tr>
<tr>
<td>Intermodulation products</td>
<td>71, 135</td>
</tr>
<tr>
<td>Inverse Chebyshev filter</td>
<td>10, IP3, 41</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>LCR-filters</td>
<td>3</td>
</tr>
<tr>
<td>Leakage current</td>
<td>21</td>
</tr>
<tr>
<td>Linearity</td>
<td>18, 29, 30,</td>
</tr>
<tr>
<td></td>
<td>40, 67, 138</td>
</tr>
<tr>
<td>Linearization techniques</td>
<td>32</td>
</tr>
<tr>
<td>LNA, 46</td>
<td></td>
</tr>
<tr>
<td>Load capacitance</td>
<td>123, 124, 150</td>
</tr>
<tr>
<td>Low-frequency gain</td>
<td>123</td>
</tr>
<tr>
<td>Low-noise amplifier</td>
<td>46, 73</td>
</tr>
<tr>
<td>Low-voltage operational amplifier</td>
<td>126, LTE, 120</td>
</tr>
<tr>
<td>Lumpf filters</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Magnitude frequency response</td>
<td>86</td>
</tr>
<tr>
<td>Matching</td>
<td>17, 28</td>
</tr>
<tr>
<td>Matching parameters</td>
<td>31</td>
</tr>
<tr>
<td>Mechanical stress</td>
<td>21</td>
</tr>
<tr>
<td>Metal-metal capacitor</td>
<td>19, 54, 58, 79</td>
</tr>
<tr>
<td>Miller compensation</td>
<td>78</td>
</tr>
<tr>
<td>MIMCAP, 19</td>
<td></td>
</tr>
<tr>
<td>Minimum detectable signal</td>
<td>72</td>
</tr>
<tr>
<td>Mismatch</td>
<td>28, 39, 46, 60, 62</td>
</tr>
<tr>
<td>Mixed-signal applications</td>
<td>18, 20</td>
</tr>
<tr>
<td>Mixed-signal circuit</td>
<td>13</td>
</tr>
<tr>
<td>Mixer, 73, 145</td>
<td></td>
</tr>
<tr>
<td>Mixer-filter combination</td>
<td>145</td>
</tr>
<tr>
<td>MOS capacitor, 19</td>
<td></td>
</tr>
<tr>
<td>Multiple feed-forward</td>
<td>135</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Nanometer CMOS</td>
<td>13, 74, 112, 122, 124, 150</td>
</tr>
<tr>
<td>Negative feedback</td>
<td>123</td>
</tr>
<tr>
<td>Nested Miller compensation</td>
<td>131, 136,</td>
</tr>
<tr>
<td></td>
<td>142</td>
</tr>
<tr>
<td>Noise, 39, 46, 70, 105</td>
<td></td>
</tr>
<tr>
<td>Noise spectral density</td>
<td>39, 60, 81, 83, 98</td>
</tr>
<tr>
<td>Notch filter, 7</td>
<td></td>
</tr>
<tr>
<td>Number of poles</td>
<td>40, 72</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>OFDM, 120</td>
<td></td>
</tr>
<tr>
<td>Off resistance</td>
<td>39</td>
</tr>
<tr>
<td>OIP3, 41, 72</td>
<td></td>
</tr>
<tr>
<td>On resistance</td>
<td>39</td>
</tr>
<tr>
<td>Opamp, 82, 121, 125, 151</td>
<td></td>
</tr>
<tr>
<td>Opamp RC filter</td>
<td>40, 127</td>
</tr>
<tr>
<td>Operational amplifier, 40, 121, 123, 127, 131, 138, 141, 147</td>
<td></td>
</tr>
<tr>
<td>Operational amplifier-RC filters, 3</td>
<td></td>
</tr>
<tr>
<td>Operational transconductance amplifier, 27 , 127</td>
<td></td>
</tr>
<tr>
<td>OTA, 27, 29, 32, 35, 37, 40, 42, 52, 56, 84</td>
<td></td>
</tr>
<tr>
<td>Out-of-band distortions</td>
<td>39</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>27</td>
</tr>
<tr>
<td>Output characteristics</td>
<td>18, 22, 24</td>
</tr>
<tr>
<td>Output conductance</td>
<td>23</td>
</tr>
<tr>
<td>Output impedance</td>
<td>52</td>
</tr>
<tr>
<td>Output intercept point</td>
<td>41</td>
</tr>
<tr>
<td>Output resistance</td>
<td>27, 33, 122</td>
</tr>
<tr>
<td>Output spectral noise density</td>
<td>56</td>
</tr>
<tr>
<td>Output swing</td>
<td>63</td>
</tr>
<tr>
<td>Overdrive voltage</td>
<td>29</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Passive mixer</td>
<td>145</td>
</tr>
<tr>
<td>PDA, 119</td>
<td></td>
</tr>
<tr>
<td>Personal digital assistant</td>
<td>119</td>
</tr>
<tr>
<td>Phase</td>
<td>27</td>
</tr>
<tr>
<td>Phase frequency response</td>
<td>50, 58, 86</td>
</tr>
<tr>
<td>Phase margin</td>
<td>123, 138</td>
</tr>
<tr>
<td>Phase response</td>
<td>79</td>
</tr>
<tr>
<td>Point-to-multipoint connections</td>
<td>120</td>
</tr>
<tr>
<td>Polyimide passivation layer</td>
<td>22</td>
</tr>
<tr>
<td>Power consumption</td>
<td>40, 70, 72, 74, 93, 102, 116, 147</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>64</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>146</td>
</tr>
<tr>
<td>Power supply rejection ratio</td>
<td>46, 122, 123, 138</td>
</tr>
<tr>
<td>Probability density function</td>
<td>62</td>
</tr>
<tr>
<td>Process parameter variations</td>
<td>31</td>
</tr>
<tr>
<td>Process variations</td>
<td>133</td>
</tr>
<tr>
<td>Programmable-gain control</td>
<td>46</td>
</tr>
<tr>
<td>PSRR, 46, 123</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Q-path, 39</td>
<td></td>
</tr>
<tr>
<td>Q-path of a receiver</td>
<td>60</td>
</tr>
<tr>
<td>Quadrature outputs</td>
<td>46</td>
</tr>
<tr>
<td>Quality factor</td>
<td>40, 42, 47, 54, 62, 65, 95</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Rail-to-rail input</td>
<td>126</td>
</tr>
<tr>
<td>Rail-to-rail input/output</td>
<td>126</td>
</tr>
</tbody>
</table>
RC-opamp filter, 44
Real filter transfer function, 7
Resistors, 19
Resonance frequency, 47

S
Salicide, 22
Sampled-data filters, 4, 39
Saturation voltage, 29
SAW filter, 4
Scaling, 14, 22
Scaling factor, 14
SDR, 72
Self-aligned silicide, 22
SFDR, 41
Shallow trench isolation, 18, 21
Short channel effects, 15, 22
Signal headroom, 17
Signal-to-noise ratio, 40, 72
Single-stage amplifier, 124
Single-tone measurement, 38, 50, 55, 59, 86, 96, 109
SoC, 13
Software defined radio, 72
Source degeneration, 82
Source resistor, 29
Spectral components, 50, 55, 59
Spectral noise density, 39
Spectral output noise current density, 111
Spectral output noise density, 105
Spurious free dynamic range, 41
Standard deviation, 61
STI, 18, 21
Submicrometer BiCMOS, 42
Submicrometer CMOS, 42, 44, 65
Super source follower, 32, 37, 84
Switch, 35
Switched-capacitor filters, 39
System on chip, 13, 46

T
Taylor series, 30
Telescopic opamp, 126
Television, 119
THD, 40, 44, 46, 71, 72, 76, 82, 110, 140
Thermal noise, 72
Third harmonic distortion, 28
Third harmonics, 31
Third-order input intercept point, 72
Third-order intercept point, 71

Third-order output intercept point, 72
Threshold voltage, 22, 67
Total harmonic distortions, 71, 74, 96, 135
Total integrated noise, 83
Transconductance, 18, 25, 27, 30, 33, 74, 93, 100, 107
Transconductance amplifier, 27
Transconductance parameter, 29
Transfer function, 47, 60, 68, 69, 78, 81, 83, 90, 92, 94, 99, 107, 146
Transistor parameters, 22
Transit frequency, 27, 36, 102
Transition band, 70
Transmit path, 73
Triode region, 29, 35, 42
Tuning range, 127, 134
Tunneling currents, 14, 122
Twin well CMOS, 18
Two-signal-path topology, 125
Two-stage amplifier, 124
Two-stage Miller operational amplifier, 127
Two-tone measurement, 50, 55, 81, 82, 87, 96, 104, 110

U
Ultra-wideband, 46
UMTS, 119, 151
Unity-gain configuration, 36
Unity-gain frequency, 30, 40, 92
UWB, 46
UWB receiver, 46

V
Velocity saturation, 15, 18
Virtual ground, 65, 102, 109
Virtual ground regulation, 81, 99, 106
Voltage dependent current source, 40
Voltage gain, 52
Voltage noise, 70
Voltage-controlled current source, 27
Voltage-mode filter, 44, 65, 127, 151

W
WCDMA, 73
WCDMA receiver, 42
Wideband Code Division Multiple Access, 73
Wirebonding, 22
Wiring, 22
WLAN, 44, 119, 151