Glossary

Basic clustering The clustering performed for the purpose of generating a single data partition for the subsequent consensus clustering. See Chap. 7 and the term “consensus clustering”.

Class imbalance problem The challenge to data mining tasks where the data have multiple classes (or true clusters) in varying sizes. See Chaps. 2, 5, and 6.

Cluster analysis The data analysis task that attempts to partition data objects into multiple clusters (or groups) without using external information, such that objects in a cluster are more similar to each other than to objects in different clusters. See Chap. 1.

Cluster validity Using external or internal validation measures to evaluate clustering results in a quantitative and objective way. See Chap. 5 and the term “external validation measure”.

Consensus clustering Also known as cluster ensemble or clustering aggregation, an NP-complete combinatorial optimization problem that aims to find a single clustering from multi-source basic clusterings such that this single clustering matches all the basic clusterings as much as possible. See Chap. 7.

Data smoothing A technique that adds a small positive real number to all data objects such that the sparsity of high-dimensional data, such as text corpora, can be eliminated. See Chap. 4.

External validation measure A category of cluster validity measures that evaluates clustering results by comparing them to the true cluster structures defined by external information such as class labels. See Chap. 5.

Fuzzy c-means A type of prototype-based fuzzy clustering algorithms that acts like K-means clustering but allows a data object to belong to two or more clusters with a membership grade between zero and one. See Chap. 3 and the term “K-means”.

Information-theoretic K-means The K-means algorithm using the Kullback-Leibler divergence (KL-divergence) as the distance function. See Chap. 4 and the term “K-means”.

K-means A type of prototype-based clustering algorithms that assigns data objects to closest clusters by computing the distances between the data objects and the centroids of the clusters. It can be also viewed as a special case of fuzzy c-means when the fuzzy factor tends to one. See Chap. 1 and the term “fuzzy c-means”.

Local clustering A data decomposition technique that performs clustering on a subset of data, e.g. the major class of data. See Chap. 6.

Measure normalization The issue that attempts to normalize the cluster validity measures into a small value range such as [0,1] or [−1,1], for the purpose of comparing clustering quality. See Chap. 5.

Point-to-centroid distance The only family of distance functions that fits directly K-means clustering with centroids of arithmetic means. See Chap. 3 and the term “K-means”.

Rare class analysis The task of classification analysis on highly imbalanced data with the emphasis on identifying positive instances of rare classes. It plays a vital role in many important real-life applications, such as network intrusion detection, credit-card fraud detection, and facility fault detection. See Chap. 6.

Resampling A technique that draws randomly with or without replacement from the available data for generating a smaller (under-sampling) or a larger (over-sampling) subset of that data. See Chap. 6.

Spherical K-means The K-means algorithm using the cosine similarity as the proximity function. See Chap. 4 and the term “K-means”.

Uniform effect The effect of K-means that tends to partition data objects into clusters in uniform sizes. This is a negative effect when applying K-means for class imbalance data. See Chap. 2 and the term “K-means”.

Variable neighborhood search An optimization meta-heuristic which exploits systematically the idea of neighborhood change, both in the descent to local minima and in the escape from the valleys that contain them. See Chap. 4.

Zero-value dilemma The problem in computing KL-divergence between data objects and centroids when there exist zero-value features in the high-dimensional feature space. See Chap. 4.