References

References

108. Mahmood, T.: Characterizations of Hemirings by $(\in_m; \in_m \vee q_n)$—fuzzy ideals (submitted)
132. Shabir, M., Anjum, R.: Characterizations of hemirings by the properties of their \(k \)-ideals (submitted)
133. Shabir, M., Anjum, R.: Right \(k \)-weakly regular hemirings (submitted)
134. Shabir, M., Anjum, R.: On \(k \)-regular and \(k \)-intra-regular hemirings (submitted)
137. Shabir, M., Mahmood, T.: Characterizations of hemirings by \((\overline{\in}, \overline{\in \lor q})\)-fuzzy \(k \)-ideals (submitted)
138. Shabir, M., Mahmood, T.: Characterizations of hemirings by \((\in, \in \lor q)\)-fuzzy \(k \)-ideals (submitted)
139. Shabir, M., Mahmood, T.: Characterizations of hemirings by \((\in, \in \lor q)\)-fuzzy \(k \)-ideals (submitted)
141. Shabir, M., Mahmood, T.: Spectrum of \((\in, \in \lor q)\)-fuzzy prime \(h \)-ideals of a hemiring (submitted)
145. Shabir, M., Mahmood, T.: Characterizations of hemirings by \((\overline{\in}, \overline{\in \lor q_k})\)–fuzzy ideals (submitted)
146. Shabir, M., Mahmood, T.: On interval valued \((\overline{\in}, \overline{\in \lor q_k})\)–fuzzy ideal (submitted)
Index

(α, β)-fuzzy
- left ideal, 106
- right ideal, 106
- subsemiring, 105

$(\in, \in \vee)$-fuzzy
- k-quasi-ideal, 118
- bi-ideal, 108
- left k-ideal, 118
- left ideal, 108
- quasi-ideal, 108
- right k-ideal, 118
- right ideal, 108

$(\in, \in \vee \neg)$-fuzzy
- k-quasi-ideal, 134
- bi-ideal, 124
- left k-ideal, 134
- left ideal, 124
- quasi-ideal, 124
- right k-ideal, 134
- right ideal, 124

D-bigroupoid, 164
D-bisemigroup, 164
KS-algebra, 169
LD-bigroupoid, 164
LD-bisemigroup, 164
LD-rising-bigroupoid, 170
R-subsemimodule, 7
RD-bigroupoid, 164
μ-compatible, 171

k-bi-ideal, 94
k-fuzzy ideal, 75
k-ideal, 6
k-product of fuzzy k-ideals, 22
k-product of fuzzy subsets, 55

k-quasi-ideal, 94
k-semiring, 75
k-sum of fuzzy k-ideals, 22
k-sum of fuzzy subsets, 59

...with threshold (α, β), 141

- fuzzy k-bi-ideal, 153
- fuzzy k-quasi-ideal, 153
- fuzzy bi-ideal, 141
- fuzzy left k-ideal, 153
- fuzzy left ideal, 141
- fuzzy quasi-ideal, 141
- fuzzy right k-ideal, 153
- fuzzy right ideal, 141
- fuzzy subsemiring, 141

absorbing zero, 4
admissible, 203
alphabet, 9

barrier value, 165
Bourne relation, 7

cascade product, 199
commutative semiring, 4
compliment of a fuzzy subset, 11
concatenation, 9
covering, 196
cyclic semimodule, 7

disjoint fuzzy subsets, 10
dot-left-ideal, 167
dot-prime-subset, 167
dot-rising, 169
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyna</td>
<td>184</td>
</tr>
<tr>
<td>empty fuzzy subset</td>
<td>10</td>
</tr>
<tr>
<td>empty word</td>
<td>9</td>
</tr>
<tr>
<td>finitely generated</td>
<td>7</td>
</tr>
<tr>
<td>formal language</td>
<td>9</td>
</tr>
<tr>
<td>free monoid</td>
<td>9</td>
</tr>
<tr>
<td>free semigroup</td>
<td>9</td>
</tr>
<tr>
<td>fully idempotent semiring</td>
<td>25</td>
</tr>
<tr>
<td>fuzzy k-bi-ideal</td>
<td>94</td>
</tr>
<tr>
<td>fuzzy k-ideal</td>
<td>16</td>
</tr>
<tr>
<td>left k-ideal</td>
<td>16</td>
</tr>
<tr>
<td>right k-ideal</td>
<td>16</td>
</tr>
<tr>
<td>two-sided k-ideal</td>
<td>16</td>
</tr>
<tr>
<td>fuzzy k-quasi-ideal</td>
<td>97</td>
</tr>
<tr>
<td>fuzzy LD-bigroupoid</td>
<td>165</td>
</tr>
<tr>
<td>fuzzy bi-ideal</td>
<td>86</td>
</tr>
<tr>
<td>fuzzy ideal</td>
<td>15</td>
</tr>
<tr>
<td>irreducible ideal</td>
<td>27</td>
</tr>
<tr>
<td>left ideal</td>
<td>15</td>
</tr>
<tr>
<td>prime ideal</td>
<td>27</td>
</tr>
<tr>
<td>right ideal</td>
<td>15</td>
</tr>
<tr>
<td>semiprime ideal</td>
<td>43</td>
</tr>
<tr>
<td>strongly irreducible</td>
<td>43</td>
</tr>
<tr>
<td>two-sided ideal</td>
<td>15</td>
</tr>
<tr>
<td>fuzzy normal semimodule</td>
<td>36</td>
</tr>
<tr>
<td>fuzzy point</td>
<td>41</td>
</tr>
<tr>
<td>fuzzy quasi-ideal</td>
<td>84</td>
</tr>
<tr>
<td>fuzzy relation</td>
<td>78</td>
</tr>
<tr>
<td>congruence</td>
<td>79</td>
</tr>
<tr>
<td>equivalence</td>
<td>78</td>
</tr>
<tr>
<td>reflexive</td>
<td>78</td>
</tr>
<tr>
<td>symmetric</td>
<td>78</td>
</tr>
<tr>
<td>transitive</td>
<td>78</td>
</tr>
<tr>
<td>fuzzy set</td>
<td>10</td>
</tr>
<tr>
<td>subset</td>
<td>10</td>
</tr>
<tr>
<td>fuzzy subgroup</td>
<td>12</td>
</tr>
<tr>
<td>fuzzy subgroupoid</td>
<td>12</td>
</tr>
<tr>
<td>fuzzy subring</td>
<td>12</td>
</tr>
<tr>
<td>fuzzy subsemimodule</td>
<td>32</td>
</tr>
<tr>
<td>fuzzy prime</td>
<td>48</td>
</tr>
<tr>
<td>fuzzy semiprime</td>
<td>48</td>
</tr>
<tr>
<td>fuzzy subsemiring</td>
<td>15</td>
</tr>
<tr>
<td>ideal</td>
<td>6</td>
</tr>
<tr>
<td>bi-ideal</td>
<td>83</td>
</tr>
<tr>
<td>left</td>
<td>6</td>
</tr>
<tr>
<td>quasi</td>
<td>83</td>
</tr>
<tr>
<td>right</td>
<td>5</td>
</tr>
<tr>
<td>two-sided</td>
<td>6</td>
</tr>
<tr>
<td>identity</td>
<td>4</td>
</tr>
<tr>
<td>intersection of fuzzy subsets</td>
<td>10</td>
</tr>
<tr>
<td>intra-regular</td>
<td>91</td>
</tr>
<tr>
<td>juxtaposition</td>
<td>9</td>
</tr>
<tr>
<td>length of word</td>
<td>9</td>
</tr>
<tr>
<td>level subsets</td>
<td>11</td>
</tr>
<tr>
<td>mean value property</td>
<td>166</td>
</tr>
<tr>
<td>mutual specializations</td>
<td>172</td>
</tr>
<tr>
<td>normalized fuzzy subset</td>
<td>11</td>
</tr>
<tr>
<td>open barrier value</td>
<td>166</td>
</tr>
<tr>
<td>path algebra</td>
<td>5</td>
</tr>
<tr>
<td>principal left ideal</td>
<td>7</td>
</tr>
<tr>
<td>principal right ideal</td>
<td>7</td>
</tr>
<tr>
<td>probabilistic context-free grammar</td>
<td>178</td>
</tr>
<tr>
<td>product of fuzzy subsets</td>
<td>11,18</td>
</tr>
<tr>
<td>pure fuzzy subsemimodule</td>
<td>36</td>
</tr>
<tr>
<td>quasi-coincident</td>
<td>105</td>
</tr>
<tr>
<td>retract</td>
<td>8</td>
</tr>
<tr>
<td>right R-congruence</td>
<td>7</td>
</tr>
<tr>
<td>right R-homomorphism</td>
<td>7</td>
</tr>
<tr>
<td>right R-semimodule</td>
<td>7</td>
</tr>
<tr>
<td>right t-pure fuzzy ideal</td>
<td>35</td>
</tr>
<tr>
<td>right t-pure ideal</td>
<td>35</td>
</tr>
<tr>
<td>right weakly regular semiring</td>
<td>23</td>
</tr>
<tr>
<td>rising</td>
<td>169</td>
</tr>
<tr>
<td>scalar barrier value</td>
<td>168</td>
</tr>
<tr>
<td>schedule algebra</td>
<td>6</td>
</tr>
<tr>
<td>semifield</td>
<td>4</td>
</tr>
<tr>
<td>semimodule</td>
<td>35</td>
</tr>
<tr>
<td>normal</td>
<td>35</td>
</tr>
<tr>
<td>semiring</td>
<td>4</td>
</tr>
<tr>
<td>k-intra-regular</td>
<td>101</td>
</tr>
<tr>
<td>k-regular</td>
<td>63</td>
</tr>
<tr>
<td>fully fuzzy prime</td>
<td>44</td>
</tr>
<tr>
<td>fully fuzzy semiprime</td>
<td>44</td>
</tr>
<tr>
<td>left k-weekly regular</td>
<td>64</td>
</tr>
<tr>
<td>regular</td>
<td>5</td>
</tr>
<tr>
<td>right k-weekly regular</td>
<td>64</td>
</tr>
<tr>
<td>von Neumann regular</td>
<td>5</td>
</tr>
<tr>
<td>simple semimodule</td>
<td>7</td>
</tr>
<tr>
<td>specialization</td>
<td>172</td>
</tr>
<tr>
<td>star-left-ideal</td>
<td>168</td>
</tr>
</tbody>
</table>
Index

star-opposite-\(LD\)-bigroupoid, 170
star-prime, 165
star-rising, 169
strong-dot-null-element, 169
strong-star-null-element, 169
subsemimodule
 pure, 35
subsemimodule generated by, 7
sum of fuzzy subsets, 18

trivial congruence, 7
union of fuzzy subsets, 10
universal congruence, 7
weighted finite transition system, 195
word, 9
zero of the semiring, 4