References

Al’tshuler LV (1965) Use of shock waves in high-pressure physics. Sov Phys Uspenskhi 8:52–90

Bethe HA (1941) An attempt at a theory of armor penetration, Ordnance Laboratory Report R-492, Frankford Arsenal, May 1941


Canfield JA, Clator IG (1966) Development of scaling law techniques to investigate penetration in concrete. NWL Report #2057, Naval Weapon Laboratory, Dahlgren


Euler L (1745) Neue Grundsatze de Artillerie, reprinted as vol 14, ser. II of Euler’s Opera Omnia, Teubner, Berlin, 1922


Gurney R (1943) The initial velocities of fragments from bombs, shells and grenades. Ballistics Research Laboratory, Report No. 405, AII-36218, Sept 1943
Held M (1973) Protective device against projectiles, especially shaped charges, German Patent No. 2358277, 22.11.1973
Held M (1999a) Effectiveness factors of explosive reactive armor systems. Propell Explos Pyrotech 24:70–75
Held M (1999b) Comparison of explosive reactive armor against different threat level. Propell Explos Pyrotech 24:76–77
Held M (2006) Stopping power of ERA sandwiches as a function of explosive layer thickness or plate velocity. Propellants Explosives Pyrotechnics 31:234–238
References


Kinard WH, Lambert CH, Schryer DR, Casey FW (1958) Effect of target thickness on cratering and penetration of projectiles impacting at velocities to 13,000 fps, NASA Memorandum 10-18-58L


Paterson MS (1978) Experimental rock deformation – the brittle field. Springer-Verlag, Heidelberg


Poncelet JV (1835) Rapport sur un memoire de MM Piobert et Morin, Mem. Acad. Sci. 15:55–91


Rakhmatulin KA (1966) Strength under high transient loads, Israel Program for Scientific Translation, Jerusalem


Resal H (1895) Sur la penetration d’un projectile dans les semi-fluides et les solides, Compte Rendus, 120:397–401
Silsby GF, Rozak RJ, Giglio-Tos L (1983) BRL’s 50 mm high pressure powder gun for terminal ballistics – the first year experience. Ballistic Research Laboratory Report No. BRL-MR-03236
References

References

Wilkins ML (1968) Third progress report of light armor program. Lawrence Radiation Laboratory, Livermore, UCRL – 50460
Yeshurun Y, Rosenberg Z (1993) AP projectile fracture mechanisms as a result of oblique impact. Proceedings of the 14th international symposium on ballistics, Quebec Canada, pp 537–544