Annex: Autonomy Implementation Examples
Autonomous onboard SW / HW Components

In October 2001 ESA launched the first satellite of the PROBA series – “Project for Onboard Autonomy”. With these satellites new technologies heading for higher levels of onboard autonomy and higher automation levels in satellite operations were tested.

PROBA 1 served for in-flight testing of following technologies (cf. [108]):

- First in orbit use of Europe’s 32bit space application microprocessor – the ERC32 chip set.
- First use of a digital signal processor, (DSP), as an instrument control computer ICU.
- First in orbit application of a newly designed “autonomous” star sensor.
- Use of onboard GPS for the first time.
- And following innovations in the onboard software:
 - ESA for the first time flying an OBSW coded in C instead of Ada.
 - ESA for the first time flying an OBSW based on an operating system instead of a pure Ada coded OBSW implementation (VxWorks was applied here).
 - The GNU C compiler for the ERC32 target was finally validated by flying a GNU C compiled OBSW running on the ERC32.

The achieved new onboard functionalities were:

- For the first time having an ESA satellite with position determination in orbit by means of GPS.
- Attitude determination through an active star sensor automatically identifying star constellations.
- Autonomous prediction of navigation events (target flyover, station flyover)
- A limited onboard “mission planning” functionality based thereupon.
Improvement Technology – Optimizing the Mission Product

This example (cf. [109]) depicts a combined ground / space architecture of the ESA study “Autonomy Testing” where the design of a potential onboard mission planning function for payload operation was analyzed.

The idea behind this is that users “only” needs to transmit their observation requests (“user requests”) to the combined system consisting of space segment (simulated satellite) and ground segment (simplified ground station). The customer requesting a mission product defines

- by which payload,
- in which operating mode,
- with which settings,
- they want to have which target area observed
- in which time window.

It was analyzed in how far it would make sense to implement parts of the mission planning and overall system timeline generation (ground + space) on board the spacecraft to shorten mission prediction response times. In such cases the satellite constantly has to collect customer requests from the various sequentially visible ground stations and is equipped with an intelligent mission planning system. This system generates a detailed timeline comprising all commands for all involved platform subsystems – mainly AOCS – and the involved payload(s).

Autonomous On-board Architecture:
- System Supervisor (from DLR MARCO study)
 Level of autonomy scaleable from simple macro-command execution via onboard control procedures processing up to onboard timeline execution
- TINA Timeline Generator, providing onboard generation of directly executable mission timelines from user requests and platform service requests.

Test Infrastructure:
- Simulated Satellite and Space Environment:
 - SSVF simulator
 - Spacecraft model, and environment models derived from SSVF
- Ground segment/checkout system:
 - SSVF/CGS configuration
 - TINA console for user-request definitions

Figure A2: Onboard autonomy test infrastructure: "Autonomy Testbed". © Astrium GmbH
The prototype from the ESA “Autonomy Testing” study consisted of:

- A Core EGSE acting as a simplified ground station
- A satellite simulator
- An onboard computer board as simplified single board computer
- An onboard software with a macrocommand interface (somewhat like OBCPs) running on this board
- A mission planning algorithm which created an activity timeline from the cited user requests including all macrocommands to the onboard software.

The onboard software executed the spacecraft macrocommands in the generated mission timeline and thus controlled the simulated satellite. In this autonomy testbed complex scenarios were tested which comprised:

- Nominal operational cases in which user requests were uplinked, processed and the results were downlinked at the next ground station contact.
- Furthermore scenarios which lead to planning conflicts on board and where the user requests could only be partially satisfied within the operating period.
- And finally scenarios during which manually injected equipment failures occurred and where initially a suitable error recovery needed to be identified and to be performed – followed by a replanning of the activities since after error recovery the satellite had already missed some of the observation targets. See also figure A4.

Such mission planning algorithms impose high requirements towards

- the onboard software (which needs to intercept any potentially erroneous commands, which might be created by the mission planning tool),
- and to the spacecraft simulation infrastructure which has to reflect sufficiently realistically the overall scenario including payload operations.
Figure A4: Autonomous recovery scenario on board. © Astrium GmbH
Enabling Technology – Autonomous OBSW for Deep Space Probes

In spring 2006 NASA launched the deep space probe “New Horizons” to explore the trans Neptunian objects Pluto and Charon. It represents probably the highest level of onboard autonomy ever flown to date.

The onboard software of New Horizons is based on a case based decision algorithm and a rule chainer algorithm. In place of onboard control procedures as used in conventional satellites here structures are implemented applying Artificial Intelligence techniques to control the nominal approach maneuvers as well as the error recovery. Cases are implemented on the lower processing level to identify abstract symptoms from parameter measurements and above these cases a rule network is implemented for situation analysis and system control.

The following figure provides a sketch of a small extract from the overall rule network – here for the handling of an error during Pluto approach. The failure can either be handled or results in the space probe going to Safe Mode – depending on the detailed conditions. The rule network implements a forward chaining method for processing.

For explanation of the figure below also please refer to [110] and [111]:

- The Rxxx-identifiers represent rules.
- The Myyy-identifiers represent macros which are executed by the activated rules.
- All spacecraft commands initiated by rules are encapsulated in such macros.
- The transition times for the rules / macro execution are depicted as well (some cover several days due to spacecraft coast or approach phases).
- For the rules / macros the onboard processor executing them is shown (in this extract from the rule network P3 and P5 are cited)
- and in the rule identification information is contained (for details see [110]):
 ◦ The rule priority
 ◦ The rule persistence
 ◦ The methodology how the rule result is to be handled by the inference system, when the rule result is obviously outdated
 ◦ The state during the loading of the rule into memory (active / inactive).

Figure A6: Extract of a rule-based mode-transition network of an OBSW (from [110]) © NASA
Tranquility Base here, the Eagle has landed.

Neil Armstrong

July 20, 1969, 20h 17m 43s UTC

References
References on Missions driving OBC / OBSW Technology

General:
http://www.hq.nasa.gov/office/pao/history/computers/Part1-intro.html

NASA Mercury Program:

NASA Gemini Program:
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690027123_1969027123.pdf
ISBN 3-8370-2968-9

NASA Apollo Program:
[8] Apollo Mission:
http://spaceflight.nasa.gov/history/apollo/index.html
[9] Apollo Guidance Computer:
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/public/visual3.htm
and
[10] Tomayko, James:
The Apollo guidance computer: Hardware.
In: Computers in Spaceflight: The NASA Experience. NASA

The Apollo guidance computer: Software.
In: Computers in Spaceflight: The NASA Experience. NASA

NASA Space Shuttle Program:

[12] N.N.:
IBM and the space shuttle,
http://www-03.ibm.com/ibm/history/exhibits/space/space_shuttle.html

[13] Space Shuttle Onboard Computer:

[14] Tomayko, James:
Computers in Spaceflight: The NASA Experience,
http://www.hq.nasa.gov/office/pao/History/computers/Ch4-2.html

NASA Mariner Program:

[15] Dunne, James A. ; Burgess Eric:
NASA History Office: The Voyage of Mariner 10
http://history.nasa.gov/SP-424/sp424.htm

[16] Tomayko, James:
Computers in Spaceflight: The NASA Experience,
Appendix IV – Mariner Mars 1969 Flight Program
http://www.hq.nasa.gov/office/pao/History/computers/Appendix-IV.html

[17] Hooke, A.J.:
In Flight Utilization of the Mariner 10 Spacecraft Computer,

NASA Voyager Program:

[18] N.N.:
JPL News & Features
Engineers Diagnosing Voyager 2 Data System
NASA Galileo Mission:

[19] N.N:
NASA: Solar System Exploration: Galileo
JPL: Galileo Project Home
http://solarsystem.nasa.gov/galileo/

[20] Tomayko, James:
Computers in Spaceflight: The NASA Experience,
Chapter Six: Distributed Computing On Board Voyager and Galileo
http://history.nasa.gov/computers/Ch6-3.html

[21] Thomas, J. S.:
A command and data subsystem for deep space exploration based on
the RCA 1802 microprocessor in a distributed configuration
Jet Propulsion Laboratory, 1980
Document ID: 19810003139
Accession Number: 81N11647

References on Microprocessors for Space

CDP1802:

[22] N.N.:
CDP1802 datasheet,

[23] N.N.:
RCA 1800 Microprocessor
User Manual for the CDP1802 COSMAC Microprocessor

Am2900:

[24] N.N.:
The Am2900 Family Data Book

MIL-STD-1750 compatibles:

[25] N.N.:
MIL-STD-1750 A
[26] N.N.: Dynex Semiconductor MA31750 Processor (Datasheet)
http://www.dynexsemi.com/assets/SOS/Datasheets/DNX_MA31750M_N_Feb06_2.pdf

[27] N.N.: UT1750AR RadHard RISC Microprocessor Data Sheet

RS/6000 – RAD6000:

[29] RAD6000™ Space Computers

MIPS R3000 (Mongoose V):
http://www.synova.com/proc/processors.html

ERC32 and LEON:
[31] N.N.: Sun SPARC;
http://en.wikipedia.org/wiki/Sun_SPARC

[32] ESA microelectronics ERC32 website:
http://www.esa.int/TEC/Microelectronics/SEM2XKV681F_0.html

[33] N.N.: SPARC Series Processors ERC32 Documentation,
http://klabs.org/DEI/Processor/sparc/ERC32/ERC32_docs.htm

[34] N.N.: LEON2 and 3 VHDL Code (under LGPL),
http://www.gaisler.com/

[35] N.N.: LEON Processors,
[36] LEON 3 Single Board Computers:
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=189&Itemid=120 and

[37] Koebel, Franck; Coldefy, Jean-François:
SCOC3: a space computer on a chip
An example of successful development of a highly integrated innovative ASIC,
Microelectronics Presentation Days
ESA/ESTEC, March 2010,
Noordwijk, Netherlands

[38] Poupat, Jean-Luc; Lefèvre, Aurélien; Koebel, Franck:
OSCAR: A compact, powerful and versatile On Board Computer based on LEON3 Core
Data Systems in Aerospace,
DASIA 2011 Conference,
17 - 20 May, 2011, San Anton, Malta

Diverse:

[39] Weigand, Roland:
ESA Microprocessor Development Status and Roadmap
Data Systems in Aerospace,
DASIA 2011 Conference,
17 - 20 May, 2011, San Anton, Malta

References on Programming Languages

HAL/S:

[40] Highlevel Assembler Language / Shuttle – HAL/S:

[41] NASA Office of Logic Design:
http://klabs.org/DEI/Processor/shuttle/
- HAL/S Compiler System Specification
- HAL/S Language Specification
- HAL/S Programmer’s Guide
References

- Programming in HAL/S

JOVIAL:

[42] JOVIAL (Jules Own Version of the International Algorithmic Language):
http://en.wikipedia.org/wiki/JOVIAL

[43] N.N.:
MIL-STD-1589C, MILITARY STANDARD: JOVIAL (J73)
United States Department of Defense. 6 JUL 1984

Ada:

[44] Ada:
http://en.wikipedia.org/wiki/Ada_(programming_language)

[45] Barnes, John:
Programming in Ada 2005
Addison-Wesley Longman, Amsterdam, 2006

C:

[46] Kernighan, Brian W.; Ritchie, Dennis M.:
C Programming Language,
Prentice Hall,
2nd edition, 1988
ISBN: 978-0131103627

C++:

[47] Stroustrup, Bjarne:
The C++ Programming Language
Addison Wesley, Reading, Massachusetts,
2nd Edition, 1993,
ISBN: 0-201-53992-6

[48] Eckel, Bruce:
Using C++, Covers C++ Version 2.0,
Osbourne McGraw Hill, Berkeley 1989,
ISBN: 0-07-881522-3
Addison Wesley, Reading, Massachusetts, 1990,
ISBN: 8131709892

Assembler to C:

[50] Patt, Yale; Patel, Sanjay: Introduction to Computing Systems: From bits & gates to C & beyond,
McGraw-Hill,
2nd edition, 2003
ISBN: 978-0072467505

References on Realtime Operating Systems

VxWorks:

RTEMS:
[52] OAR Corporation:
http://www.rtems.com

References on Data Buses and other Interfaces

MIL-STD-1553B:

http://www.sae.org/technical/standards/AS15531

[54] N.N.: MIL-STD-1553 Tutorial and Reference from Alta Data Technologies

SpaceWire:

[55] ECSS SpaceWire Standard Homepage:
ECSS-E-ST-50-12C – SpaceWire – Links, nodes, routers and networks
http://www.ecss.nl/forums/ecss/_templates/default.htm?
target=http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/docProfile/
100654/d20080802144344/No/t100654.htm

Subpages:
ECSS-E-ST-50-53C SpaceWire – CCSDS packet transfer protocol
ECSS-E-ST-50-52C SpaceWire – Remote memory access protocol
ECSS-E-ST-50-51C SpaceWire protocol identification

[56] ESA SpaceWire Homepage:
http://spacewire.esa.int/content/Home/HomeIntro.php

Controller Area Network, CAN:

[58] ISO 11898:
http://www.iso.org/iso/search.htm?
qt=Controller+Area+Network&searchSubmit=Search&sort=rel&type=simple&published=true

[59] Davis, Robert I.; Burns, Alan; Bril, Reinder J.; Lukkien, Johan J.:
Controller Area Network (CAN) schedulability analysis: Refuted, revisited
and revised,
Real-Time Systems
Volume 35, Number 3, 239-272, DOI: 10.1007/s11241-007-9012-7,
http://www.springerlink.com/content/8n32720737877071/

OSI Network Model:

[61] Open Systems Interconnection model (OSI model):

References on OBC Debug and Service Interfaces

JTAG / ICD:

Service Interface:

References on Onboard Equipment Development

Technology Readyness Level:

References on Technologies for persistent Memory

Flash Memory Technology:

Magnetoresistive Memory Technology:

References on Solid State Recorders

Solid State Recorders:

[72] http://sbir.nasa.gov/SBIR/successes/ss/5-004text.html
References on Command / Control Standards

[74] ECSS-E-70-01A – Ground systems and operations – Part 1: Principles and requirements

[76] CCSDS 131.0-B-1 TM Synchronization and Channel Coding

[77] CCSDS 132.0-B-1 TM Space Data Link Protocol

[78] CCSDS 133.0-B-1 Space Packet Protocol

[79] CCSDS 231.0-B-1 TC Synchronization and Channel Coding

[80] CCSDS 232.0-B-1 TC Space Data Link Protocol

[81] CCSDS 232.1-B-1 Communications Operation Procedure-1 CCSDS 732.0-B-2 AOS Space Data Link Protocol

[82] ECSS-E-ST-50-01A Space engineering – Space data links – Telemetry synchronization and channel coding

[83] ECSS-E-ST-50-03A Space engineering – Space data links – Telemetry transfer frame protocol

[84] ECSS-E-ST-50-04A Space data links – Telecommand protocols, synchronization and channel coding

[85] ECSS-E-ST-50-05A Space engineering – Radio frequency and modulation

References on SADT / IDEF0 based Software Design

[87] Marca, D.; McGowan, C.:
Structured Analysis and Design Technique,
McGraw-Hill, 1987
ISBN: 0-07-040235-3

[88] N.N.:
Overview of IDEF0:
http://www.idef.com/idef0.htm

References on HOOD Software Design

[89] http://www.esa.int/TEC/Software_engineering_and_standardisation/TEC
 KLAUXBQE_0.html

[90] Rosen J-P.:
HOOD: An Industrial Approach for Software Design,
Edited by: HOOD User Group

[91] Selic, Bran; Gullekson, Garth; Ward, Paul T.:
Realtime Object Oriented Modeling,
Wiley & Sons, 1994
ISBN: 978-0471599173

[92] Burns, A.; Wellings, A.:
Hard Real-Time HOOD: A structured Design Method for Hard Real-Time
Ada Systems
Elsevier Science Ltd, 1995
ISBN: 978-0444821645

References on UML Software Design

[93] Booch, Grady; Rumbaugh, James; Jacobson, Ivar:
The Unified Modelling Language User Guide,
Addison Wesley Longman, Reading, Massachusetts, 1999
ISBN: 0-201-57168-4

[94] Rumbaugh, James; Jacobson, Ivar; Booch, Grady:
The Unified Modeling Language Reference Manual,

References on Simulation and Verification Testbeds

[99] Eisenmann, Harald; Cazenave, Claude: SimTG: Successful Harmonization of Simulation Infrastructures, 10th International Workshop on Simulation for European Space Programmes, SESP 2008, October 7th - 9th 2008, ESA/ESTEC, Noordwijk, Netherlands

References on Software Development Standards

ECSS Standards:
[100] ECSS-E-ST-40C Space Engineering – Software

DO-178B:
[102] RCTA/EUROCAE: Software Considerations in Airborne Systems and Equipment
Certification, DO-178B/ED-12B, December 1992

Galileo Software Standard:

[104] Montalto, Gaetano:

NASA Standards (Top level view):

MIL Standards:

[106] MIL-STD-2167A,

References on Onboard Autonomy

[107] ECSS-E-ST-70-11C, Space segment operability

[108] http://www.esa.int/SPECIALS/Proba_web_site/SEMHHH77ESD_0.html

[109] Eickhoff, Jens:
System Autonomy Testbed
Product Flyer, Dornier Satellitensysteme GmbH, Friedrichshafen, Germany, 1997

[110] Moore, Robert C.:
Autonomous Safeing and Fault Protection for the New Horizons Mission to Pluto,
The Johns Hopkins University Applied Physics Laboratory, Laurel,
Maryland, USA, 57th, International Astronautical Congress, Valencia, Spain, October 2.-6., 2006

References on Flight Operations

[112] ECSS-E-ST-70-11C Space Engineering – Space segment operability

[113] ECSS-E-ST-70-31C Space Engineering – Ground systems and operations – Monitoring and control data definition

[114] ECSS-E-ST-70-32C Space Engineering – Test and operations procedure language

References Diverse

[120] Eickhoff, Jens; Cook, Barry; Walker, Paul; Habinc, Sandi A.; Witt, Rouven; Röser, Hans-Peter: Common board design for the OBC I/O unit and the OBC CCSDS unit of the Stuttgart University Satellite "Flying Laptop" Data Systems in Aerospace, DASIA 2011 Conference, 17 - 20 May, 2011, San Anton, Malta

[121] Fritz, Michael; Röser, Hans-Peter; Eickhoff, Jens; Reid, Simon: Low Cost Control and Simulation Environment for the "Flying Laptop", a University Microsatellite Spaceops 2010 Conference, Huntsville, Alabama, USA, 25 - 30 April 2010

Index

A
Actel ProASIC .. 47
Actel RT-AX .. 47
Ada ... 33, 42, 46, 120, 135, 136, 254
Aeolus ... 135
Algorithm in the Loop 149, 151
AMBA bus ... 47
AMD 2900 .. 40
Analog sensor equipment 56
Analog spacecraft control 23
Antenna effects ... 73
Antenna ground station 235
AOCS mode ... 193
AP-101 .. 32
Apollo program ... 24, 29
Application Process Identifier: 95, 111, 187
Application Specific Integrated Circuit 44
ARINC 825 ... 62
ARM ... 46, 47, 54
ASIC ... 78, 156
Assembler .. 26, 30, 33, 37, 135
Assembly, Integration and Testing 160
ATLAS .. 41
Attitude acquisition ... 197
Attitude and Articulation Control
 Subsystem ... 36, 38
Attitude and Orbit Control System 56
ATV ... 211
Authentication .. 203
Autocode .. 148
Autonomy .. 163
Autonomy testbed .. 256

B
Ball Grid Array .. 72
Bepi Colombo .. 61, 127
Bit failure .. 126
Bitslice arithmetic logical unit 40
Boot ... 246
Boot loader ... 91
Boot memory .. 54, 56
Boot report .. 118
Breadboard Model .. 77
Built-in self test ... 37
Bus controller ... 54, 59

C
C ... 42, 136, 254
C++ ... 136
Calibration ... 250
CAN bus ... 47
CANaerospace ... 62
Cassini ... 41
CCSDS ... 62, 154
CCSDS packet ... 102
CCSDS processor .. 63, 101, 114
CCSDS standard ... 62, 95
Channel Access Data Unit 63, 95
Channel acquisition table 123, 124
CISC ... 43
Classroom training ... 244
Clock module ... 207
Clock strobe ... 207
Closed-loop ... 160
CMOS memory .. 36
Code inspection ... 135
Code instrumentation 67
Columbus Software Development
 Standard ... 168
Command and Data Subsystem 38
Command Link Transfer Unit 62, 95
Command Pulse Decoding Unit 64, 112, 187
Commissioning phase 250
Commissioning Phase 192
Compact PCI .. 47
Consultative Committee for Space Data
 Systems ... 62, 95
Control and Data Management Unit 6
Control console .. 152, 153
Controller Area Network 61
Controller in the Loop 149, 156, 157, 160
Controller network ... 58
Core Data Handling System 118
Critical Design Review 8
CryoSat .. 45, 52, 120, 158, 193, 237
Current free encoding 59

D
Data bus .. 54, 58
Data downlink .. 209
Data management autonomy 213
Data pools...13
De-orbiting..10
Death-report......................................118
Debug interface..................................54
Debug support unit..............................66
Debugger..155
Deep Space Network..............................34
Deep space probe................................183
Deployment.......................................197, 247
Development board................................77
Diagnostic packet................................204
Digital Command Sequencer......................34
Digital Equipment PDP 11..........................40
Digital signal processor.........................254
Direct Memory Access Controller...............42
DO178B...167
Docking maneuver................................24
Document Requirements Definition...............176
Documents Requirements List.....................173
Doppler effect.....................................209
Dynamic RAM......................................57

E
ECSS standards....................................167
EDAC memory......................................57
Electrical Functional Model.......................160
Electrically Erasable PROM.......................56
Electromagnetic compatibility.....................5
Elegant Breadboard................................77
EMC tightness......................................73
Enabling technology...............................213
Encryption..203
End-of-Life Disposal Phase.........................193
Engineering Model................................15, 77
Engineering Qualification Model..................76
Environmental Control and Life Support
System...24
Envisat..41, 42
Equipment handler................................92
Equipment health status..........................205
Equipment operational modes......................12
Equipment states....................................196
ERC32..45, 46, 52, 120
Error Detection and Correction.....................57, 126
ERS-1/2...42, 76
ESA Space Operations Center......................245
Ethernet..47
European Cooperation for Space
Standardization....................................167
Event...205, 206
Event history.......................................204
Event TM packet....................................117
Event-action-table................................205

F
Fail Operational.................................221
Fail to Safe Mode.................................221
Failure Detection, Isolation and Recovery
...4, 5, 17, 116, 219
FDIR and safeguarding hierarchy.................222
FDIR autonomy.....................................213
FDIR concept.......................................220
FDIR function......................................163
Field Programmable Gate Array...................44
Flash EEPROM......................................56
Flash memory.......................................83
FlatSat..161, 162
Flight Acceptance Review.........................8
Flight Data Subsystem.............................36
Flight Dynamics Infrastructure....................241
Flight Model.......................................15, 76
Flight Operations Center.........................180
Flight operations director.........................237
Flight Operations Director.........................238
Flight Operations Manual........................201
Flight Procedure.................................228
FORTRAN..42, 135
FPGA..78, 79, 156
FPGA board..77
Function Tree......................................130, 131
Functional domain...............................236, 237
Functional requirements..........................180
Functional sequence monitoring..................205
Functional Verification Bench.....................150

G
GAIA...127
Galileo Navigation System........................
...45, 52, 54, 62, 156, 161, 168
Galileo Software Standard.........................168
Gemini Digital Computer........................25, 30
Gemini program..................................24
GEO satellite......................................182
GIOVE-A...62
GNU Ada compiler................................42
Go / No-Go criteria...............................249
GOCE...45
GPS...254
GR UT699..48
GRACE...76
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground communications system</td>
</tr>
<tr>
<td>Ground segment infrastructure</td>
</tr>
<tr>
<td>Ground station visibility plan</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>Hardware / software compatibility tests</td>
</tr>
<tr>
<td>Hardware alarm</td>
</tr>
<tr>
<td>Hardware in the Loop</td>
</tr>
<tr>
<td>Hardware verification</td>
</tr>
<tr>
<td>Harel state machine</td>
</tr>
<tr>
<td>Hierarchic Object-Oriented Design</td>
</tr>
<tr>
<td>High energetic particle</td>
</tr>
<tr>
<td>High Priority Command</td>
</tr>
<tr>
<td>.. 64, 112, 166, 202, 224</td>
</tr>
<tr>
<td>High Priority Telemetry</td>
</tr>
<tr>
<td>High Priority Telemetry log</td>
</tr>
<tr>
<td>Highlevel Assembler Language / Shuttle</td>
</tr>
<tr>
<td>.. 33, 40, 42, 135</td>
</tr>
<tr>
<td>Housekeeping</td>
</tr>
<tr>
<td>Housekeeping data memory</td>
</tr>
<tr>
<td>Housekeeping packet</td>
</tr>
<tr>
<td>HPTM log</td>
</tr>
<tr>
<td>Huygens</td>
</tr>
<tr>
<td>HW Trap</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>I/O Board</td>
</tr>
<tr>
<td>IBM System 360</td>
</tr>
<tr>
<td>IDEF0</td>
</tr>
<tr>
<td>IEEE 1355</td>
</tr>
<tr>
<td>IEEE 802.3</td>
</tr>
<tr>
<td>IEEE standards</td>
</tr>
<tr>
<td>In circuit debugger</td>
</tr>
<tr>
<td>Instrument operations sequence</td>
</tr>
<tr>
<td>Integral</td>
</tr>
<tr>
<td>Integrated circuit</td>
</tr>
<tr>
<td>Integrated circuits</td>
</tr>
<tr>
<td>Intel 80386</td>
</tr>
<tr>
<td>Intel 80486</td>
</tr>
<tr>
<td>Intel 80x86</td>
</tr>
<tr>
<td>Interface driver</td>
</tr>
<tr>
<td>Internal memory</td>
</tr>
<tr>
<td>Interrupt</td>
</tr>
<tr>
<td>IP-Core</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>Java</td>
</tr>
<tr>
<td>Joint Test Actions Group</td>
</tr>
<tr>
<td>JOVI AL</td>
</tr>
<tr>
<td>JTAG interface</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>Launch and Early Orbit Phase</td>
</tr>
<tr>
<td>.. 9, 16, 180, 192, 197, 246</td>
</tr>
<tr>
<td>Launcher separation</td>
</tr>
<tr>
<td>Launchpad</td>
</tr>
<tr>
<td>LEO satellite</td>
</tr>
<tr>
<td>LEON</td>
</tr>
<tr>
<td>LEON3FT</td>
</tr>
<tr>
<td>LEOP Autosequence</td>
</tr>
<tr>
<td>Limit violation</td>
</tr>
<tr>
<td>Line Control Block</td>
</tr>
<tr>
<td>Lock-in amplifier</td>
</tr>
<tr>
<td>Logging mechanism</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>MA31750</td>
</tr>
<tr>
<td>Magnetic core memory</td>
</tr>
<tr>
<td>Magnetic tape</td>
</tr>
<tr>
<td>Magnetoresistive Random Access Memory</td>
</tr>
<tr>
<td>Man Machine Interface</td>
</tr>
<tr>
<td>Manufacturing</td>
</tr>
<tr>
<td>MAP-ID</td>
</tr>
<tr>
<td>Mariner missions</td>
</tr>
<tr>
<td>Mars Express</td>
</tr>
<tr>
<td>Mars Reconnaissance Orbiter</td>
</tr>
<tr>
<td>Mass Memory and Formatting Unit</td>
</tr>
<tr>
<td>.. 6, 54, 57, 82</td>
</tr>
<tr>
<td>Master Timeline Manager</td>
</tr>
<tr>
<td>Mechanical loads</td>
</tr>
<tr>
<td>Memory failure</td>
</tr>
<tr>
<td>Mercury program</td>
</tr>
<tr>
<td>Metamodel</td>
</tr>
<tr>
<td>MeteoSat</td>
</tr>
<tr>
<td>MetOp</td>
</tr>
<tr>
<td>Microprocessor</td>
</tr>
<tr>
<td>MIL-STD-1553</td>
</tr>
<tr>
<td>MIL-STD-1750</td>
</tr>
<tr>
<td>MIL-STD-1815</td>
</tr>
<tr>
<td>MIPS</td>
</tr>
<tr>
<td>Mission analysis</td>
</tr>
<tr>
<td>Mission Control System</td>
</tr>
<tr>
<td>Mission execution autonomy</td>
</tr>
<tr>
<td>Mission lifetime</td>
</tr>
<tr>
<td>Mission planning</td>
</tr>
<tr>
<td>Mission planning tool</td>
</tr>
<tr>
<td>Mission scenarios</td>
</tr>
<tr>
<td>Mission timeline</td>
</tr>
<tr>
<td>Mode concept</td>
</tr>
<tr>
<td>Monitor</td>
</tr>
</tbody>
</table>
Monitoring .. 204, 221
Motorola 68xxx 46
Multiplexer Access Point Identifier 112
Multitasking 30

N
Navigation receiver 82, 131
New Horizons 258
NOAA-18 ... 42
Nominal operations orbit 10
Nominal Operations Phase 192
Non Return to Zero 62
NV RAM ... 221
NV ROM ... 56

O
OBCP ... 205
Onboard autonomy 211
Onboard computer 4, 6, 22, 52
Onboard computer housing 72
Onboard computer mechanical design .. 72
Onboard computer models 76
Onboard computer simulation model ... 155
Onboard Control Procedure
.. 110, 120, 201, 206
Onboard data handling 111
Onboard software 4, 88
Onboard Software Data Pool 93, 187
Onboard software dump 106, 220
Onboard software dynamic architecture
.. 120
Onboard software function
.. 163, 201, 205, 221
Onboard software kernel 118, 120
Onboard software patch
.. 37, 106, 193, 220, 224, 241
Onboard software requirements 132
Onboard software static architecture 90
Onboard software tests 135
Onboard synchronization 206
Onboard time 94
Operating system 30
Operational constraints 225
Operations concept 180
Operations Interface Requirements
 Document .. 4
 Operations plan 180
 Operations procedure 180
 Orbit analysis 235
 Orbit control maneuver 10, 200
Oscillator .. 206
OSI layer model 59, 60, 92

P
Packet Category 112
Packet store 109
Packet structure 204
Packet Utilization Standard 5, 92, 102
Parameter monitoring 205
Parameter Type Code 204
Payload commissioning 198, 251
Payload Data Handling and Transmission
.. 224
Payload Ground Segment 226
Payload management computer 6
Payload Management Computer 42
Performance characterization 250
Phase locked loop oscillator 210
Pioneer ... 34, 37
Platform commissioning 198
Playback Telemetry 63, 114
Position-tagged command 241
Power Control and Distribution Unit 223
Power supply 54, 68
PowerPC ... 43, 44, 46, 54, 120
Pre-launch Phase 192
Preliminary Design Review 8
Preliminary Requirements Review 8
Printed circuit board 69, 72
PROBA-1 .. 45, 163
Process ID ... 112, 190, 204
Process improvement technology 214
Product tree 11
Program / erase cycle 83
Programmable Read Only Memory 56
Project for Onboard Autonomy 254
Proto Flight Model 76
PSLV ... 41
PUS event .. 117
PUS monitor 117
PUS services 102

Q
Qualification Review 8

R
RAD6000 .. 43, 44
RAD750 .. 44
Radiation .. 5, 22
Radiation hard circuitry 78
Radio Technical Commission for Aeronautics..167
Random Access Memory..........................56
Ranging..210, 247
RCA (CDP) 1802 microprocessor.................39
Re-orbiting.......................................10
Read-only core rope memory......................30
Realtime Operating System.......................44, 91
Realtime Telemetry...............................63, 114
Reconfiguration................................221
Reconfiguration log..............................118, 205
Reconfiguration unit................................54, 65
Recovery sequence................................200
Recovery thread..................................125
Redundancy.....................................5, 65
Redundancy concept................................216
Redundancy design................................219
Remote Interface Unit............................52, 54
Remote terminals..................................59
Rendezvous maneuver................................24
Requirements analysis............................135
Review milestones................................170
Review of design..................................135
RISC...42, 43
RMAP protocol....................................92
Rosetta..41
Router...58
RS/6000...43
RTEMS...46
Rule network......................................258

S
S/C configuration.................................188
S/C control..90
S/C mode..10, 193, 250
S/C status...188
Safe Mode...
..117, 206, 211, 220, 223
Safe Mode recovery..............................224
Safeguard memory................................
..54, 57, 126, 187, 204
Satellite operations..............................4
Satellite Reference Database...................227
Satellite Requirements Specification...........
Scheduling cycle................................121
Science data management......................208
Science data memory............................57
SCOC3...48
Sentinel 1 to 4..................................45
Service Interface..............................54, 67, 115, 128, 155
Service Type.....................................102
Shift handover..................................244
Shift plan..246
Shock loads......................................72
Shuttle Data Processing System...............32
SIMSAT..245
Simulation session..............................244
Simulator interface card........................158
Simulator telemetry packet......................154
Simulator-Frontend.............................159, 161
Sine vibration.....................................72
Single Event Upset............................57, 126
SkyLab...32
SMOS..45
Software coding..................................147
Software design..................................135
Software development standard.................166
Software engineering............................167
Software functional analysis....................130
Software in the Loop............................149, 152
Software product assurance......................167
Software requirements definition..............132
Software verification and testing..............148
Software Verification Facility..................
..27, 152, 245
Solid State Recorder............................82
Space Segment User Manual.....................186, 201
Space Shuttle....................................32
Space Transportation System...................32
Spacecraft commandability.....................187
Spacecraft Communication and Command
Subsystem...35
Spacecraft configuration handling.............187
Spacecraft Configuration Vector..............57, 187
Spacecraft Controller On a Chip................48
Spacecraft observability.........................204
Spacecraft operations...........................245
Spacecraft operations concept..................9
Spacecraft Operations Concept Document...
..186, 201
Spacecraft operations manager...............237
Spacecraft Operations Manager.................238
Spacecraft State Vector........................202
SpaceWire.......................................47, 58, 60, 92
SpaceWire routing................................61
SPARC..46, 120
Special Checkout Equipment......................160
Sputnik..23
State machine....................................145
Static RAM.......................................56
T
TanDEM-X..45, 248
Task..120
Task control...................................120
Task scheduling................................191
Technology Readiness Level..............76
Telecommand frame..........................112
Telecommand processing....................89
Telemetry generation........................89
Temperature cycles..........................72
TerraSAR-X......................................45, 245, 248
Test Readiness Review.....................170
Thermal control equipment................69
Thread..120
Time-tagged command........................241
Timeline..255
TM/TC-Frontend..............................154, 156, 159
Trajectory.......................................10
Trajectory injection..........................197
Transfer orbit10
Transition to Safe Mode.....................224
Transition to Safe Mode sequence........200
Transponder interface.......................54
TSC21020.......................................49
TSC695..45
TTL circuits....................................36

U
Umbilical connector.........................67, 115, 246
UML activity diagram.......................144
UML class diagram...........................141
UML communication diagram..............146
UML component diagram...................142
UML composite structure diagram........141
UML deployment diagram.................142
UML object diagram..........................143
UML package diagram.......................143
UML profiling..................................147
UML sequence diagram.....................146
UML state machine diagram..............145
UML timing diagram..........................147
UML use case diagram......................144
Unified Modeling Language................140
Unit reconfiguration sequence............200
Unit switch-on sequence...................200
US Federal Aeronautics Association.....167
User request..................................214, 241
User requests..................................255
UT699..46, 47

V
Venus Express..................................41
Viking Mars landers........................35
Virtual Channel.............................98, 109, 112, 114
Vostok..23
Voyager missions............................34, 35, 38
VxWorks...44, 254

W
Wear prevention techniques..............83
Wear problem..................................83
Work memory..................................56

X
XML...154
XMM...41