References

http://www.e-puck.org

Jakimovski, B.: Generic robot architecture – Internal project. Institute of Computer Engineering, University Lübeck, Germany (2008)

http://www.gumstix.com

[HIT06] http://www.hitecrobotics.com

[Jak09] Jakimovski, B.: Patent pending Robot Leg Amputation Mechanism (R-LEGM) for joint leg walking robots. DPMA-Az: 10 2009 006 934.8

A Appendix

A.1 Test Bed for Tracking the Robot OSCAR-X during the Experiments

The tracking of the robot’s walking was done with a web camera and specially made tracking software utilizing the OpenCV library [Ope09] and its methods for blob tracking. There were also one red and one green circle placed on the robot (Figure A.1). The red circle was mounted on the back of the robot between legs 0 and 5 (Figure A.1, Figure A.3), the green circle on the front of the robot between legs 2 and 3 (Figure A.1, Figure A.3). The colored circles are recognized by the tracking software and a vector pointing from the red circle to the green circle shows the direction in which the robot is walking.

The test setup is presented in Figure A.2. The web camera is positioned about 4.5 meters above the terrain on which the robot is walking. The camera is connected to the computer (PC) where the tracking, recording of video, and logging of the orientation of the robot is done by the specially prepared tracking software.

![Fig. A.1 Setup of the robot OSCAR-X with red and green indicators that aid in tracking with camera.](image)
Fig. A.2 Schematic of the tracking setup for robot's walking with the web camera and a specially developed tracking software running on a computer (PC).

Fig. A.3 Model of a hexapod robot with its legs numbered.
List of Figures

Figure 3.1 Hexapod robots: (a) “iSprawl”; (b) “RHex”; (c) “DLR Crawler”; (d) “RiSE”; (e) “AMOS-WD06” .. 10
Figure 3.2 Spatial distribution in circle of legs by OSCAR series of robots ... 12
Figure 3.3 Hexapod robot OSCAR-1 .. 12
Figure 3.4 Hexapod robot OSCAR-2. (a) Experimental robot OSCAR-2 setup - from above; (b) Robot OSCAR-2 in movement .. 13
Figure 3.5 Pressure sensors type FSR-400. The most right one in the figure is used by OSCAR 2 .. 13
Figure 3.6 Modified HiTec HS-645 servo with wires for current and position feedback .. 14
Figure 3.7 Modification by leg of robot OSCAR-2, in order to allow simulated leg failure .. 14
Figure 3.8 Hexapod robot OSCAR-3 .. 15
Figure 3.9 (a) Hexapod robot OSCAR-X in development stage; (b) OSCAR-X in nature; (c) Front view of robot OSCAR-X with onboard camera and additional ultrasonic sensors; (d) Top view of robot OSCAR-X ... 16
Figure 3.10 (a) CAD design of Robot leg amputation mechanism: R-LEGAM; (b) R-LEGAM integrated on the robot’s body; (c) Robot’s leg detached from the robot’s body using the R-LEGAM mechanism .. 17
Figure 3.11 State of the art humanoid robots: (a) “Robonaut 2”; (b) “TOPIO 3.0”; (c) “ASIMO”; (d) “Albert-Hubo”; (e) “NAO” ... 18
Figure 3.12 Humanoid robot “ROBONOVA-1” .. 19
Figure 3.13 (a) – (d) S2-HuRo (Self Stabilizing Humanoid Robot) ... 20
Figure 3.14 Gumstix® Verdex embedded system with wireless LAN module, antenna, MMC card, and additional serial connector cable. View with three sensors per foot. “L” and “R” indicate the left and the right robot’s legs .. 20
Figure 3.15 Schematic view of binary contact sensors by the S2-HuRo feet – bottom 21
Figure 4.1 Principle of reactive control architecture .. 24
Figure 4.2 An example structure of subsumption architecture .. 25
Figure 4.3 Sense-Plan-Act model of deliberative control architecture ... 25
Figure 4.4 Model of a hybrid control architecture .. 26
Figure 4.5 Structure of autonomic element [KeC03] .. 28
Figure 4.6 Generic Observer/Controller architecture ... 28
Figure 4.7 ORCA – Organic Robot Control Architecture .. 29
Figure 4.8 Decentralized ORCA used in several robot experiments ... 30
Figure 4.9 Enhanced “stem” type ORCA .. 33
Figure 5.1 Swing and stance phases of an insect’s leg... 36
Figure 5.2 (a) 3 DOF structure represented with circles on one of the robot’s legs;
(b) Swing and stance phases and their trajectories of the robot’s leg.................................... 37
Figure 5.3 CPG model with two inhibiting neurons.. 37
Figure 5.4 Common gaits observed in insects (adapted from [FaC93]).................................... 39
Figure 5.5 Example case – 1: Start of distribution of pressure on the feet by the robot’s legs... 41
Figure 5.6 Visualization of case when the two legs Leg1, Leg3 are entering from swing into the stance phase, while leg Leg2 in its stance phase supports them till “good enough” pressure is reached by both of the neighboring legs. Gray tones indicate the pressure on the feet of the robot’s leg. Darker gray colors indicate higher pressure on the robot’s foot .. 42
Figure 5.7 Example case – 2: Start of distribution of pressure on the feet by the robot’s legs. ... 42
Figure 5.8 Visualization of case when the two legs Leg1, Leg3 are ending with their stance phases, while leg Leg2 is finishing with its swing phase and entering its stance phase. The legs Leg1, Leg3 supports the Leg2 till “good enough” pressure is reached so the pressure on their feet gets more or less equally distributed. Gray tones indicate the pressure on the feet of the robot’s leg. Darker gray colors indicate higher pressure on the robot’s foot .. 43
Figure 5.9 Observation of patterns in emergent walking with dynamically distributed pressure on the robot’s legs: (a) 6 legs on the ground; (b) 1 leg in the air, the other 5 on the ground; (c) 2 legs in the air, the other 4 on the ground; (d) 3 legs in the air, the other 3 on the ground... 44
Figure 5.10 Fireflies flashing .. 46
Figure 5.11 Pulse coupled biological oscillator concept seen by fireflies in nature and the shifts of their rhythm. [CDF01] ... 47
Figure 5.12 Self-synchronization by shortening and prolongation of walking gait patterns... 48
Figure 5.13 Model of a hexapod robot with its legs numbered. The arrow represents the front of the robot. The arcs represent how lengthy the swing/stance phase is for each of the legs, which is initially the same for all legs but changes with gait pattern length change / self-synchronization .. 50
Figure 5.14 Self-synchronization by robot’s walking gait prolongation – robot model..... 50
Figure 5.15 Self-synchronization by robot’s walking gait shortening – robot model. 52
Figure 5.16 Model of a hexapod robot with its legs numbered ... 57
Figure 5.17 Self-synchronization by prolongation of the robot’s swing and stance phases... 58
Figure 5.18 Tracking of the robot during the self-synchronization by prolongation of its swing and stance phases... 59
Figure 5.19 Self-synchronization by shortening of the robot’s swing and stance phases... 61
Figure 5.20 Tracking of the robot during the self-synchronization by shortening of its swing and stance phases... 62
Figure 5.21 Self-synchronization by prolongation and shortening of the robot’s swing and stance phases. ... 63
Figure 5.22 Tracking of the robot during the self-synchronization by prolongation and shortening of its swing and stance phases. ... 65
Figure 6.1 Mutualism between Clown fish and sea anemone. ... 69
Figure 6.2 Mutualistic symbiosis mapped in SelSta approach. ... 70
Figure 6.3 “Mutual” interaction between the robot’s lateral and longitudinal axes and its relation to robot stability and energy consumption level. ... 70
Figure 6.4 Representation of the hardware setup used by the S2-HuRo and SelSta approach. .. 72
Figure 6.5 Swing and stance phases by S2-HuRo leg. Lateral / longitudinal stabilization region represents where stabilization of the robot using SelSta approach takes place. 74
Figure 6.6 Computation scheme for SymbScore.. 75
Figure 6.7 Calculation of the disturbances from the gyro and load values... 76
Figure 6.8 Calculation of overload of the servos. .. 77
Figure 6.9 Gyro value for each of the lateral and longitudinal axes mapped in domain from 0 to 66 deg/sec units... 78
Figure 6.10 Load value mapped in domain from 70 Amp x 0.03 units.. 79
Figure 6.11 Rule base of fuzzy logic rules that is associated for computing of the Stability value for each of the lateral and longitudinal axes.. 80
Figure 6.12 3D representation of the computational surface for “Stability_X”. 80
Figure 6.13 The intermediate variables “Stability_X” and “Stability_Y” each have fuzzy sets and mapping from 0 to 1 units.. 81
Figure 6.14 SymbScore computed value and its mapping in domain from 0 to 1. 82
Figure 6.15 Rule base of fuzzy logic rules for computing the SymbScore value inspired by symbiosis.. 82
Figure 6.16 3D representation of the computational surface for SymbScore................................. 83
Figure 6.17 Genetic algorithm parameters. ... 84
Figure 6.18 Graphical representation of test section with corresponding walking cycles. L and R indicate for left and right legs respectively.. 85
Figure 6.19 Example representation of measurement during a test section. 86
Figure 6.20 Genetic algorithm, the movement strategy, sensor acquisition, and SymbScore generation. ... 87
Figure 6.21 Soft green carpet.. 89
Figure 6.22 Robot S2-HuRo on a soft green carpet. .. 90
Figure 6.23 SymbScore of slow walking speed of S2-HuRo over a soft green carpet...... 90
Figure 6.24 Average SymbScore during genetic generations for slow walking speed of S2-HuRo over a soft green carpet.. 91
Figure 6.25 SymbScore for medium walking speed of S2-HuRo over a soft green carpet. 91
Figure 6.26 Average SymbScore during genetic generations by medium walking speed of S2-HuRo over a soft green carpet... 92
Figure 6.27 SymbScore for fast walking speed of S2-HuRo over a soft green carpet. 92
Figure 6.28 Average SymbScore during genetic generations for fast walking speed of S2-HuRo over a soft green carpet... 93
Figure 6.29 Best walking section with SelSta approach by slow robot walking speed on a soft green carpet... 94
Figure 6.30 Best walking section with "Standard walking" parameters for slow robot walking speed on a soft green carpet.. 95
Figure 6.31 Best walking section with SelSta approach for medium robot walking speed on a soft green carpet... 95
Figure 6.32 Best walking section with "Manually optimized" walking parameters by medium robot walking speed on a soft green carpet................................. 96
Figure 6.33 Best walking section with SelSta approach for fast robot walking speed on a soft green carpet... 96
Figure 6.34 Best walking section with "Standard walking" parameters for fast robot walking speed over a soft green carpet. .. 97
Figure 6.35 Medium soft orange carpet ... 98
Figure 6.36 Robot S2-HuRo on a medium soft orange carpet .. 98
Figure 6.37 SymbScore for slow walking speed of S2-HuRo on a medium soft orange carpet .. 99
Figure 6.38 Average SymbScore during genetic generations for slow walking speed of S2-HuRo on a medium soft orange carpet .. 99
Figure 6.39 SymbScore for medium walking speed of S2-HuRo on a medium soft orange carpet .. 100
Figure 6.40 Average SymbScore during genetic generations for medium walking speed of S2-HuRo on a medium soft orange carpet .. 100
Figure 6.41 SymbScore for fast walking speed of S2-HuRo on a medium soft orange carpet ... 101
Figure 6.42 Average SymbScore during genetic generations for fast walking speed of S2-HuRo on a medium soft orange carpet .. 101
Figure 6.43 Best walking section with SelSta approach by slow robot walking speed on a medium soft orange carpet ... 103
Figure 6.44 Best walking section with "Manually optimized" walking parameters by slow robot walking speed on a medium soft orange carpet .. 103
Figure 6.45 Best walking section with SelSta approach by medium robot walking speed on a medium soft orange carpet ... 104
Figure 6.46 Best walking section with "Manually optimized" walking parameters by medium robot walking speed on a medium soft orange carpet .. 104
Figure 6.47 Best walking section with SelSta approach by fast robot walking speed on a medium soft orange carpet ... 105
Figure 6.48 Best walking section with "Manually optimized" walking parameters by fast robot walking speed on a medium soft orange carpet .. 105
Figure 6.49 Hard green carpet .. 106
Figure 6.50 Robot S2-HuRo on a hard green carpet .. 107
Figure 6.51 SymbScore for slow walking speed of S2-HuRo on a hard green carpet. . 108
Figure 6.52 Average SymbScore during genetic generations for slow walking speed of S2-HuRo on a hard green carpet... 108
Figure 6.53 SymbScore for medium walking speed of S2-HuRo on a hard green carpet .. 109
Figure 6.54 Average SymbScore during genetic generations for medium walking speed of S2-HuRo on a medium soft orange carpet... 109
Figure 6.55 SymbScore for fast walking speed of S2-HuRo on a hard green carpet 110
Figure 6.56 Average SymbScore during genetic generations for fast walking speed of S2-HuRo on a hard green carpet... 110
Figure 6.57 Best walking section with SelSta approach for slow robot walking speed on a hard green carpet... 112
Figure 6.58 Best walking section with "Manually optimized" walking parameters for slow robot walking speed on a hard green carpet .. 112
Figure 6.59 Best walking section with SelSta approach for medium robot walking speed on a hard green carpet ... 113
Figure 6.60 Best walking section with "Manually optimized" walking parameters for medium robot walking speed on a hard green carpet .. 113
Figure 6.61 Best walking section with SelSta approach for fast robot walking speed on a hard green carpet ... 114
Figure 6.62 Best walking section by "Standard walking" for fast robot walking speed over a hard green carpet ... 114
Figure 6.63 Hard linoleum surface .. 115
Figure 6.64 Robot S2-HuRo on a hard linoleum surface .. 116
Figure 6.65 SymbScore for slow walking speed of S2-HuRo on a hard linoleum surface ... 116
Figure 6.66 Average SymbScore during genetic generations for slow walking speed of the S2-HuRo on a hard linoleum surface ... 117
Figure 6.67 SymbScore for medium walking speed of the S2-HuRo on a hard linoleum surface ... 117
Figure 6.68 Average SymbScore during genetic generations for medium walking speed of the S2-HuRo on a hard linoleum surface ... 118
Figure 6.69 SymbScore for fast walking speed of the S2-HuRo on a hard linoleum surface ... 118
Figure 6.70 Average SymbScore during genetic generations for fast walking speed of the S2-HuRo on a hard linoleum surface ... 119
Figure 6.71 Best walking section with SelSta approach for slow robot walking speed on a hard linoleum surface ... 120
Figure 6.72 Best walking section with "Manually optimized" walking parameters for slow robot walking speed on a hard linoleum surface ... 121
Figure 6.73 Best walking section with SelSta approach for medium robot walking speed on a hard linoleum surface ... 121
Figure 6.74 Best walking section by "Standard walking" for medium robot walking speed on a hard linoleum surface ... 122
Figure 6.75 Best walking section with SelSta approach for fast robot walking speed on a hard linoleum surface. ... 123
Figure 6.76 Best walking section with "Manually optimized" walking parameters for fast robot walking speed on a hard linoleum surface ... 123
Figure 6.77 Results from humanoid robot self-stabilizing experiments done on different kinds of surfaces, with different testing parameters and three different walking speeds. .. 124
Figure 7.1 Antibodies(self), antigens(non-self) and other cell types of the immune system. ... 129
Figure 7.2 Primary and secondary immune response [DeV02] .. 130
Figure 7.3 Illustration of Clonal proliferation ... 131
Figure 7.4 Fuzzy membership set for the output “Anomaly” variable. .. 132
Figure 7.5 Fuzzy membership set for monitored variable “Current”. .. 133
Figure 7.6 Functioning principle of RADE and the dynamically changing weights within the self and non-self rule sets (servo position is not evaluated here). 135
Figure 7.7 Schematic representation of test-bed setup with robot OSCAR-2, National Instruments hardware and LabView software and fault analysis with RADE. 136
Figure 7.8 Robot OSCAR-2 during normal walking ... 139
Figure 7.9 Experiment without RADE dynamics - Measured anomaly level for normal walking. .. 139
Figure 7.10 Experiment with RADE dynamics - Measured anomaly level for normal walking .. 140
Figure 7.11 Robot OSCAR-2 and leg collision with an object ... 141
Figure 7.12 Experiment without RADE dynamics - Obstacle collisions at 27s and 111s .. 141
Figure 7.13 Experiment with RADE dynamics - Obstacle collisions at 27s and 111s .. 142
Figure 7.14 Mechanical problem by OSCAR-2 - situation when a screw (simulated with a pin) in a joint falls out. ... 143
Figure 7.15 Experiment without RADE dynamics - Mechanical problem - a screw (simulated with a pin) in a joint falls out at 87s .. 143
Figure 7.16 Experiment with RADE dynamics - Mechanical problem - a screw (simulated with a pin) in a joint falls out at 80s .. 144
Figure 7.17 Experiment without RADE dynamics - Servo “gamma” gets disconnected at time 55s. ... 145
Figure 7.18 Experiment with RADE dynamics - Servo “gamma” gets disconnected at time 67s .. 145
Figure 7.19 Experiment with RADE dynamics - Servo “beta” gets disconnected at 68s .. 146
Figure 7.20 Experiment with RADE dynamics - Servo “alpha” gets disconnected at 73s .. 146
Figure 7.21 Dynamics by RADE anomaly detection surface - snapshot 1 .. 148
Figure 7.22 Dynamics by RADE anomaly detection surface - snapshot 2 .. 149
Figure 7.23 Dynamics by RADE anomaly detection surface - snapshot 3 .. 149
Figure 8.1 (a) School of fish; (b) Flock of birds. ... 153
Figure 8.2 Neighborhood of the boids... 153
Figure 8.3 Illustration of the separation rule. ... 154
Figure 8.4 Illustration of the alignment rule. ... 154
Figure 8.5 Illustration of the cohesion rule. ... 155
Figure 8.6 Top schematic view of the legs of the robot forming two groups of boids;
dotted line represents the line of the robot’s symmetry; ellipsoid lines represent the
group of boids; one rectangle represents a robot leg, which is one boid………………… 156
Figure 8.7 Reconfiguration of a robot using S.I.R.R. (Swarm Intelligence for Robot
Reconfiguration); (a) Top schematic view of the legs of the robot forming two
groups of boids; (b) case when two legs of the robot have malfunctioned;
(c) member(leg) from “crowded” group joins another less “crowded” group;
(d) situation after reconfiguration. The dotted line represents the robot’s line
of symmetry……………………………………………………………………………………………………… 157
Figure 8.8 Test scenario - reconfiguration of a robot without using the S.I.R.R. approach;
(a) Top model view of fully functional hexapod robot; (b) leg number 0 has malfunctioned;
(c) leg number 2 has malfunctioned; (d) leg number 3 has malfunctioned; (e) leg number
4 has malfunctioned; the dotted line represents the robot’s line of symmetry. ……….. 159
Figure 8.9 Test scenario - reconfiguration of a robot using the S.I.R.R. approach;
(a) Top model view of fully functional hexapod robot; (b) leg number 0 has
malfunctioned; (c) after S.I.R.R. reconfiguration; (d) leg number 2 has malfunctioned;
(e) S.I.R.R. reconfiguration with change of the symmetry axis; (f) after S.I.R.R.
reconfiguration; (g) leg number 3 has malfunctioned; (h) S.I.R.R. reconfiguration with a
change of the symmetry axis; (i) after S.I.R.R. reconfiguration; (j) leg number 4 has
malfunctioned; (k) after S.I.R.R. reconfiguration; the dotted line represents the robot’s
line of symmetry. …………………………………………………………………………………………………… 160
Figure 8.10 Test scenario - reconfiguration using the S.I.R.R. approach by the hexapod
robot demonstrator OSCAR; (a) Top view of the fully functional hexapod robot OSCAR;
(b) leg 0 has malfunctioned and S.I.R.R. reconfiguration is done; (c) leg 2 has
malfunctioned and S.I.R.R. reconfiguration is done; (e) leg 3 has malfunctioned and
S.I.R.R. reconfiguration is done; the dotted line represents the robot’s line of
symmetry. ……… 162
Figure 8.11 Runtime reconfiguration of a hexapod robot OSCAR from 6 to 3 legs:
(a) normal six legged configuration; (b) leg 3 malfunctions and gets amputated;
(c) robot performs reconfiguration using the SIRR approach and continues walking;
(d) leg 1 malfunctions; (e) leg 1 gets amputated; (f) robot performs reconfiguration using
the SIRR approach and continues walking; (g) leg 5 malfunctions; (h) leg 5 gets amputated;
(i) the robot performs reconfiguration using the SIRR approach and continues with
walking; (j)-(l) robot OSCAR continues with its mission despite the loss of 3 legs. ……… 164
Figure 8.12 Ground contacts of the robot’s feet during normal walking of the
hexapod robot. …………………………………………………………………………………………………… 165
Figure 8.13 Ground contacts of the robot’s feet for walking of hexapod robot with leg amputations and self-reconfigurations at: about 363 slot of time (1st reconfiguration); about 783 slot of time (2nd reconfiguration); about 1143 slot of time (3rd reconfiguration) ..165
Figure 8.14 Experiment 1 - OSCAR performing leg amputations in the following order: fully functional, leg 0 amputated, leg 1 amputated, leg 2 amputated - from left to right and from top to bottom. ..167
Figure 8.15 Experiment 1 - Tracking the robot’s heading while ejecting legs during its walking in the following order: 0, 1, 2 ..168
Figure 8.16 Experiment 2 - OSCAR performing leg amputations in the following order: fully functional, leg 0 amputated, leg 2 amputated, leg 4 amputated - from left to right and from top to bottom. ..169
Figure 8.17 Experiment 2 - Tracking the robot’s heading while ejecting legs during its walking in the following order: 0, 2, 4 ..170
Figure 8.18 Experiment 3 - OSCAR performing leg amputations in the following order: fully functional, leg 5 amputated, leg 1 amputated, leg 2 amputated - from left to right and from top to bottom. ..171
Figure 8.19 Experiment 3 - Tracking the robot’s heading while ejecting legs during its walking in the following order: 5, 1, 2 ..172
Figure A.1 Setup of the robot OSCAR-X with red and green indicators that aid in tracking with camera ...189
Figure A.2 Schematic of the tracking setup for robot’s walking with the web camera and a specially developed tracking software running on a computer (PC) ..190
Figure A.3 Model of a hexapod robot with its legs numbered ...190
Keywords

Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Artificial Immune System</td>
</tr>
<tr>
<td>BCU</td>
<td>Basic Control Unit</td>
</tr>
<tr>
<td>CPG</td>
<td>Central Pattern Generator</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data acquisition</td>
</tr>
<tr>
<td>DOF</td>
<td>Degrees Of Freedom</td>
</tr>
<tr>
<td>OCU</td>
<td>Organic Control Unit</td>
</tr>
<tr>
<td>RADE</td>
<td>Robot Anomaly Detection Engine</td>
</tr>
<tr>
<td>S.I.R.R.</td>
<td>Swarm Intelligence for Robot Reconfiguration</td>
</tr>
<tr>
<td>OSCAR</td>
<td>Organic Self Configuring and Adapting Robot</td>
</tr>
<tr>
<td>ORCA</td>
<td>Organic Robot Control Architecture</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>S2-HuRo</td>
<td>Self Stabilizing Humanoid Robot</td>
</tr>
<tr>
<td>SelSta</td>
<td>Self-Stabilization (Approach)</td>
</tr>
<tr>
<td>SymbScore</td>
<td>Symbiosis Score</td>
</tr>
<tr>
<td>ZMP</td>
<td>Zero Moment Pole</td>
</tr>
</tbody>
</table>
Cognitive Systems Monographs

Edited by R. Dillmann, Y. Nakamura, S. Schaal and D. Vernon

Vol. 1: Arena, P.; Patanè, L. (Eds.): Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots
425 p. 2009 [978-3-540-88463-7]

326 p. 2009 [978-3-540-89970-9]

Vol. 3: Magnani, L.: Abductive Cognition
534 p. 2009 [978-3-642-03630-9]

270 p. 2009 [978-3-642-04228-7]

Vol. 5: de Aguiar, E.: Animation and Performance Capture Using Digitized Models
168 p. 2010 [978-3-642-10315-5]

216 p. 2009 [978-3-642-10402-2]

Vol. 7: Levi, P.; Kernbach, S. (Eds.): Symbiotic Multi-Robot Organisms
467 p. 2010 [978-3-642-11691-9]

Vol. 8: Christensen, H.I.; Kruijff, G.-J.M.; Wyatt, J.L. (Eds.): Cognitive Systems
491 p. 2010 [978-3-642-11693-3]

Vol. 9: Hamann, H.: Space-Time Continuous Models of Swarm Robotic Systems
147 p. 2010 [978-3-642-13376-3]

Vol. 10: Allerkamp, D.: Tactile Perception of Textiles in a Virtual-Reality System
120 p. 2010 [978-3-642-13973-4]

227 p. 2010 [978-3-642-16903-8]

375 p. 2011 [978-3-642-17094-2]

Vol. 13: Bardone, E.: Seeking Chances
168 p. 2011 [978-3-642-19632-4]

201 p. 2011 [978-3-642-22504-8]