References

R.N. Miftahof and H.G. Nam, Biomechanics of the Gravid Human Uterus,
DOI 10.1007/978-3-642-21473-8, © Springer-Verlag Berlin Heidelberg 2011

163
References

References

Galimov KZ (1975) Foundations of the nonlinear theory of thin shells. Kazan State University, Kazan, Russia
Jing D, Ashton-Miller J, DeLancey JO (2009) How different maternal volitional pushing affect the duration of the second stage of labor: a 3-D viscohyperelastic finite element model. http://me.engin.umich.edu/brl/

References 167

La Rosa PS, Eswaran H, Preissl H, Nehorai A (2009) Forward modeling of uterine EMG and MMG contractions. Proceedings of the 11th World Congress on Medical Physics and Biomedical Engineering, Munich, Germany

References

Woodward TL, Mienaltowski AS, Bennett JM, Haslam SZ (2001) Fibronectin and the alpha(5) beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology 142:3214–3222
Index

A
Acetylcholine (ACh), 7, 12, 98, 102, 109, 111–114, 117, 122, 124
Adenosine-5’-triphosphate (ATP), 5, 7, 9, 12, 99, 105, 109, 116
Adenylyl cyclase (AC), 7, 105, 106, 111, 116
Adrenaline (AD), 7, 8, 11, 12, 111–115, 122
Agonist
inverse, 118, 124
partial, 118, 124
Allosteric interaction, 122–123
Amniotic
fluid, 16, 20, 21, 138
sac, 16, 137, 143
Angle
coordinate lines, 53, 55, 66, 73
principal axes, 71–73, 77
shear, 70, 74, 95
Anisotropy, 3, 17, 26, 86, 96, 130, 134, 160
Antagonist
competitive, 118, 120–123
non-competitive, 118, 124, 125
Atosiban, 120, 148
ATP sensitive K⁺ channel, 5
Autorhythmicity, 25

B
Base
contravariant, 52
covariant, 52
orthonormal,
Bay K 8644, 44
Bianchi formular, 60
Biofactor, 29, 90–94

Biomaterial
heterogeneous,
homogeneous, 86
isotropy, 86
Bladder, 2
BMS 191011, 44–46

C
Ca²⁺ channel
evolution, 32
L-type Ca²⁺, 5, 8, 10, 41–44
T-type Ca²⁺, 5, 30, 32
Calcium
extracellular, 5, 10, 34, 41, 98, 112
Cervix
insufficiency, 22
model, 21, 22, 149
opening, 21, 22
Chemical potential, 89
Childbirth, 159–161
Christoffel symbol, 54, 56, 57
Cl⁻ channel, 5, 11, 47–49, 131
Co-localization, 7, 11, 13, 157
Compartment, 22, 24, 97–104
Components
metric tensor, 20, 53, 68
physical, 70, 75
principal physical, 72
second fundamental form, 60
stress tensor, 62, 88, 90
Conductance
extracellular, 25, 91, 135
intracellular, 25, 91, 99, 134, 135
ion channel, 26
Connexin, 3, 130

Conservation
 mass, 78, 87, 91
 momentum, 79, 88, 91

Constitutive relation, 81, 83, 93, 94, 137, 158

Constriction ring, 148–149

Contraction
 phasic, 3–5, 39, 41, 45
 spontaneous, 6, 34, 39, 114
 tonic, 4, 18, 34, 39, 40, 44, 47, 115

Coordinates
 Cartesian, 88, 132
 contravariant,
 covariant, 52, 53, 55, 57
 curvilinear, 51, 52, 65, 78–81
 cylindrical, 132, 133
 rectangular,

 Co-transmission, 11, 13, 109–116, 157

Coupling
 electro-chemo-mechanical, 10
 electromechanical, 129, 131, 137, 156, 160
 excitation-contraction, 18, 19, 157

Curvature
 Gaussian, 60
 principal,

 Cyclic adenosine monophosphate, 105, 118, 126

 Cyclooxygenase (COX 1,2), 8

D

Darcy law, 22

Deformation
 axisymmetric, 23
 bending, 55
 continuity, 59–61
 finite, 21, 29, 61, 65, 71
 tensor, 22, 55–59, 69, 73, 78, 89

Density
 deformed material, 78, 79
 force, 30, 79
 partial, 86
 undeformed material, 78

Deoxyribonucleic acid,

 Depolarization, 5–7, 10, 25, 26, 30, 33, 34, 36, 98, 111, 112, 129, 134, 141, 143, 146, 149, 151–153

Determinant, 4

 Christoffel symbol, 54, 56, 57
 Diacylglycerol, 107, 118
 Discriminant tensor, 53
 Dynamic variables, 31, 32, 134, 136

E

Element
 differential, 69, 74, 78, 79
 line, 66

Endometrium, 2, 3

Entropy, 88, 89

Equilibrium, 21, 61–63, 74, 80, 98, 102, 121, 122

Excitation, 5, 6, 12, 18, 24, 25, 30, 32, 33, 37, 93, 109, 111, 113, 136, 137, 143, 150, 152, 160

Extracellular matrix, 3, 10, 29, 158

F

Fasciculus, 29–49, 111–115, 129

Fiber reinforced, 81, 82, 94, 95

Filament
 thick-myosin, 4
 thin-actin, 4

Fitzhugh-Nagumo, 25, 26

Flux, 10, 34, 88–90

Force
 active, 10, 13, 30, 34, 37, 39, 42, 44, 45, 47, 49, 86, 112–114, 116, 131, 137, 143, 144, 146–148, 151–153
 compression, 65, 82
 external, 62, 79
 internal, 79
 lateral, 61
 mass, 62, 79, 88, 133
 membrane, 65, 69, 74–78, 81, 82, 94, 96
 passive, 33, 137, 143, 145, 148, 152
 principal,
 resultant, 79
 shear, 62, 74, 81
 tangent, 62, 74
 total, 29, 30, 36, 131, 132, 139, 143, 145, 146, 149, 152, 153

Free energy, 88, 93

Functional unit, 2–4, 29, 33, 86

Function dissipative, 90

G

Gap junction, 3, 10–12, 15, 25, 130

Gauss-Codazzi, 60

Gauss-Weingarten equation, 54

Gibbs relation, 88

H

Hill coefficient, 19

Hodgkin-Huxley, 23, 93, 98, 160

Human chorionic gonadotrophin (hCG), 9, 12
<table>
<thead>
<tr>
<th>I</th>
<th>Iberiotoxin, 44, 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influx</td>
<td>5, 8, 10, 24, 34, 37, 41, 46, 87, 91, 98, 112, 131, 143</td>
</tr>
<tr>
<td>Inositol-1,4,5-triphosphate</td>
<td>8, 107</td>
</tr>
<tr>
<td>Interleukin</td>
<td>IL-6, 9, 12</td>
</tr>
<tr>
<td></td>
<td>IL-8, 9, 11</td>
</tr>
<tr>
<td></td>
<td>IL-1β, 9, 12</td>
</tr>
<tr>
<td></td>
<td>intracellular,</td>
</tr>
<tr>
<td>Invariant</td>
<td>deformation tensor, 73, 78</td>
</tr>
<tr>
<td></td>
<td>first, 73, 78</td>
</tr>
<tr>
<td></td>
<td>second, 73, 78</td>
</tr>
<tr>
<td></td>
<td>stress tensor, 17</td>
</tr>
<tr>
<td>Ion channel. See</td>
<td>Ca²⁺, K⁺, Na⁺, Cl⁻</td>
</tr>
<tr>
<td>Ion current</td>
<td>external, 134</td>
</tr>
<tr>
<td></td>
<td>extracellular, 25, 34, 35</td>
</tr>
<tr>
<td></td>
<td>total, 93, 135</td>
</tr>
<tr>
<td></td>
<td>transmembrane, 91, 135</td>
</tr>
<tr>
<td>Isotropy</td>
<td>17, 93, 130, 135</td>
</tr>
<tr>
<td>K</td>
<td>K⁺ channel</td>
</tr>
<tr>
<td></td>
<td>Ca²⁺ - K⁺ (BKCa), 130</td>
</tr>
<tr>
<td></td>
<td>IKCa, 5</td>
</tr>
<tr>
<td></td>
<td>KATP, 5</td>
</tr>
<tr>
<td></td>
<td>Kᵥ, 5, 11, 30</td>
</tr>
<tr>
<td></td>
<td>SKCa, 5</td>
</tr>
<tr>
<td>Kirchhoff-Love hypothesis</td>
<td>61, 91</td>
</tr>
<tr>
<td>L</td>
<td>Labor</td>
</tr>
<tr>
<td></td>
<td>first stage, 141–144</td>
</tr>
<tr>
<td></td>
<td>initiation,</td>
</tr>
<tr>
<td></td>
<td>preterm, 119, 120, 123</td>
</tr>
<tr>
<td></td>
<td>second stage, 137, 144–148</td>
</tr>
<tr>
<td></td>
<td>third stage, 147–148, 160</td>
</tr>
<tr>
<td>Lamé parameter</td>
<td>53</td>
</tr>
<tr>
<td>Ligand</td>
<td>binding, 12</td>
</tr>
<tr>
<td>M</td>
<td>Magnetic resonance imaging, 85</td>
</tr>
<tr>
<td>Mass</td>
<td>concentration, 87</td>
</tr>
<tr>
<td></td>
<td>conservation, 78, 91</td>
</tr>
<tr>
<td></td>
<td>forces, 62, 79, 88, 133</td>
</tr>
<tr>
<td>Matrix</td>
<td>11, 15, 66, 81, 101, 106, 108, 121, 123, 125, 126, 136</td>
</tr>
<tr>
<td></td>
<td>rate coefficients,</td>
</tr>
<tr>
<td>Membrane</td>
<td>capacitance, 6, 23, 31, 93, 98, 102, 134</td>
</tr>
<tr>
<td></td>
<td>conductance, 23, 26, 32, 134</td>
</tr>
<tr>
<td></td>
<td>postsynaptic, 7, 100, 102, 103, 112, 113</td>
</tr>
<tr>
<td></td>
<td>potential, 5, 6, 23, 26, 31, 32, 34, 37, 38, 46, 49, 114, 117</td>
</tr>
<tr>
<td></td>
<td>presynaptic, 112, 117</td>
</tr>
<tr>
<td></td>
<td>receptor, 7, 9–11, 100, 112</td>
</tr>
<tr>
<td></td>
<td>resistance, 6, 10, 32, 98, 135</td>
</tr>
<tr>
<td>Messenger ribonucleic acid</td>
<td>9, 12</td>
</tr>
<tr>
<td>Metabolomics</td>
<td>156</td>
</tr>
<tr>
<td>Mibebradil</td>
<td>39, 40, 42, 43</td>
</tr>
<tr>
<td>Michaelis-Menten kinetics</td>
<td>100, 116, 120, 123, 131</td>
</tr>
<tr>
<td>Middle surface</td>
<td>20, 51, 52, 56, 61, 65, 129, 130, 132, 147, 148</td>
</tr>
<tr>
<td>Mitogen-activated protein kinase</td>
<td>8</td>
</tr>
<tr>
<td>Modulation neurohormonal</td>
<td>97</td>
</tr>
<tr>
<td>Mooney-Rivlin</td>
<td>21</td>
</tr>
<tr>
<td>Myocyte</td>
<td>3–7, 9–13, 15, 18, 19, 23, 130</td>
</tr>
<tr>
<td>Myosin light chain kinase</td>
<td>4, 7, 10, 13, 105</td>
</tr>
<tr>
<td>N</td>
<td>Na⁺ channel, 5, 152</td>
</tr>
<tr>
<td>Neo-Hookean</td>
<td>21, 159</td>
</tr>
<tr>
<td>Net</td>
<td>3, 12, 18, 22, 81–83, 86, 100, 118, 127, 160, 162</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>8, 10, 43–45, 119</td>
</tr>
<tr>
<td>Niflumic acid</td>
<td>48</td>
</tr>
<tr>
<td>Nimodipine</td>
<td>41–43</td>
</tr>
<tr>
<td>Normal</td>
<td>2, 9, 13, 16, 18, 20, 34, 36, 38, 40, 44, 51, 52, 55, 61, 91, 119, 139, 140, 147–149, 152, 153, 160</td>
</tr>
<tr>
<td>Onsager relation</td>
<td>90</td>
</tr>
<tr>
<td>Orthosteric site</td>
<td>117, 118, 122</td>
</tr>
<tr>
<td>Oscillator</td>
<td>13, 14, 26, 30, 31, 33, 38, 39, 44, 133, 153</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>7, 8, 13, 15, 97, 98, 102, 107, 111–116, 119, 120, 122, 124, 148, 153</td>
</tr>
</tbody>
</table>
Pacemaker cell, 6, 13, 25, 33, 42, 131
zone, 26, 131, 141, 146, 149, 151, 153
Pathway
cAMP-dependent, 7, 8, 11, 12, 105–106, 116
PKA, 7, 11, 12, 105, 106, 116
PLC, 7–9, 11, 12, 107–108, 111, 116
Pelvic floor, 158, 159
Perimetrium, 3
Phenotypic modulation (phase)
contractile, 15, 16
early proliferative, 15
intermediate synthetic, 15
labor, 15, 26
Phospholipase C, 7, 11, 105, 107
Placenta, 2, 6–8, 98, 137, 138, 147, 149
Plaque dense, 3, 10, 156
Porosity, 87
Potential action, 6, 8, 9, 24, 33, 34, 37, 42, 44, 45, 47, 49, 112, 113
chemical, 7, 9, 89
resting membrane, 5, 6, 26, 34, 38, 114
reversal, 19, 23, 31–33, 134, 135
synaptic, 102, 112, 117
threshold, 32
transmembrane, 4, 18, 105
Presentation oblique, 16, 138, 139, 141
transverse, 16, 138, 139, 142
vertex (cephalic), 138
Pressure amniotic fluid, 16, 20, 21, 23
intrauterine, 16, 21, 129, 132, 136–139, 147, 151
Principal axis, 72, 78
curvatures, 20, 55, 61, 148
direction, 71, 72, 76–78, 82, 94
physical components, 70, 72, 75
stress, 69, 78–81
stretch ratio, 69, 70, 72, 74, 82
Progesterone, 7, 9, 11, 12, 100, 119
Prostaglandin F_{2\alpha}, 7, 8, 13, 98, 99, 116, 123
Protein cytoskeletal, 4, 158
focal adhesion, 3, 10, 15, 156
integrins, 3
kinase A, 7, 105, 118
kinase C, 12, 107, 108
paxillin, 3, 10, 156
syndecans, 3
talin, 10
vincullin, 3, 10
Proteomics, 156
Quasi-equilibrium, 102
Rate chemical reaction, 19, 100
Receptor
adrenergic, 152, 157
G-protein coupled, 7, 8, 100, 127
muscarinic, 7, 152
nuclear, 9, 10, 127
oxytocin, 12, 13, 107, 120, 122, 124, 148
progesterone, 7, 9, 12, 100
prostaglandin E_{1,2,3A,D,}
purine type 2X, 13
topography, 12
transmembrane, 4, 5, 105, 117, 131, 135, 157
Relaxation, 5, 11, 86, 91, 105, 111, 114, 131, 148, 152, 157
Ricci inequality, 60
Sarcoplasmic reticulum, 9, 10, 107
Shell
biological, 129–154
soft, 129–154
thick, 147, 148
thickness, 51, 62, 63, 129, 147, 148, 160
thin, 20, 51–65, 69, 82, 147
uterus, 20, 21, 23, 26, 129, 130, 133, 137, 160
Slow wave, 5, 6, 13, 24, 34, 35, 37, 39, 41, 42, 44, 46, 49, 112–114, 116
State diagram, 99, 100, 102, 103, 105–109, 120, 122–124, 126
Stoichiometry, 87
Stratum
subvasculare, 3, 85
supravasculare, 3
vasculare, 3
Stress
biaxial, 17, 80, 83
principal, 69, 78, 81, 82
state, 61, 65, 74, 80, 81, 83
uniaxial, 17, 83
Stretching
 biaxial, 17, 143
 uniaxial, 17, 129
Stretch ratio, 17, 21, 22, 29, 30, 66, 69, 70, 72, 74, 82, 95, 132, 135, 137–139
Syncytium
 anisotropic, 93
 heterogenous, 86
 isotropic, 24
Systems biology, 119, 155

T
Tensor
 affine deformation, 56–59
 deformation, 55, 69, 73, 78, 89
 membrane forces, 69, 74–78, 82, 94, 96
 metric, 20, 53, 57, 63, 68
 Riemann-Christoffel, 60
 stress, 62, 88, 90
Tetraethylammonium chloride, 46, 47
Tocolytics
 adrenaline, 7, 8, 11, 12
 CGRP, hCG, 9, 12
 progesterone, 7, 9, 11, 12
 relaxin, 9

U
Uterotonic
 acetylcholine, 7
 endothelin-1, 9
 estrogen, 9
 oxytocin, 7
 prostaglandins, 7, 9
 tachykinin, 9
Uterus
 body, 1, 2, 139, 143
 cervix, 1, 2, 12, 137, 143
 conversion, 15
 dystocia, 149–153
 endometrium, 2, 3
 fundal height, 16, 147
 fundus, 1–3, 12, 139, 143, 157
 inertia, 151–154
 ligament, 1
 lower segment, 3, 12, 21, 139, 143, 148, 152, 157
 myometrium, 1–6, 17, 21, 23, 129, 137, 143, 146, 151
 perimetricum, 3
 shell, 23, 26, 129–133, 137, 147, 148
 syncytium, 13, 24, 87, 143, 146
 thickness, 1, 16, 51, 129, 147–149
 uterine cavity, 2

V
Vector
 moment, 33, 78, 80, 146
 normal, 51, 52, 55
 position, 65, 132
 product, 52, 62, 67
 reacting components, 125
 tangent, 52, 55, 66
 unit, 52, 63, 67, 68, 91, 133
Viscoelasticity, 86
Viscosity, 30
Volume
 elementary, 87
 intrauterine, 132, 147
 total, 22, 87

W
Wrinkle, 81