References

4. Ammann U (1978) Error recovery in recursive descent parsers and run–time storage organiza-
tion, rep. No. 25, Inst. für Informatik der ETH Zürich
ography. Springer, LNCS 323
terdam, rekenafdeling, MR 35. Algol Bulletin, supplement nr. 10

 Functional and Logic Programming, 7th International Symposium, FLOPS 2004, Nara, Japan,
 April 7–9, 2004, Springer, LNCS 2998, pp 196–213
 malization using attribute grammars. Information Processing Letters 7(6):279–284
 (ed) ESOP, Springer, LNCS 788, pp 241–256
 of the AMS 146:29–60
 Addison-Wesley
 Switching and Automata Theory, pp 21–35
30. Jones MP (1995) A system of constructor classes: Overloading and implicit higher-order poly-
 space. In: Proceedings of the 2nd Haskell Workshop
 Lecture Notes in Computer Science, vol 7211, pp 397–416
36. Knuth DE (1965) On the translation of languages from left to right. Information and Control
 8:607–639
 5, pp. 95-96
 6(1):1–5
40. Krieg B (1971) Formal definition of the block concept and some implementation models, mS.
 Thesis, Cornell University
 Vieweg+Teubner
42. Lesk M (1975) Lex – a lexical analyzer generator, cSTR 39, Bell Laboratories, Murray Hill, N.J.

Index

A
acceptor, 15
ADA, 145, 155
ALGOL60, 154
algorithm
 shunting yard, 136
 \W, 165
alphabet, 11, 12
input, 57
alternative, 48
analysis
 data-flow, 7
 lexical, 3, 11
 semantic, 6
 syntactic, 5, 43
analysis phase, 1
anchor terminal, 97
array
 sparse, 34
ASCII, 28
attribute
 dependence, 193, 194
 inherited, 183
 synthesized, 183
attribute equation system, 185
attribute evaluation
 demand-driven, 191
 generation, 191
 parser-directed, 206
attribute grammar, 180
 absolutely noncircular, 200
 L-attributed, 206
 \LL-attributed, 207
 l-ordered, 201
 LR-attributed, 209, 211
 noncircular, 196
 normal form, 183
 ordered, 205
 S-attributed, 209
 semantics, 184
 well-formed, 185, 196
attribute instance, 183
attribute occurrence, 183
automaton
 canonical LR(0), 107
 canonical LR(\textit{k})-automaton
 direct construction, 111
 canonical LR(k), 117
deterministic finite, 16
 finite, 5, 9, 15
 pushdown, 6, 9, 57
axiom, 159

B
back-end, 2
BISON, 181
bottom, 68
bound
 least upper, 68
C
C, 145
class
 declaration, 174
type constructor, 180
COBOL, 145
code generation, 2
code generator, 8
code set, 28
Index

compile time, 6
compiler
 conceptual architecture, 1
directive, 3
 structure of, 1
compiler generation, 10
computation
 accepting, 58
concatenation, 12
k, 65
configuration, 17, 58
 error, 124
 final, 17, 58
 initial, 17, 58
conflict
 reduce-reduce, 110, 117
 shift-reduce, 110, 117
constant, 3
constant folding, 7
constant propagation, 7
context-condition, 147
context-free grammar
 ambiguous, 50
 unambiguous, 50
context-free grammar (CFG), 47, 49
C++, 145
C#, 145

D
declaration, 140
 forward, 151
 scope of a, 139
declaredness, 139
dependence
 functional, 183
 production-local, 194
dependence relation
 characteristic
 lower, 197
 production-local, 194
derivable, 48
derivation, 48, 49
 leftmost, 51
 rightmost, 51
deterministic finite automaton (DFA), 16
deterministic pushdown automaton, 58

E
dend vertex, 18
environment
 sort, 175
 type, 158
error
 symptom, 43
 syntactic, 5
error handling
 $LR(k)$-, 124
 $RLL(1)$-, 97
error recovery
 deletion, 127
 insertion, 127
 replacement, 127
evaluation
 short-circuit, 189
expanding transition, 60
expression
 boolean, 189
 regular, 9, 13

F
factorization, 81
final configuration, 58
final state, 16
finite automaton
 characteristic, 103
finite automaton (FA), 15, 16
first, 64
first$_1$-set
 e-free, 72
follow, 64
FORTRAN77, 145, 154
front-end, 1
function
 monotonic, 68
future, 79

G
generation
 attribute evaluator, 191
grammar
 attribute, 180
 context-free, 5, 9, 46, 47
 extended, 59
 right-regular, 89
 $LALR(1)$-, 122
 $LL(k)$, 79
 $LL(k)$- (strong), 84
 reduced, 53
 $RLL(1)$-, 92
 underlying, 180

H
handle, 101, 105
HASKELL, 173
hypothesis
 one-error, 126
Index

I
identifier, 3, 139
 applied occurrence of a, 140
 defining occurrence of a, 140
 hidden, 139
 identification, 145, 148
 visible, 139
indentation, 4
initial configuration, 58
initial state, 16, 57
input alphabet, 16, 57
instance declaration, 174
instruction selection, 8
interpretation
 abstract, 7
item
 complete, 59
 context-free, 59
 history, 59
 LR(k)-, 116
 valid, 105
item-pushdown automaton (IPDA), 59, 79

J
JAVA, 145, 155

K
keyword, 3, 38
Kleene star, 13

L
LALR(1), 121, 122
language, 49
 accepted, 17
 regular, 13
lattice
 complete, 68
lexical analysis, 3, 11
LL(k)-
 grammar, 79
 parser (strong), 87
LR(k), 112
LR(k)-item, 116

M
metacharacter, 14
middle-end, 1, 8
monad, 180

N
name space, 140
nonterminal, 47
 left recursive, 85
 productive, 53
 reachable, 55

O
optimization
 machine-independent, 7
overloading, 6, 152, 174
 resolution of, 155

P
panic mode, 97
parenthesis
 nonrecursive, 28
parse tree, 6, 43, 49
parser, 5, 43
 bottom-up, 44, 101
 deterministic, 64
 LALR(1)-, 121
 left-, 64
 LL-, 64
 LR-, 64
 LR(k)-, 102, 117, 118
 Pratt-, 136
 recursive-descent, 92
 right-, 64
 RLL(1)-, 92
 shift-reduce, 101
 SLR(1)-, 121
 top-down, 44
partial order, 68
partition, 26
 stable, 26
PASCAL, 145
polymorphism
 constrained, 173
pragma, 3, 4
prefix, 11, 13
 extendible, 97
 k-, 65
 reliable, 105
 viable, 45, 124
produces, 48
 directly, 48
production rule, 47
PROLOG, 145
pushdown automaton
 deterministic, 58
 item-, 59, 79, 103
 language of a, 58
 with output, 63
pushdown automaton (PDA), 57

Q
qualification, 146
Index

R
reducing transition, 60
reduction
 required, 101
register allocation, 8
regular language, 13
rule, 159
 semantic, 181
run time, 6

S
scanner, 3
 generation, 29
 representation, 34
 compressed, 34
 states, 37
scope, 140
screener, 4, 36
semantic analysis, 6
semantics
 dynamic, 6
 static, 6
sentential form, 49
 left, 51
 right, 51
separator, 3
shifting transition, 60
SLR(1), 121
solution, 163
 most general, 163
sort, 174
sort environment, 175
source program, 3
start symbol, 47
start vertex, 18
state, 57
 actual, 58
 error, 23
 final, 57
inadequate
 LALR(1)-, 122
 SLR(1)-, 122
initial, 57
LR(0)-inadequate, 110
step relation, 17
strategy
 first-fit, 35
string, 28
 pattern matching, 30
strong LL(k)-grammar, 84
subject reduction, 160
subset construction, 21
solution
 idempotent, 163
subword, 13
suffix, 13
symbol, 3, 11, 48
 class, 3
 nonterminal, 47
reserved, 4
start, 47
table, 148, 152
terminal, 47
symbol class, 11, 12
syntactic analysis, 5
syntactic structure, 49
syntax
 abstract, 141
 concrete, 141
syntax analysis
 bottom-up, 101
top-down, 77
syntax error, 43
globally optimal correction, 45
RLL(1)-, 97
syntax tree, 49

T
table
 action-, 117, 118
 goto-, 117
target program, 8
terminal, 47
anchor, 97
transformation phase, 1
transition, 16, 58
 ϵ, 58
 expanding, 60
 reducing, 60
shifting, 60
transition diagram, 17
transition relation, 15, 57
tree
 ordered, 49
type, 140
 cast, 153
class, 173
 consistency, 139
 consistent association, 6
constructor, 180
correctness, 6
environment, 158
judgment, 159
scheme, 169
variable, 160
type inference, 185
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>Unicode, 28</td>
</tr>
<tr>
<td>unification, 163</td>
</tr>
<tr>
<td>union problem</td>
</tr>
<tr>
<td>pure, 74</td>
</tr>
<tr>
<td>unit</td>
</tr>
<tr>
<td>lexical, 3</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>validity, 139, 144, 145</td>
</tr>
<tr>
<td>value restriction, 172</td>
</tr>
<tr>
<td>variable</td>
</tr>
<tr>
<td>uninitialized, 139</td>
</tr>
<tr>
<td>variable-dependence graph, 75</td>
</tr>
<tr>
<td>visibility, 139, 144, 147</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>word, 12</td>
</tr>
<tr>
<td>ambiguous, 50</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>YACC, 181</td>
</tr>
</tbody>
</table>