References

References

40. Jiang, W., Schulzrinne, H.: Comparison and optimization of packet loss repair methods on VoIP perceived quality under bursty loss. NOSSDAV’02, Miami Beach, FL, USA
QoS: A simulation-based methodology and tool. in Computer Performance Evaluation
Modelling Techniques and Tools, Lecture Notes in Computer Science, vol. 2324. London,
UK: Springer, 2002, pp 289-308
rdonlyres/51855E82-BD7C-4D9D-AA8A-E822E3F4A81F/0/
IETF RFC 2543, March (1999)
NR/rdonlyres/0AFA30DF-DAD6-461D-943C-ED33F3E7ABD8/0/
Wiley & Sons, New York, USA (2000)
Journal on Selected Areas in Communications vol. SAC-4, no. 6, pp 847-55, (Sept. 1986)
Series B 13(2), 151–173 (1951)
61. Jenq, Y.C.: Approximations for packetized voice traffic in statistical multiplexer, in
Proceedings of INFOCOM ’84
New York (1964)
63. Østerbø, O.: Models for End-to-end Delay in Packet Networks Queuing, R&D report 4/2003
System Tech. J. pp 69-81 (1922)
68. Crommelin, C.D.: Delay probability formulae when the holding times are constant. Post
Office Electrical Engineers Journal 25, 41–50 (1932)
69. Iversen, V.B.: Exact calculation of waiting time distributions in queueing systems with
constant holding times. NTS-4, Fourth Nordic Teletraffic Seminar, Helsinki, (1982)
Networks, submitted to the IASTED International Conference Communication Systems,
Networks, and Applications, CSNA 2007, Beijing, China, October. 8-10, (2007)
73. Clearing the Way for VoIP, An Alternative to Expensive WAN Upgrades, white paper,
74. Miyahara, H., Teshigawara, Y., Hasegawa, T.: Delay and throughput evaluation of
(1986)
89. Shortle, John F., Brill, Percy H.: Analytical Distribution of Waiting Time in the M/[iD]/1 Queue. Publication???, 50, 185-197 (July 2005)
References


122. Yingzhen Qu and Pramode Verma: IEEE Communication Letters also referenced elsewhere in the book


125. John Franks, Phillip Hallam-Baker, Jeffrey Hostetler, Scott Lawrence, Paul Leach, Ari Luotonen, Lawrence Stewart: HTTP authentication: Basic and digest access a authentication, IETF RFC 2617, (June 1999)
Index

A
A/B/n, 27
A/B/n/K/S/X, 27
Access network, 103–105, 108
Aggregate traffic, 28
Agilent, 15, 122, 124
Alexander Graham Bell, 1
Analytical modeling, 27
AoR, 19
Architectural dissimilarities, 103
Arrival process, 13, 27–29, 40, 51, 53, 64, 79
ATM, 29, 102, 124
Authentication, 102, 111–113
Authentication Scheme, 8, 111, 112, 114–116, 118, 120, 125

B
Bandwidth management, 12
Bell Laboratories, 104
Bernoulli distribution, 31
Best-effort, 5, 10
Biometric features, 120
Bounded delay, v, 33, 35, 36, 38, 40, 42, 44, 46, 49, 50, 52, 54, 56, 58
Bounded Jitter, 63
Buffer with infinite memory, 45
Burst packet loss, 16
Business drive, 3, 7
BYE message, 19

C
Calling line identification, 113
Capacity, 12, 27, 30, 39, 40, 42, 43, 47, 55, 56, 62, 64–69, 73–79, 81–83, 85, 89, 98, 100, 101, 119, 120

Capital, 96–98
Cascading channels, 87
CDF, 45
Central Offices or exchanges (switches), 101
Chaining trust, 118
Challenge–response, 114
Circuit switching, 1, 12, 111
CISCO 2600 routers, 14
Cisco 7960 SIP phone, 18
Class-based Queuing, 12
Claude Shannon, 104
CLID, 113
Client–server session, 17
Closed form, 7, 8, 31, 33, 35, 46, 62, 88, 94, 119

Constant Bit Rate, 13
Containerized traffic flow, 88
Converged network, 1, 2, 104, 112
Convergence, 104, 125
Cost and quality, 71, 72, 76, 80, 82, 84, 121, 125
Cross-subsidization, 104
Customer comfort, 3, 4

D
D.G. Kendall, 27
Delay, 8, 12, 13, 29, 30, 31, 33, 35, 36, 38, 49, 58, 62, 72, 74, 122, 123, 124
Digest authentication, 114, 115, 117
Digital subscriber loop, 102
DSL, 102, 108
DSLAM, 102, 108
Index

E
E.164, 108
E-911, 5
Earthquake statistics, 94
Echo control, 13
Economic characteristics of an information network, 98
Economic characteristics of an information network, 99
Economy of scale of communication networks, 96, 97
Efficient markets, 98
End-to-end authentication, 115, 118, 120
End-to-end risk characteristics, 88
Erlang, 27, 28, 31
ESP, 114, 126
Ethernet, 96
Exponential distribution of service time, 28, 29, 45, 94, 125

F
FCFS, 29, 51
FEC, 13, 122
Fiber optic, 96
FIFO, 29, 45, 57, 62
First-in-first-out (FIFO), 45, 57
Fry’s equations of state, 32
FXO, 15

G
G.114, 12, 49, 72, 112
G.131, 1, 2, 13
G.711-Law, 16
G/G/1, 120
Gordon Moore, 97
Grade of service, 6, 73

H
H.323 protocol suites, 11
Hop-by-hop authentication, 114, 118
HTTP, 17, 20, 112, 125

I
IETF, 16, 112, 126
Impact of bounded jitter on resource consumption, 8, 64, 66, 68
Information networks, 95, 98, 99
Inhomogeneous, 8, 88, 90, 92, 94, 95
Inhomogeneous channels, 8, 87, 88, 90, 92, 94, 125

J
Jitter, 1, 3, 5, 7, 12, 13, 15, 26, 30, 36, 63–69, 71, 72, 119, 120, 124, 125
Jitter analysis, 64, 65
Johan Bilien, 115
JPEG, 18, 37, 112

L
Legacy access, 108
LEX, 26
Local area networks, 29
Local loop, 101, 102, 108
Local or end central offices, 101
Lognormal distribution, 94, 125
Loss of magnitude, 89
LST, 41, 53, 56

M
M/(D_1 + D_2 + \cdots + D_n)/1 model, 51
M/D/1, 8, 13, 29, 31, 32, 33, 35, 37, 38, 40, 41, 43, 45, 49–52, 54, 58, 62, 124, 133
M/G/1, 120, 124
M/M/1, 8, 13, 28, 29, 31–33, 35, 37, 38, 40, 41, 43, 45, 50, 64, 73, 74
MAC, 45
Marginal cost, 98, 99
Marginal revenue, 98
Markovian, 25, 27
Mathematical model, 26, 36, 72, 73
MATLAB, 44, 57
Media gateways, 14
Megaco/H.248, 12
Metcalfe’s Law, 96, 97, 125
MGCP, 12, 122
MIKEY, 115, 126
MIME, 18, 20, 37, 112, 114–116
Molina, 28, 123
Monopoly, 95, 97
Moore’s Law, 97
MOS, 6, 15, 16

Inhomogeneous risk characteristics, 88
Integrated Local Loop, 102, 103
Integrity, 95, 108, 112, 114
INVITE message, 19, 20, 22, 23, 116, 117
IPSec, 114
IPWave, 15, 122
ISDN, 4
ITU-T, 6, 12, 49, 112
Index

Mouth-to-ear delay, 12
Multi-hop networks, 50, 56, 63–65, 72, 85, 119, 120
Multi-hop VoIP network, 44, 55, 56, 83, 85
Multiple-hop network, 42, 43
Mutual authentication, 111–113
MySQL, 14

N
National security agency, 88
n-Channel model, 93
Network authentication, 111, 118, 120
Normalized throughput, 31–33, 51, 54, 58, 59, 61, 74–77, 79–81, 85
NTT, 115

O
Objective measurement, 15
One-way, 12, 13, 72, 114, 122
Optimum capacity, 76, 77, 81
Optimum channel capacity, 79, 83
Overall impact on VoIP pricing, 106

P
Packet loss, 5, 6, 10, 12–14, 16, 17, 35, 71, 122
Packet repetition, 14
Packet switching, 1, 6, 12, 71, 100, 106, 107
PASTA-property, 29
PDF, 41, 53, 54, 56
Perceptual Speech Quality Measurement (PSQM), 15
Periodic packet loss, 16
Pitch waveform replication, 14
PLC, 13, 14
Poisson arrival process, 13, 27–29
POTS, 5
Pre-shared secret key, 115
Pricing, 6, 73, 84, 85, 88, 95, 97, 98, 100, 104–106, 120, 121, 125
Pricing for Single-Hop Network, 72, 78
Pricing for Two-Hop Network, 82
Pricing model, 3, 72, 73, 78, 82, 88
Pricing of Internet Services, 105
Pricing of services, 95
Pricing strategy, 79, 83
Priority queuing, 12
Priority round Robin, 12
Processing delay, 12
Propagation delay, 12, 27
Proxy Server, 14, 19, 23, 115–117

PSTN, 1–5, 7, 8, 12, 13, 18, 35, 72, 111, 118–121

Q
Quality of Service (QoS), 12
Queuing delay, 12, 13, 25–27, 29–32, 35–38, 49–50, 56, 72, 74, 81, 122
Queuing delay, 12, 13, 25–27, 29–32, 35–38, 49–50, 56, 72, 74, 81, 122

R
Random packet loss, 16
Real-time voice communication, 3, 27, 112
Redirect Server, 19, 22
REGISTER requests, 19
Registrar, 19
Regulatory intervention, 104, 105
Request message, 19
Resource consumption, 3, 8, 36, 38, 40, 42, 46, 49, 64, 66, 68, 74, 119, 123, 125
RFC2543, 17, 21
RFC3261, 17, 21
Robert Metcalfe, 96
RTCP, 11
RTP, 11, 20, 108, 112

S
S/MIME, 114–116
Scaling resources, 7, 13, 35, 49, 119
SDP, 18, 20, 37, 112, 123
Secrecy, 112
SER, 14
Service provider, 2–4, 12, 72, 75, 78, 79, 95, 100
Service time distribution, 27, 28
Session Description Protocol (SDP), 18, 20, 37
Session-key, 116
Silence substitution, 14
Simulation results, 8, 44–50, 56, 57, 59–62
SIP, 16–22
SIP, 9, 11, 14, 36, 37, 73, 108, 112, 114–116, 118, 123, 126
SIP dialogues, 21
SIP messages, 18–21, 37, 112
SIP transactions, 7, 21
SIPS, 114
S (cont.)
SMTP, 17
SMTP, 112
SPAM, 7, 112
SRTP, 115, 126
SS7, 107
Stateful proxy server, 19
Stateless proxy servers, 19
Store-and-forward principle, 26
Subjective voice quality, 15
Supply and demand curve, 99

T
Tandem network, 40, 53, 73, 82
Tandem or toll switch, 101
TDM, 107
Technology innovation, 3
Technology Innovation, 4
Telecommunication networks, 96, 121
TEX, 26
Threshold delay, 6, 30, 31, 33, 37, 40, 41, 42,
51–56, 62, 72, 74, 75–83, 86, 119, 120
TLS, 114, 116, 126
Traffic performance, 79
Transmission control protocol (TCP), 10
Transmission delay, 12, 72
Two-Hop Tandem Network, 40, 41, 53, 55
Two-Hop VoIP Network, 40–42, 55, 79, 81, 83

U
UA, 19
UAC, 19
UAS, 19
UDP, 9, 11, 20, 103, 108, 114
Unit price, 79, 82, 83, 85, 120
Unit service, 78
Upper bound, 3, 7, 26, 36, 49, 66, 68, 71, 72
User agents, 18, 21, 22

V
Verizon, 2
Video conferencing, 3, 95
Voice Quality Tester (VQT), 15, 122
VoIP Test Bed, 14

W
Waveform substitution, 14
Weighted Fair Queuing, 12
Weighted Round Robin, 12

X
X.509 certificate, 114, 116, 118