References

1. C++SIM. http://cxxsim.ncl.ac.uk/
3. Jane Hillston’s notes of lectures: Private communication
6. PUMA project. www.sce.carleton.ca/rads/puma/
10. OPNET Manuals: Mil 3, Inc. (1999)
14. ArgoUML: Object-oriented design tool with cognitive support

V. Cortellessa et al., Model-Based Software Performance Analysis, DOI 10.1007/978-3-642-13621-4, © Springer-Verlag Berlin Heidelberg 2011
73. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computations. Addison-Wesley, Reading (1979)

Index

A
- Analytical/Analytic, 6, 36, 42, 48, 93, 118, 131, 155, 170
- Approximate/Approximation/Approximated, 48, 119, 137, 142, 150, 152, 155, 157
- Architectural Pattern, 93–99, 106–109, 132, 135
- Arrival/Interarrival, 39, 40, 58, 82, 84, 105, 143–148, 150–151, 179
- Asynchronous, 13–16, 18, 21, 47, 50, 96, 122, 126, 175
- Automata, 11

B
- Bottleneck, 146, 156, 161, 163, 180

C
- Chain, 37, 40, 115, 118–123, 126–130, 175
- Client/Server, 46, 94–100, 106–110, 130, 132, 140
- Component Diagram, 20–22, 74–75, 115–117, 119–121, 125
- Core Scenario Model, CSM, 172, 174–175, 177–181

D
- Delay Center, 40, 117, 118, 120, 125, 151
- Demand (Service, Resource), 59–63, 83, 96, 101–105, 117, 146, 178
- Deployment Diagram, 32–33, 74–77, 86, 88, 91, 93, 96–97, 105, 106–111, 131–133

E
- E-commerce System, 18–19, 74–77, 87–92, 106–114, 124–130
- Execution Graph, EG, 7, 42–45, 131–133, 152, 155–156, 162, 175–177

F
- Forced Flow Law, 145

I
- Interaction Diagram, 22–25, 94–96, 132
- Iterative Process Model, 67

J
- Job, Job Class, 39–41, 46, 49, 56, 59, 120–123, 126, 143–148, 151, 175

L
- Layered Queuing Network, LQN, 46–49, 80, 92–114, 131–133
- Little’s Law, 144, 150, 151

M
- Markov
 - Chain, 152, 156, 157, 158
 - Model, 148–150, 154
 - Process, 36–39, 52
- Mean Value Analysis, MVA, 42, 48, 150–152
- Message Sequence Chart, MSC, 15–17, 131
- Meta-Model, 80, 172–180
- Model-Driven Architecture, MDA, 80, 159–164
- Model-Driven Engineering, 1, 80
- Model Transformation, 80
 - Automation, 4, 135, 140
 - Generality, 140
 - Result Interpretation, 140, 164–165
Model Transformation \textit{(cont.)}
 Scalability, 140
 Transparency, 4, 139

\textbf{O}
Ontology, 159, 171–172, 177–181
Overhead Matrix, 44–45, 176, 178

\textbf{P}
Performance
 Antipattern, 165
 Indices, 4–6, 35, 41, 55, 93–94, 139, 164, 180
 Management, 165–169
 Requirement, 6, 62, 75, 161, 163
Petri Net, 14–15, 133
 Stochastic, 49–52, 152, 154, 156–158
Process Algebra, 12–13
 Stochastic, 52–54, 158

\textbf{Q}
Q-Model, 65, 68–70, 74–77, 82, 94, 116
Queueing Network, QN, 39–42, 75, 115–133, 150–152, 154, 155, 176
 Product Form, 42, 118, 150

\textbf{R}
Residence Time, 118, 144–148, 151
Response Time, 4, 35, 62, 74, 115, 131, 144–148, 150, 162, 173
Response Time Law, 147, 148

\textbf{S}
SAPONE, 115–131
Sequence Diagram, 22–25, 74, 115–118, 119–124, 125–130
Service Center, 39–42, 115–130, 143, 150–151
Service Time, 39–42, 61, 94, 120, 124, 143–148
Simulation, 54–55, 81–92, 134, 142, 153–158
Software
 Architecture, 68, 74, 81, 93, 115, 118, 131, 135, 158, 159–164, 167
 Lifecycle, 2–4, 7, 65–74, 135–138
 Process, 65–67, 77
Reconfiguration, 165–171
Software Performance Engineering, SPE, 7, 67, 133
Meta-Model, SPE-MM, 172, 175–181
Solution Tool
 GreatSPN, 156–157
 SHARPE, 154–155
 SPE•ED, 131, 155–156
 TimeNET, 157–158
 TwoTowers, 158
State Machine Diagram, 30–32
Synchronous, 16, 22, 47–48, 96, 99, 110, 118, 122, 175

\textbf{T}
Think Time, 48, 59, 104, 107, 148
Transformation tool, 92, 113, 130

\textbf{U}
UML
 Profile, 33–34
 Schedulability Performance and Time,
Use Case Diagram, 19–20, 24, 74, 82, 85–88, 115–117, 124, 161
Utilization Law, 144, 146

\textbf{V}
Validation, 2–4
Verification and Validation, 66–68

\textbf{W}
Waiting Time, 5, 62, 144–145
Waterfall Process Model, 66, 68–69
 Closed, 58–59, 84, 87–88, 96, 107, 111, 117, 124, 126
 Open, 56–57, 84, 96, 117