Conclusions and Outlook

This monograph has attempted to provide a general framework for the convergence analysis of a variety of numerical methods using layer-adapted meshes for the solution of certain classes of singularly perturbed problems. While for some problems satisfactory answers have been presented, there is still a large number of open issues. We would like to summarise the results here and to point out some directions for future research.

Difference schemes in one dimension have been covered successfully to a large extent, although there are a few minor open questions. For example, the analysis for the fourth-order scheme for reaction-diffusion problems in Sect. 6.1.4 and the analysis for turning-point problems are restricted to Shishkin meshes so far. Similarly, for the two-parameter problem in Sect. 6.3, no analysis for arbitrary meshes and a second-order scheme is available.

For finite element methods—in both one and two dimensions—the situation is different. Here results on arbitrary meshes are restricted to the interpolation error. Convergence and superconvergence estimates are known for special meshes, namely Shishkin-type meshes, only. A general framework for this very important class of methods is still missing.

For systems of strongly coupled convection-diffusion problems, we only have a limited grasp of the situation. Even for one-dimensional problems there are still basic difficulties: when different diffusion parameters are present, can sharp pointwise bounds on derivatives be proved?

For two-dimensional convection-diffusion problems, further work on stability bounds is needed to improve our understanding of these problems. In particular, sharp estimates for the Green’s functions and negative-norm stability inequalities are required. In one dimensions these turned out to be the key ingredient for the convergence theory for arbitrary meshes, for the a posteriori error analysis and for dealing with strongly coupled convection-diffusion equations.

Two parameter problems of reaction-convection-diffusion type in two dimensions were considered in a small number of publications, but the presentations are typically very technical, mainly because of complicated solution decompositions involving a large number of different terms. Also the techniques used are very similar to that known from convection-diffusion problems with a single parameter. Further research is required to derive a general comprehensive theory.
Time-dependent problems have not been included in this book because only a few results are available that are insufficient for the development of a general theory. The vast majority of results use first-order backward Euler for discretisation in time. Higher-order time discretisations by A-stable Runge-Kutta methods have been considered in the literature, but their analysis is incomplete because of a lack of resolvent estimates for non-uniform meshes.

This account of open issues in the field is naturally incomplete. Studying some of the material presented in the book, the reader will certainly discover further mathematical problems worthy of investigating.
References

42. Fröhner, A.: Private communication (2001)

References

Index

adaptive mesh movement, 96, 129, 198

barrier function, 34
 discrete, 100, 116, 251, 259

comparison principle, 34, 236
 discrete, 80, 100, 191, 258, 302
 for discontinuous functions, 36
 for Robin boundary conditions, 60
compatibility conditions, 237, 244
consistency error
 relative, 123
convergence
 robust/uniform, 3

de Boor algorithm, 96
defect correction, 121
derivative approximation, 107, 125, 263, 288
 gradient recovery, 160, 280
difference operators, 78, 248, 257
difference scheme
 1st order, 79, 144, 223, 257
 2nd order, 110, 190, 202, 217, 247
 4th order, 206
 central, 119, 190, 217, 247
 compact, 206
 monotone, 79, 110, 144, 190, 223, 257
 non-monotone, 119, 202, 206
discontinuous data, 16, 21, 51, 63, 103, 115, 201

error bound
 a posteriori, 94, 127, 137, 141, 161, 197, 205, 221, 230
 a priori, 85, 100, 104, 114, 117, 125, 131, 137, 140, 148, 154, 179, 181, 188,
 195, 204, 212, 219, 226, 249, 258, 268, 288, 291
error bounds
 a priori, 306
error expansion, 87, 262
extrapolation, 130, 262

FEM
 artificial viscosity, 163, 285
 Galerkin, 154, 184, 215, 267, 295
 higher order, 292
 streamline-diffusion, 164, 289, 296

Green’s function, 36, 39, 58
 discrete, 80, 145, 191, 224, 302

interpolation, 152, 185, 214, 222, 264, 281, 293, 295
inverse monotonicity, 34, 37, 172, 236

layer, 2
 characteristic, 28, 245, 294
 exponential, 6, 19, 25, 27, 243
 interior, 16, 21
 overlapping layers, 17, 23
 turning point, 143
 turning-point, 15, 69
layer-damping transformations, 5

matrix
 H-matrix, 54
 L_0-matrix, 37
 M-criterion, 37
Index

- **M-matrix**, 37, 111, 144, 258
- coercive, 54
- inverse monotone, 37
- **mesh**
 - characterising function, 10
 - equidistribution, 5
 - generating function, 5
- Bakhvalov, 7
- Bakhvalov-type, 9
- Shishkin, 9
- Shishkin-type, 10
- monitor function, 5
- **norms**, 42
 - discrete, 78
- **point source**, 16, 63, 103, 115
- **quadrature**, 187
- **quasilinear problem**, 106, 115
- singular perturbation, 2
- stabilisation
 - artificial viscosity, 163
 - streamline-diffusion, 164
- **stability**
 - (A, B), 35
 - (L_∞, L_1), 45, 59, 67
 - (L_∞, L_∞), 35, 45, 53, 59, 65, 67, 237, 240
 - $(L_\infty, L_{1,1/p})$, 71
 - $(L_\infty, L_{\infty,1/p})$, 70
 - $(L_\infty, W^{-1,\infty})$, 45, 65, 67
 - (ℓ_∞, ℓ_1), 83, 97, 112, 174
 - $(\ell_\infty, \ell_1 \otimes \ell_\infty)$, 305
 - $(\ell_\infty, \ell_\infty)$, 38, 80, 136, 140, 209, 218, 224, 248, 258, 302
 - $(\ell_\infty, \ell_{1,1/p})$, 146
 - $(\ell_\infty, \ell_{\infty,1/p})$, 144
 - $(\ell_\infty, w^{-1,\infty})$, 83, 112, 136, 139, 175
- stretching function, 5
- supercloseness, 156, 167, 269, 291, 294
- **systems**
 - convection-diffusion
 - strongly coupled, 66, 137
 - weakly coupled, 64, 134
 - reaction-diffusion, 52, 214, 238, 247
- truncation error, 100, 251, 259
Lecture Notes in Mathematics
For information about earlier volumes please contact your bookseller or Springer
LNMOldine archive: springerlink.com

Vol. 1857: M. Emery, M. Ledoux, M. Yor (Eds.), Séminaire de Probabilités XXXVII (2005)
Vol. 1868: B. Jorgenson, S. Lang, Poisson(R) and Eisenstein Series, (2005)
Vol. 1874: M. Yor, M. Émery (Eds.), In Memoriam Paul-André Meyer - Séminaire de Probabilités XXXIX (2006)
Editorial Policy (for the publication of monographs)

1. Lecture Notes aim to report new developments in all areas of mathematics and their applications - quickly, informally and at a high level. Mathematical texts analysing new developments in modelling and numerical simulation are welcome.

 Monograph manuscripts should be reasonably self-contained and rounded off. Thus they may, and often will, present not only results of the author but also related work by other people. They may be based on specialised lecture courses. Furthermore, the manuscripts should provide sufficient motivation, examples and applications. This clearly distinguishes Lecture Notes from journal articles or technical reports which normally are very concise. Articles intended for a journal but too long to be accepted by most journals, usually do not have this “lecture notes” character. For similar reasons it is unusual for doctoral theses to be accepted for the Lecture Notes series, though habilitation theses may be appropriate.

2. Manuscripts should be submitted either online at www.editorialmanager.com/lnm to Springer’s mathematics editorial in Heidelberg, or to one of the series editors. In general, manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet be reached on the basis of the first 2 reports, further referees may be contacted: The author will be informed of this. A final decision to publish can be made only on the basis of the complete manuscript, however a refereeing process leading to a preliminary decision can be based on a pre-final or incomplete manuscript. The strict minimum amount of material that will be considered should include a detailed outline describing the planned contents of each chapter, a bibliography and several sample chapters.

 Authors should be aware that incomplete or insufficiently close to final manuscripts almost always result in longer refereeing times and nevertheless unclear referees’ recommendations, making further refereeing of a final draft necessary.

 Authors should also be aware that parallel submission of their manuscript to another publisher while under consideration for LNM will in general lead to immediate rejection.

3. Manuscripts should in general be submitted in English. Final manuscripts should contain at least 100 pages of mathematical text and should always include

 – a table of contents;
 – an informative introduction, with adequate motivation and perhaps some historical remarks: it should be accessible to a reader not intimately familiar with the topic treated;
 – a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form (print form is still preferred by most referees), in the latter case preferably as pdf- or zipped ps-files. Lecture Notes volumes are, as a rule, printed digitally from the authors’ files. To ensure best results, authors are asked to use the \LaTeX\2e style files available from Springer’s web-server at:

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs) and
Additional technical instructions, if necessary, are available on request from:
lnm@springer.com.

4. Careful preparation of the manuscripts will help keep production time short besides ensuring satisfactory appearance of the finished book in print and online. After acceptance of the manuscript authors will be asked to prepare the final LaTeX source files and also the corresponding dvi-, pdf- or zipped ps-file. The LaTeX source files are essential for producing the full-text online version of the book (see http://www.springerlink.com/openurl.asp?genre=journal&issn=0075-8434 for the existing online volumes of LNM).

The actual production of a Lecture Notes volume takes approximately 12 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled to a discount of 33.3% on the price of Springer books purchased for their personal use, if ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract. Springer-Verlag secures the copyright for each volume. Authors are free to reuse material contained in their LNM volumes in later publications: a brief written (or e-mail) request for formal permission is sufficient.

Addresses:
Professor J.-M. Morel, CMLA,
École Normale Supérieure de Cachan,
61 Avenue du Président Wilson, 94235 Cachan Cedex, France
E-mail: Jean-Michel.Morel@cmla.ens-cachan.fr

Professor F. Takens, Mathematisch Instituut,
Rijksuniversiteit Groningen, Postbus 800,
9700 AV Groningen, The Netherlands
E-mail: F.Takens@rug.nl

Professor B. Teissier, Institut Mathématique de Jussieu,
UMR 7586 du CNRS, Équipe “Géométrie et Dynamique”,
175 rue du Chevaleret,
75013 Paris, France
E-mail: teissier@math.jussieu.fr

For the “Mathematical Biosciences Subseries” of LNM:
Professor P.K. Maini, Center for Mathematical Biology,
Mathematical Institute, 24-29 St Giles,
Oxford OX1 3LP, UK
E-mail: maini@maths.ox.ac.uk

Springer, Mathematics Editorial, Tiergartenstr. 17,
69121 Heidelberg, Germany,
Tel.: +49 (6221) 487-259
Fax: +49 (6221) 4876-8259
E-mail: lnm@springer.com