References

35. V. Chvátal: Linear Programming, Freeman, New York, 1983.

References added for softcover edition

Notation Table

Chapter 1

ξ^i: current in branch i §1.1.2
η_i: voltage across branch i §1.1.2
$\nu(A)$: index of polynomial matrix A (1.2)
A_{str}: structured matrix associated with polynomial matrix A (1.5)
$\nu_{\text{str}}(A)$: structural index of polynomial matrix (1.6)
A-Q_1: assumption on Q-part of mixed polynomial matrix §1.2.1
A-T: assumption on T-part of mixed polynomial matrix §1.2.1
A-Q_2: stronger assumption on Q-part of mixed polynomial matrix §1.2.3
F: field §1.3.1
K: ground field, subfield of F §1.3.1
$A = Q + T$: mixed matrix (1.32)
M-Q: assumption on Q-part of mixed matrix §1.3.1
M-T: assumption on T-part of mixed matrix §1.3.1
T: set of independent parameters §1.3.1
$A(s) = Q(s) + T(s)$: mixed polynomial matrix (1.33)
MP-Q_1: assumption on Q-part of mixed polynomial matrix §1.3.1
MP-T: assumption on T-part of mixed polynomial matrix §1.3.1
MP-Q_2: stronger assumption on Q-part of mixed polynomial matrix §1.3.1

Chapter 2

F: field §2.1.1
K: ground field, subfield of F §2.1.1
Q: field of rational numbers §2.1.1
R: field of real numbers §2.1.1
$K[X]$: ring of polynomials in X over K §2.1.1
deg p: degree of polynomial p §2.1.1
$K(X)$: field of rational functions in X over K §2.1.1
$K[X,1/X]$: ring of Laurent polynomials in X over K §2.1.1
ord f: order of Laurent polynomial f §2.1.1
$K(Y)$: field adjunction of Y to K §2.1.1
$K[Y]$: ring adjunction of Y to K §2.1.1
\(\dim_K F \): degree of transcendency of \(F \) over \(K \)
\(\text{Row}(A) \): row set of matrix \(A \)
\(\text{Col}(A) \): column set of matrix \(A \)
\(A_{ij} \): \((i,j)\)-entry of matrix \(A \)
\(A[I,J] \): submatrix of \(A \) with row set \(I \) and column set \(J \)
\(\det A \): determinant of matrix \(A \)
\(\text{GL}(n, F) \): set of nonsingular matrices of order \(n \) over \(F \)
\(\text{BM}_\pm \): simultaneous exchange property of matroids
\(\text{VM} \): axiom of valuated matroids
\(\text{OM} \): axiom of oriented matroids
\(\text{rank } A \): rank of matrix \(A \)
\(\text{term-rank } A \): term-rank of matrix \(A \)
\(G = (V, A) \): graph with vertex set \(V \) and arc set \(A \)
\(\partial^+ a \): initial vertex of arc \(a \)
\(\partial^- a \): terminal vertex of arc \(a \)
\(\partial a \): set of vertices incident to arc \(a \)
\(\delta^+ v \): set of arcs leaving vertex \(v \)
\(\delta^- v \): set of arcs entering vertex \(v \)
\(\delta v \): set of arcs incident to vertex \(v \)
\(G \setminus U \): graph obtained from \(G \) by deleting vertices in \(U \)
\(u \rightarrow v \): directed path exists from \(u \) to \(v \)
\(\sim \): equivalence relation by reachability
\(\preceq \): partial order among strong components
\(G = (V^+, V^-; A) \): bipartite graph with bipartition \((V^+, V^-)\) of vertex set and arc set \(A \)
\(G^k_0 \): dynamic graph of time-span \(k \)
\(\mathcal{L} \): sublattice of \(2^V \)
\(\mathcal{L}_{\text{min}}(f) \): family of the minimizers of \(f \)
\(\mathcal{P}(\mathcal{L}) \): partition determined by sublattice \(\mathcal{L} \)
\(\mathcal{L}(\mathcal{P}) \): sublattice determined by partition \(\mathcal{P} \)
\(A(V; V_0, V_\infty) \): collection of sublattices of \(2^V \) with minimum \(V_0 \) and maximum \(V \setminus V_\infty \)
\(\Pi(V; V_0, V_\infty) \): collection of pairs of a partition of \(V \) with two distinguished subsets \(V_0 \) and \(V_\infty \) and a partial order \(\preceq \)
\(\prec \): \(\preceq \) and \(\neq \)
\(\prec \cdot \): “covered by” relation with respect to a partial order
\(\langle \cdot \rangle \): set of elements below with respect to a partial order
\(\mathcal{L} = (S, \lor, \land) \): lattice with join \(\lor \) and meet \(\land \)
\(M \): matching
\(\partial^+ M \): set of vertices in \(V^+ \) incident to arcs in \(M \)
\(\partial^- M \): set of vertices in \(V^- \) incident to arcs in \(M \)
\(\partial M \): set of vertices incident to arcs in \(M \)
\(\nu(G) \): size of a maximum matching in bipartite graph \(G \)
\((U^+, U^-) \): cover of bipartite graph \(G \)
Notation Table

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{C}(G)$</td>
<td>family of minimum covers of bipartite graph G</td>
</tr>
<tr>
<td>Γ</td>
<td>set of adjacent vertices</td>
</tr>
<tr>
<td>γ</td>
<td>number of adjacent vertices</td>
</tr>
<tr>
<td>p_0</td>
<td>surplus function</td>
</tr>
<tr>
<td>$N = (V, A, c; s^+, s^-)$</td>
<td>network with vertex set V, arc set A, capacity c, source s^+, and sink s^-</td>
</tr>
<tr>
<td>φ</td>
<td>flow</td>
</tr>
<tr>
<td>$\partial \varphi$</td>
<td>boundary of flow φ</td>
</tr>
<tr>
<td>$\text{val}(\varphi)$</td>
<td>value of flow φ</td>
</tr>
<tr>
<td>ψ</td>
<td>flow</td>
</tr>
<tr>
<td>$\partial \psi$</td>
<td>boundary of flow ψ</td>
</tr>
<tr>
<td>$\text{val}(\psi)$</td>
<td>value of flow ψ</td>
</tr>
<tr>
<td>\mathcal{S}</td>
<td>family of S with $s^+ \in S$, $s^- \in V \setminus S$</td>
</tr>
<tr>
<td>$\mathcal{C}(S)$</td>
<td>cut corresponding to S</td>
</tr>
<tr>
<td>$\kappa(S)$</td>
<td>capacity of cut S</td>
</tr>
<tr>
<td>$G = (V, A; X, Y)$</td>
<td>graph with vertex set V, arc set A, entrance X, and exit Y</td>
</tr>
<tr>
<td>$N = (V, A, \tau, \xi, \gamma)$</td>
<td>network with vertex set V, arc set A, upper capacity ξ, lower capacity γ, and cost γ</td>
</tr>
<tr>
<td>$\text{cost}(\varphi)$</td>
<td>cost of flow φ</td>
</tr>
<tr>
<td>$w(M)$</td>
<td>weight of matching M</td>
</tr>
<tr>
<td>$\mathbf{M} = (V, \mathcal{I})$</td>
<td>matroid on V with family of independent sets \mathcal{I}</td>
</tr>
<tr>
<td>$\mathbf{M} = (V, \mathcal{B}, \mathcal{I}, \rho)$</td>
<td>matroid on V with family of bases \mathcal{B}, family of independent sets \mathcal{I}, and rank function ρ</td>
</tr>
<tr>
<td>BM_-</td>
<td>(one-sided) basis exchange property</td>
</tr>
<tr>
<td>$\text{rank} \mathbf{M}$</td>
<td>rank of matroid \mathbf{M}</td>
</tr>
<tr>
<td>$\text{cl}(X)$</td>
<td>closure of subset X</td>
</tr>
<tr>
<td>\mathbf{M}^*</td>
<td>dual of matroid \mathbf{M}</td>
</tr>
<tr>
<td>BM_+</td>
<td>dual exchange property</td>
</tr>
<tr>
<td>\mathbf{M}^U</td>
<td>restriction of matroid \mathbf{M} to U</td>
</tr>
<tr>
<td>\mathbf{M}_U</td>
<td>contraction of matroid \mathbf{M} to U</td>
</tr>
<tr>
<td>$\mathbf{M}_1 \oplus \mathbf{M}_2$</td>
<td>direct sum of matroids \mathbf{M}_1 and \mathbf{M}_2</td>
</tr>
<tr>
<td>$\mathbf{M}_1 \rightarrow \mathbf{M}_2$</td>
<td>strong map for matroids \mathbf{M}_1 and \mathbf{M}_2</td>
</tr>
<tr>
<td>$\mathbf{M}(A)$</td>
<td>linear matroid defined by matrix A</td>
</tr>
<tr>
<td>$\mathbf{M}{U}$</td>
<td>linear matroid defined by subspace U</td>
</tr>
<tr>
<td>ker</td>
<td>kernel of a matrix</td>
</tr>
<tr>
<td>BM_{\pm}</td>
<td>simultaneous exchange property</td>
</tr>
<tr>
<td>$\text{BM}{\pm{\text{loc}}}$</td>
<td>local exchange property</td>
</tr>
<tr>
<td>$G(B, B')$</td>
<td>exchangeability graph for a pair of bases (B, B')</td>
</tr>
<tr>
<td>$\kappa(U)$</td>
<td>cut capacity of U</td>
</tr>
<tr>
<td>Γ</td>
<td>set of adjacent vertices</td>
</tr>
<tr>
<td>$\mathbf{M}_1 \vee \mathbf{M}_2$</td>
<td>union of matroids \mathbf{M}_1 and \mathbf{M}_2</td>
</tr>
<tr>
<td>$\mathbf{L} = (S, T, \Lambda)$</td>
<td>bimatroid with row set S, column set T, and family of linked pairs Λ</td>
</tr>
<tr>
<td>$\text{Row} \mathbf{L}$</td>
<td>row set of bimatroid \mathbf{L}</td>
</tr>
<tr>
<td>$\text{Col} \mathbf{L}$</td>
<td>column set of bimatroid \mathbf{L}</td>
</tr>
<tr>
<td>$\text{RM} \mathbf{L}$</td>
<td>row matroid of bimatroid \mathbf{L}</td>
</tr>
</tbody>
</table>
CM(L) : column matroid of bimatroid L
G(L) : underlying bipartite graph of bimatroid L
L \ Z : deletion of Z from bimatroid L
(D(L), A(L), C(L)) : canonical partition of bimatroid L
L[X, Y] : restriction of bimatroid L to (X, Y)
L^* : dual of bimatroid L
L^{-1} : inverse of bimatroid L
L_1 \lor L_2 : union of bimatroids L_1 and L_2
L_1 \star L_2 : product of bimatroids L_1 and L_2
L \star M : matroid induced from matroid M by bimatroid L

Chapter 3

\[D : (\text{multi})\text{set of numbers characterizing a physical system} \] (3.8)
\[Q : (\text{multi})\text{set of accurate numbers} \] (3.9)
\[T : (\text{multi})\text{set of inaccurate numbers} \] (3.9)
GA1 : first generality assumption
GA2 : second generality assumption
GA3 : third generality assumption
\[A = Q + T : \text{mixed matrix} \] (3.13)
M-Q : assumption on Q-part of mixed matrix
M-T : assumption on T-part of mixed matrix
\[\text{MM}(K, F; m, n) : \text{set of } m \times n \text{ mixed matrices with respect to } (K, F) \]
\[\text{MM}(K, F) : \text{set of mixed matrices with respect to } (K, F) \]
\[A(s) = Q(s) + T(s) : \text{mixed polynomial matrix} \] (3.20)
MP-Q1 : assumption on Q-part of mixed polynomial matrix
MP-T : assumption on T-part of mixed polynomial matrix
\[\text{D}(F; m, n; Z_1, \ldots, Z_d) : \text{set of } m \times n \text{ dimensioned matrices with} \]
\[\text{ground field } F \text{ and fundamental quantities } Z_1, \ldots, Z_d \]
\[\text{D}(F; Z_1, \ldots, Z_d) : \text{set of dimensioned matrices with ground}\]
\[\text{field } F \text{ and fundamental quantities } Z_1, \ldots, Z_d \]
\[D_r : \text{diagonal matrix representing physical dimensions of rows} \] (3.27)
\[D_c : \text{diagonal matrix representing physical dimensions of columns} \] (3.28)
\[U(R; m, n) : \text{set of } m \times n \text{ totally unimodular matrices over ring } R \]
\[U(R) : \text{set of totally unimodular matrices over ring } R \]
\[F(Z_1, \ldots, Z_d) : \text{ring generated over } F \text{ by formal fractional} \]
\[\text{powers of } Z_1, \ldots, Z_d \]
MP-Q2 : stronger assumption on Q-part of mixed polynomial matrix

Chapter 4

\[A = Q + T : \text{mixed matrix} \] (4.1)
M-Q : assumption on Q-part of mixed matrix
M-T : assumption on T-part of mixed matrix
\[\text{MM}(K, F; m, n) : \text{set of } m \times n \text{ mixed matrices with respect to } (K, F) \]
<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{MM}(K, F)$</td>
<td>set of mixed matrices with respect to (K, F)</td>
</tr>
<tr>
<td>$A = \begin{pmatrix} Q & T \end{pmatrix}$</td>
<td>LM-matrix</td>
</tr>
<tr>
<td>LQ</td>
<td>assumption on Q-part of LM-matrix</td>
</tr>
<tr>
<td>LT</td>
<td>assumption on T-part of LM-matrix</td>
</tr>
<tr>
<td>$\text{LM}(K, F; m_Q, m_T, n)$</td>
<td>set of $(m_Q + m_T) \times n$ LM-matrices with respect to (K, F)</td>
</tr>
<tr>
<td>τ</td>
<td>term-rank of T-part</td>
</tr>
<tr>
<td>γ</td>
<td>number of nonzero rows of T-part</td>
</tr>
<tr>
<td>ρ</td>
<td>rank of Q-part</td>
</tr>
<tr>
<td>p</td>
<td>LM-surplus function</td>
</tr>
<tr>
<td>$J(x, u)$</td>
<td>Jacobian matrix with respect to x and u</td>
</tr>
<tr>
<td>GA1</td>
<td>first generality assumption</td>
</tr>
<tr>
<td>GA2</td>
<td>second generality assumption</td>
</tr>
<tr>
<td>GA3</td>
<td>third generality assumption</td>
</tr>
<tr>
<td>S</td>
<td>nonsingular matrix in LM-admissible transformation</td>
</tr>
<tr>
<td>P_r</td>
<td>row permutation matrix in LM-admissible transformation</td>
</tr>
<tr>
<td>P_c</td>
<td>column permutation matrix in LM-admissible transformation</td>
</tr>
<tr>
<td>D</td>
<td>integral domain</td>
</tr>
<tr>
<td>d_k</td>
<td>kth determinantal divisor</td>
</tr>
<tr>
<td>\sim</td>
<td>equivalence with respect to pivotal transformation</td>
</tr>
<tr>
<td>$\text{LC}(K, F_0, F; m_Q, m_T, n)$</td>
<td>set of matrices</td>
</tr>
<tr>
<td>$\psi(J, S_c)$</td>
<td>subspace determined by (J, S_c)</td>
</tr>
<tr>
<td>\mathcal{W}</td>
<td>family of subspaces of V compatible with Γ</td>
</tr>
<tr>
<td>p_{PE}</td>
<td>PE-surplus function</td>
</tr>
<tr>
<td>$\mathcal{L}{\text{min}}(p{\text{PE}})$</td>
<td>family of minimizers of PE-surplus function p_{PE}</td>
</tr>
<tr>
<td>$\mathcal{L}(A, \Pi, \Gamma)$</td>
<td>family of subspaces of V with property</td>
</tr>
<tr>
<td>$\mathcal{P}(\bar{A})$</td>
<td>partially ordered set determined by \bar{A}</td>
</tr>
<tr>
<td>$\mathcal{D}(\bar{A})$</td>
<td>distributive lattice of order ideals of $\mathcal{P}(\bar{A})$</td>
</tr>
<tr>
<td>$\psi(J, S_c)$</td>
<td>subspace determined by (J, S_c)</td>
</tr>
<tr>
<td>\mathcal{W}°</td>
<td>family of subspaces of V compatible with Γ</td>
</tr>
<tr>
<td>\mathcal{Y}°</td>
<td>family of subspaces of U compatible with Π</td>
</tr>
</tbody>
</table>
Notation Table

\(\lambda \): GP-birank function \((4.130) \)

\(\mathcal{L} \): lattice \(§4.9.2 \)

\(f \): submodular function \(§4.9.2 \)

\(\preceq \): partial order in \(\mathcal{L} \) \(§4.9.2 \)

\(\mathcal{L}_{\text{min}}(f; X) \): sublattice of minimizers of \(f \) not smaller than \(X \) \((4.134) \)

\(D(f; X) \): minimum element of \(\mathcal{L}_{\text{min}}(f; X) \) \((4.135) \)

\(K_{\text{PS}}(f) \): principal structure of \((\mathcal{L}, f) \) \((4.136) \)

\(\mathcal{L}_{\text{PS}}(f) \): principal sublattice of \((\mathcal{L}, f) \) \(§4.9.2 \)

\(\mathcal{L}_{\text{min}}(f) \): family of minimizers of \(f \) \((4.137) \)

\(D(f; v) \): minimum element of \(\mathcal{L}_{\text{min}}(f; v) \) \(§4.9.2 \)

\(B_{\text{row}} \): family of row-bases of a matrix \((4.139) \)

\(q \): surplus function for horizontal principal structure \((4.153) \)

\(\mathcal{L}_{\text{CCF}}(R, J) \): sublattice corresponding to \(\mathcal{P}_{\text{CCF}}(I, C) \) \(§4.9.5 \)

\(\mathcal{L}(\omega, \alpha) \): level set \((5.42) \)

Chapter 5

\(d_k \): \(k \)th determinantal divisor \((5.1) \)

\(e_k \): \(k \)th invariant factor (invariant polynomial) \((5.2) \)

\(\delta_k \): highest degree of a minor of order \(k \) \((5.3) \)

\(t_k \): contents at infinity \((5.4) \)

\(\mathcal{M} = (V, \omega) \): valued matroid on \(V \) with valuation \(\omega \) \(§5.2.1 \)

\(\mathcal{M} = (V, B, \omega) \): valued matroid on \(V \) with family of bases \(B \) and valuation \(\omega \) \(§5.2.1 \)

\(\mathcal{V}_M \): exchange axiom of valued matroids \(§5.2.1 \)

\(\mathcal{M}[p] = (V, B, \omega[p]) \): similarity transformation of valued matroid \(\mathcal{M} \) \((5.16) \)

\(\mathcal{M}^* = (V, B^*, \omega^*) \): dual of valued matroid \(\mathcal{M} \) \(§5.2.3 \)

\(\mathcal{M}^U_i = (V, B^U_i, \omega^U_i) \): restriction of valued matroid \(\mathcal{M} \) \(§5.2.3 \)

\(\mathcal{M}_{U,J} = (V, B_U, \omega^U) \): contraction of valued matroid \(\mathcal{M} \) \(§5.2.3 \)

\(\mathcal{M}_{k, S_0} = (V, B_k, \omega_k, S_0) \): truncation of valued matroid \(\mathcal{M} \) \((5.19) \)

\(\mathcal{M}^{I,J_0} = (V, B_j, \omega^{I,J_0}) \): elongation of valued matroid \(\mathcal{M} \) \((5.20) \)

\(\omega(B, u, v) \): exchange gain \((5.21) \)

\(\mathcal{V}_B \): exchange axioms of valued bimatroids \(§5.2.5 \)

\((S, T, \delta) \): valued bimatroid \(§5.2.5 \)

\((S, T, \Lambda, \delta) \): valued bimatroid \(§5.2.5 \)

\(\mathcal{M}_1 \vee \mathcal{M}_2 \): union of valued matroids \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) \(§5.2.6 \)

\(\mathcal{V}_M_w \): weak exchange axiom of valued matroids \(§5.2.7 \)

\(\mathcal{V}_M_{\text{loc}} \): local exchange axiom of valued matroids \(§5.2.7 \)

\(\mathcal{V}_M_d \): variant of exchange axiom of valued matroids \(§5.2.7 \)

\(B_p \): set of maximizers of \(\omega[p] \) \(§5.2.7 \)

\(\mathcal{L}(\omega, \alpha) \): level set \((5.42) \)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>exchange property of level sets</td>
</tr>
<tr>
<td>BL<sub>w</sub></td>
<td>weaker exchange property of level sets</td>
</tr>
<tr>
<td>G(B, B')</td>
<td>exchangeability graph</td>
</tr>
<tr>
<td>(\hat{\omega}(B, B'))</td>
<td>maximum weight of a perfect matching in G(B, B')</td>
</tr>
<tr>
<td>VIAP</td>
<td>valuated independent assignment problem</td>
</tr>
<tr>
<td>(\Omega(M))</td>
<td>objective function of VIAP</td>
</tr>
<tr>
<td>VIAP(k)</td>
<td>valuated independent k-assignment problem</td>
</tr>
<tr>
<td>(\Omega(M, B^+, B^-))</td>
<td>objective function of VIAP(k)</td>
</tr>
<tr>
<td>diag ((s; p))</td>
<td>diagonal matrix with diagonal entries (s^{p_i})</td>
</tr>
</tbody>
</table>

Chapter 6

\[A(s) = Q(s) + T(s) : \text{mixed polynomial matrix} \] (6.3)

MP-Q1 : assumption on \(Q\)-part of mixed polynomial matrix §6.1.1

MP-T : assumption on \(T\)-part of mixed polynomial matrix §6.1.1

MP-Q2 : stronger assumption on \(Q\)-part of mixed polynomial matrix §6.1.1

\[A(s) = \begin{pmatrix} Q(s) \\ T(s) \end{pmatrix} : \text{LM-polynomial matrix} \] (6.5)

\(\delta_k\) : highest degree of a minor of order \(k\) (6.9)

\(o_k\) : lowest order of a minor of order \(k\) (6.11)

\(\delta_{k,LM}\) : highest degree of a minor of order \(m_Q + k\) for LM-matrix (6.16)

\(d_k\) : \(k\)th determinantal divisor (6.51)

\(e_k\) : \(k\)th invariant factor (invariant polynomial) (6.52)

\(\Sigma_A\) : Smith form of \(A\) §6.3.1

\[D(s) = [A - sF \mid B] : \text{modal controllability matrix} \] (6.67)

\(G^n_0\) : dynamic graph of time-span \(n\) §6.4.2

\(\zeta\) : weight function for \(Q\)-part (6.74)

\(\xi_k\) : highest degree of a nonzero term in \(\det T_k[\text{Row}(T_k), J]\) §6.4.2

\(\eta_k\) : lowest degree of a nonzero term in \(\det \tilde{T}_k[\text{Row}(\tilde{T}_k), J]\) §6.4.2

\(\psi(s; A, B, C, K)\) : fixed polynomial of \((A, B, C)\) with respect to \(K\) (6.84)

\(K\) : feedback structure (6.85)

\(C_K\) : family of covers of feedback structure \(K\) (6.86)

\(S\) : set of nonzero entries of \(K\) §6.5.3

\(\psi(s)\) : fixed polynomial (6.95)

\(\zeta\) : weight function for \(Q\)-part (6.100)

\(\eta(J)\) : lowest degree of a nonzero term in \(\det \tilde{T}_K[\text{Row}(\tilde{T}_K), J]\) (6.101)

\(\Psi_0\) : index set (6.103)

\(\Psi_1\) : index set (6.104)

\(\Psi_2\) : index set (6.105)

Chapter 7

\(\delta_k\) : highest degree of a minor of order \(k\) (7.1)

\(\hat{\delta}_k\) : combinatorial counterpart of \(\delta_k\) (7.2)

\(A^\circ = (A^\circ_{ij})\) : leading coefficient matrix (7.3)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP((k))</td>
<td>primal linear program</td>
<td>(7.5)</td>
</tr>
<tr>
<td>DLP((k))</td>
<td>dual linear program</td>
<td>(7.6)</td>
</tr>
<tr>
<td>(\xi)</td>
<td>primal variable</td>
<td>§7.1.2</td>
</tr>
<tr>
<td>(p = p_R \oplus p_C)</td>
<td>dual variable</td>
<td>§7.1.2</td>
</tr>
<tr>
<td>(q)</td>
<td>dual variable</td>
<td>§7.1.2</td>
</tr>
<tr>
<td>(V^*)</td>
<td>set of active vertices</td>
<td>(7.10)</td>
</tr>
<tr>
<td>(I^*)</td>
<td>set of active rows</td>
<td>(7.11)</td>
</tr>
<tr>
<td>(J^*)</td>
<td>set of active columns</td>
<td>(7.12)</td>
</tr>
<tr>
<td>(T(A;p,q) = A^*)</td>
<td>tight coefficient matrix</td>
<td>(7.13)</td>
</tr>
<tr>
<td>RS(_k)((X_0))</td>
<td>family of reachable sets at time (k)</td>
<td>(7.36)</td>
</tr>
<tr>
<td>RS((X_0))</td>
<td>family of reachable sets</td>
<td>(7.37)</td>
</tr>
<tr>
<td>(\tau(A))</td>
<td>transition index of bimatroid (A)</td>
<td>§7.2.2</td>
</tr>
<tr>
<td>RM((A^\infty))</td>
<td>limit of RM((A^k))</td>
<td>§7.2.2</td>
</tr>
<tr>
<td>CM((A^\infty))</td>
<td>limit of CM((A^k))</td>
<td>§7.2.2</td>
</tr>
<tr>
<td>((\omega_0;\omega_1,\omega_2,\cdots))</td>
<td>Jordan type</td>
<td>§7.2.2</td>
</tr>
<tr>
<td>EIG((A))</td>
<td>family of eigensets of bimatroid (A)</td>
<td>§7.2.3</td>
</tr>
<tr>
<td>max-EIG((A))</td>
<td>family of maximum-sized eigensets of bimatroid (A)</td>
<td>§7.2.3</td>
</tr>
<tr>
<td>REC((A))</td>
<td>family of recurrent sets of bimatroid (A)</td>
<td>§7.2.3</td>
</tr>
<tr>
<td>max-REC((A))</td>
<td>family of maximum-sized recurrent sets of bimatroid (A)</td>
<td>§7.2.3</td>
</tr>
<tr>
<td>(R_k)</td>
<td>reachability matroid</td>
<td>§7.2.4</td>
</tr>
<tr>
<td>(R_{\infty})</td>
<td>ultimate reachability matroid</td>
<td>§7.2.4</td>
</tr>
<tr>
<td>(r(R_{\infty}))</td>
<td>controllable dimension</td>
<td>§7.2.4</td>
</tr>
<tr>
<td>(\kappa(A,B))</td>
<td>controllability index of CDS ((A,B))</td>
<td>§7.2.4</td>
</tr>
<tr>
<td>({\kappa_i})</td>
<td>controllability indices</td>
<td>§7.2.4</td>
</tr>
<tr>
<td>(A = Q + T)</td>
<td>mixed skew-symmetric matrix</td>
<td>(7.43)</td>
</tr>
<tr>
<td>MS-Q</td>
<td>assumption on (Q)-part of mixed skew-symmetric matrix</td>
<td>§7.3.1</td>
</tr>
<tr>
<td>MS-T</td>
<td>assumption on (T)-part of mixed skew-symmetric matrix</td>
<td>§7.3.1</td>
</tr>
<tr>
<td>(\nu(M,II))</td>
<td>optimal value of the matroid parity problem ((M,II))</td>
<td>§7.3.1</td>
</tr>
<tr>
<td>(A[I])</td>
<td>principal submatrix of (A) indexed by (I)</td>
<td>§7.3.2</td>
</tr>
<tr>
<td>(I \triangle J)</td>
<td>symmetric difference of sets (I) and (J)</td>
<td>§7.3.2</td>
</tr>
<tr>
<td>pf (A)</td>
<td>Pfaffian of skew-symmetric matrix (A)</td>
<td>(7.45)</td>
</tr>
<tr>
<td>(A* I)</td>
<td>pivotal transform of (A) with respect to principal submatrix (A[I])</td>
<td>§7.3.2</td>
</tr>
<tr>
<td>(\nu(G))</td>
<td>maximum size of a matching in graph (G)</td>
<td>§7.3.2</td>
</tr>
<tr>
<td>odd((G))</td>
<td>number of odd components of graph (G)</td>
<td>§7.3.2</td>
</tr>
<tr>
<td>(G \setminus U)</td>
<td>graph obtained from (G) by deleting vertices of (U)</td>
<td>§7.3.2</td>
</tr>
<tr>
<td>(G[U])</td>
<td>subgraph of (G) induced on (U)</td>
<td>§7.3.2</td>
</tr>
<tr>
<td>(M = (V,F))</td>
<td>delta-matroid on (V) with family of feasible sets (F)</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>DM</td>
<td>symmetric exchange axiom of delta-matroids</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>DM(_{even})</td>
<td>exchange axiom of even delta-matroids</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>DM(_{even}^\pm)</td>
<td>simultaneous exchange axiom of delta-matroids</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>(M \triangle X = (V,F \triangle X))</td>
<td>twisting of delta-matroid (M) by (X)</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>(M^*)</td>
<td>dual of delta-matroid (M)</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>(M \setminus X = (V \setminus X,F \setminus X))</td>
<td>deletion of (X) from delta-matroid (M)</td>
<td>§7.3.3</td>
</tr>
</tbody>
</table>
Notation Table

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbf{M}/X</td>
<td>contraction of delta-matroid \mathbf{M} by X</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>$\mathbf{M}(A)$</td>
<td>delta-matroid defined by skew-symmetric matrix A</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>$\mathbf{M}_1 \oplus \mathbf{M}_2$</td>
<td>direct sum of delta-matroids \mathbf{M}_1 and \mathbf{M}_2</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>$\mathbf{M}_1 \lor \mathbf{M}_2$</td>
<td>union of delta-matroids \mathbf{M}_1 and \mathbf{M}_2</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>$\text{dist}(\mathbf{M}_1, \mathbf{M}_2)$</td>
<td>distance between delta-matroids \mathbf{M}_1 and \mathbf{M}_2</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>$\text{odd}(\mathbf{M}_1, \mathbf{M}_2)$</td>
<td>number of odd components with respect to $(\mathbf{M}_1, \mathbf{M}_2)$</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>Π</td>
<td>partition of V into pairs (lines)</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>$\delta_{\Pi}(F)$</td>
<td>number of lines exactly one of which belongs to F</td>
<td>(7.53)</td>
</tr>
<tr>
<td>$\delta(\mathbf{M}, \Pi)$</td>
<td>optimal value of the delta-parity problem (\mathbf{M}, Π)</td>
<td>(7.54)</td>
</tr>
<tr>
<td>$\text{odd}(\mathbf{M}, \Pi)$</td>
<td>number of odd components of \mathbf{M} with respect to Π</td>
<td>§7.3.3</td>
</tr>
<tr>
<td>$b \wedge c$</td>
<td>wedge product of vectors b and c</td>
<td>§7.3.4</td>
</tr>
<tr>
<td>ker</td>
<td>kernel of a matrix</td>
<td>§7.3.5</td>
</tr>
<tr>
<td>\hat{G}</td>
<td>duplication of graph G</td>
<td>§7.3.5</td>
</tr>
</tbody>
</table>
Index

Accurate number, 12, 113
Active arc, 320
Active arc set, 320
Active column, 408
Active row, 408
Active vertex, 408
Admissible, 319
Admissible arc, 55
Admissible input, 419
Algebraic, 32
Algebraic matroid, 78
Algebraically dependent, 32
Algebraically independent, 32
Algorithm for $\delta_k^{LM}(A)$, 351
Algorithm for CCF of LM-matrix, 182
Algorithm for computing the rank of LM-matrix, 146
Algorithm for computing the rank of mixed matrix, 153
Algorithm for DM-decomposition, 61
Algorithm for independent matching problem, 89
Algorithm for min-cut decomposition of independent matching problem, 92
Algorithm for optimally sparse matrix, 256
A-Q1, 13
A-Q2, 19
s-arc, 368
A-T, 13, 20
Augmenting algorithm, 326
Augmenting algorithm (with potential), 327

Base, 73
Basis exchange property (one-sided), 73
Basis exchange property (simultaneous), 79
Bimatroid, 98
Bipartite graph, 45, 55
Biproper, 273
Birank function, 98
Birkhoff’s representation theorem, 52
Block-triangular decomposition, 27
Block-triangularized, 40, 41
Boundary, 65
Canonical partition of bimatroid, 101
Cauchy–Binet formula, 35
CCF, 167, 172
CCF over ring, 200
CDS, 419
Circuit, 74
Closure, 74, 252
Coates graph, 44
Coloop, 74
Column matroid, 99
Column set, 33, 98
Combinatorial canonical form, 167, 172
Combinatorial dynamical system, 419
Combinatorial relaxation, 403
Common aggregation, 52
Common refinement, 52
Compartmental system, 334
Compatible, 419
Computational graph, 156
Consistent component, 58
Constitutive equation, 2
Contents at infinity, 273
Contraction, 75, 283, 438
Controllability, 364
Controllability index, 430
Controllability matrix, 365
Controllable, 364, 419
Controllable, 364, 419
Controllable dimension, 429
Cost of flow, 68
Cover, 55
Critical arc, 397
Cut, 66
Cut capacity, 86
Cycle-canceling algorithm, 318
Cycle-canceling algorithm with minimum-ratio cycle, 320
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAE, 1</td>
<td></td>
</tr>
<tr>
<td>DAE-index, 2, 279</td>
<td></td>
</tr>
<tr>
<td>Deficiency, 56</td>
<td></td>
</tr>
<tr>
<td>Degree, 31</td>
<td></td>
</tr>
<tr>
<td>Degree of transcendency, 32</td>
<td></td>
</tr>
<tr>
<td>Deletion, 438</td>
<td></td>
</tr>
<tr>
<td>Delta-covering problem, 439</td>
<td></td>
</tr>
<tr>
<td>Delta-matroid, 438</td>
<td></td>
</tr>
<tr>
<td>Delta-matroid parity problem, 441</td>
<td></td>
</tr>
<tr>
<td>Delta-parity problem, 441</td>
<td></td>
</tr>
<tr>
<td>Dependent set, 74</td>
<td></td>
</tr>
<tr>
<td>Descriptor form, 16, 117, 278, 331</td>
<td></td>
</tr>
<tr>
<td>Design variable, 250</td>
<td></td>
</tr>
<tr>
<td>Determinant, 33</td>
<td></td>
</tr>
<tr>
<td>Determinantal divisor, 204, 271</td>
<td></td>
</tr>
<tr>
<td>Differential-algebraic equation, 1</td>
<td></td>
</tr>
<tr>
<td>Dimensional analysis, 17, 120</td>
<td></td>
</tr>
<tr>
<td>Dimensional formula, 121</td>
<td></td>
</tr>
<tr>
<td>Dimensional homogeneity, 18, 122</td>
<td></td>
</tr>
<tr>
<td>Dimensioned matrix, 122</td>
<td></td>
</tr>
<tr>
<td>Directed graph, 43</td>
<td></td>
</tr>
<tr>
<td>Direct sum, 75, 285, 439</td>
<td></td>
</tr>
<tr>
<td>Discrete convex analysis, 330</td>
<td></td>
</tr>
<tr>
<td>Disjoint bases problem, 307</td>
<td></td>
</tr>
<tr>
<td>Distance, 440</td>
<td></td>
</tr>
<tr>
<td>Distributive lattice, 54</td>
<td></td>
</tr>
<tr>
<td>DM-component, 58, 62</td>
<td></td>
</tr>
<tr>
<td>DM-decomposition, 58, 62</td>
<td></td>
</tr>
<tr>
<td>DM-irreducible, 62</td>
<td></td>
</tr>
<tr>
<td>DM-reducible, 62</td>
<td></td>
</tr>
<tr>
<td>Dual, 74, 103, 283, 438</td>
<td></td>
</tr>
<tr>
<td>Dulmage–Mendelsohn decomposition, 58</td>
<td></td>
</tr>
<tr>
<td>Duplication, 451</td>
<td></td>
</tr>
<tr>
<td>Dynamic graph, 47</td>
<td></td>
</tr>
<tr>
<td>Dynamical degree, 279</td>
<td></td>
</tr>
<tr>
<td>Eigenset, 422</td>
<td></td>
</tr>
<tr>
<td>Elementary divisor, 272</td>
<td></td>
</tr>
<tr>
<td>Elongation, 75, 284</td>
<td></td>
</tr>
<tr>
<td>Entrance, 66</td>
<td></td>
</tr>
<tr>
<td>Entrance set, 98</td>
<td></td>
</tr>
<tr>
<td>Equivalence transformation, 44</td>
<td></td>
</tr>
<tr>
<td>Equivalent delta-matroid, 438</td>
<td></td>
</tr>
<tr>
<td>Even delta-matroid, 438</td>
<td></td>
</tr>
<tr>
<td>Exchange gain, 285</td>
<td></td>
</tr>
<tr>
<td>Exchangeability graph, 81</td>
<td></td>
</tr>
<tr>
<td>Exit, 66</td>
<td></td>
</tr>
<tr>
<td>Exit set, 98</td>
<td></td>
</tr>
<tr>
<td>Exponential mode, 279</td>
<td></td>
</tr>
<tr>
<td>Feasible flow, 65</td>
<td></td>
</tr>
<tr>
<td>Fenchel-type duality, 310</td>
<td></td>
</tr>
<tr>
<td>Field adjunction, 32</td>
<td></td>
</tr>
<tr>
<td>Finer decomposition, 239</td>
<td></td>
</tr>
<tr>
<td>Finest-possible decomposition, 239</td>
<td></td>
</tr>
<tr>
<td>Fixed constant, 12, 113</td>
<td></td>
</tr>
<tr>
<td>Fixed mode, 385, 390</td>
<td></td>
</tr>
<tr>
<td>Fixed polynomial, 385, 390</td>
<td></td>
</tr>
<tr>
<td>Flow, 65</td>
<td></td>
</tr>
<tr>
<td>Formal incidence matrix, 204</td>
<td></td>
</tr>
<tr>
<td>Free matroid, 77</td>
<td></td>
</tr>
<tr>
<td>Frequency domain description, 17</td>
<td></td>
</tr>
<tr>
<td>Frobenius inequality, 105</td>
<td></td>
</tr>
<tr>
<td>Frobenius inequality for bimatroid, 104</td>
<td></td>
</tr>
<tr>
<td>Fully indecomposable, 63</td>
<td></td>
</tr>
<tr>
<td>Fundamental dimension, 121</td>
<td></td>
</tr>
<tr>
<td>Fundamental quantity, 18, 121</td>
<td></td>
</tr>
<tr>
<td>GA1, 114, 157</td>
<td></td>
</tr>
<tr>
<td>GA2, 114, 160</td>
<td></td>
</tr>
<tr>
<td>GA3, 114, 160</td>
<td></td>
</tr>
<tr>
<td>Gallai’s lemma, 437</td>
<td></td>
</tr>
<tr>
<td>Gammoid, 77</td>
<td></td>
</tr>
<tr>
<td>Generality assumption GA1, 114, 157</td>
<td></td>
</tr>
<tr>
<td>Generality assumption GA2, 114, 160</td>
<td></td>
</tr>
<tr>
<td>Generality assumption GA3, 114, 160</td>
<td></td>
</tr>
<tr>
<td>Generalized Laplace expansion, 33</td>
<td></td>
</tr>
<tr>
<td>Generic, 435</td>
<td></td>
</tr>
<tr>
<td>Generic dimension of controllable subspace, 367</td>
<td></td>
</tr>
<tr>
<td>Generic matrix, 39</td>
<td></td>
</tr>
<tr>
<td>Generic partitioned matrix, 240</td>
<td></td>
</tr>
<tr>
<td>Generic polynomial matrix, 332</td>
<td></td>
</tr>
<tr>
<td>Generic rank, 38</td>
<td></td>
</tr>
<tr>
<td>GP-birank function, 243</td>
<td></td>
</tr>
<tr>
<td>GP-irreducible, 241</td>
<td></td>
</tr>
<tr>
<td>GP-matrix, 240</td>
<td></td>
</tr>
<tr>
<td>GP(2)-matrix, 240</td>
<td></td>
</tr>
<tr>
<td>GP-reducible, 241</td>
<td></td>
</tr>
<tr>
<td>GP-surplus function, 243</td>
<td></td>
</tr>
<tr>
<td>GP-transformation, 241</td>
<td></td>
</tr>
<tr>
<td>Graphic matroid, 78</td>
<td></td>
</tr>
<tr>
<td>2-graph method, 221</td>
<td></td>
</tr>
<tr>
<td>Grassmann–Plücker identity, 34, 35</td>
<td></td>
</tr>
<tr>
<td>Grassmann–Plücker identity for Pfaffian, 434</td>
<td></td>
</tr>
<tr>
<td>Greedy algorithm, 285</td>
<td></td>
</tr>
<tr>
<td>Greedy algorithm for δ_k, 288</td>
<td></td>
</tr>
<tr>
<td>Ground field, 116, 132</td>
<td></td>
</tr>
<tr>
<td>Ground set, 73</td>
<td></td>
</tr>
<tr>
<td>Gyrator, 113, 446</td>
<td></td>
</tr>
<tr>
<td>Hall–Ore theorem, 56</td>
<td></td>
</tr>
<tr>
<td>Harwell–Boeing database, 197</td>
<td></td>
</tr>
<tr>
<td>Horizontal principal structure of LM-matrix, 263</td>
<td></td>
</tr>
</tbody>
</table>
Horizontal tail, 41, 58, 174
Hydrogen production system, 165, 195

IAP, 306
Ideal, 52
Impulse mode, 279
Inaccurate number, 12, 113
Incidence matrix, 43
Incident vertex, 43
Independent assignment, 306
Independent assignment problem, 306
Independent matching, 84
Independent matching problem, 84, 308
Independent set, 73
Index, 2
Index of nilpotency, 278
Induced cycle, 319
Induced subgraph, 43
Induction of matroid by bipartite graph, 93
Initial vertex, 43
In parallel, 74
Input, 419
Input set, 419
In series, 74
Intersection problem, 440
Invariant factor, 271
Invariant polynomial, 271
Inverse, 103
Invertible, 123

Join-irreducible, 50
Jordan–Hölder-type theorem for submodular functions, 53
Jordan type, 422

König–Egerváry theorem, 55
König–Egerváry theorem for bimatroid, 101
König–Egerváry theorem for GP(2)-matrix, 244
KCL, 2
Kirchhoff’s current law, 2
Kirchhoff’s voltage law, 2
Kronecker column index, 278
Kronecker form, 275
Kronecker row index, 278
KVL, 2

Laplace expansion, 33
Laplace transform, 3, 278
Lattice, 54
Laurent polynomial, 31
Layered mixed matrix, 132

L-convex function, 330
L-decomposition, 160
Leading coefficient, 31, 404
Level set, 299
Lindemann–Weierstrass theorem, 116
Line, 432, 441
Linear delta-matroid, 439
Linear matroid, 78
Linear matroid parity problem, 432
Linked pair, 98
Linking function, 98
Linking system, 98
LM-admissible transformation, 167
LM-equivalent, 167
LM-irreducible, 202
LM-matrix, 132
LM-polynomial matrix, 332
LM-reducible, 202
LM-surplus function, 137
Loop, 74
L-Q, 132
L-T, 132
LU-decomposition, 188

Mason graph, 47
Matching, 55
Matching matroid, 77
Matrix net, 335
Matroid, 73
Matroid intersection problem, 84
Matroid intersection theorem, 87
Matroid parity problem, 432
Max-flow min-cut theorem, 66
Maximal ascending chain, 50
Maximal chain, 50
Maximal inconsistent component, 58
Maximum flow problem, 65
Maximum linking, 66
Maximum matching, 55
Maximum weight \(k \)-matching problem, 70
Maximum-rank minimum-term rank theorem, 227
M-convex function, 310, 330
M-decomposition, 67, 160
Menger’s theorem, 67
Menger-decomposition, 67, 160
Menger-type linking, 66, 158
Min-cut decomposition for independent matching problem, 91
Minimal inconsistent component, 58
Minimum cost flow, 68
Minimum cost flow problem, 68
Minimum cover, 55
Minimum separator, 66
Minimum-ratio cycle, 320
Minor, 33
Mixed matrix, 13, 20, 116, 132
Mixed polynomial matrix, 13, 20, 120
Mixed skew-symmetric matrix, 431
Modal controllability matrix, 365
Modular, 49
Modular lattice, 233
Monic polynomial, 31
MP-Q1, 20, 120, 332
MP-Q2, 21, 130, 332, 357, 373, 390
MP-T, 20, 120, 130, 332
M-Q, 20, 116, 132
MS-Q, 431
MS-T, 431
M-T, 20, 116, 132
Multilayered matrix, 225
Multiport, 226
Mutual admittance, 228
Negative cycle, 311
Negative-cycle criterion for VIAP, 311
Network, 65
Newton method, 21, 188
Nilpotent block, 278
Nonsingular bimatroid, 98
Nonsingular matrix, 33
Normal tree, 451
No-shortcut lemma, 83
Odd component, 435, 440, 441
ϵ-optimal, 321
Optimal k-matching, 70
Optimal common base problem, 307
Optimal flow, 68
Order ideal, 52
Order of poles at infinity, 273
Order of zeroes at infinity, 273
Partial order, 44, 50, 51
Partial transversal, 38
Partition, 50, 51
Partitioned matrix, 231
Partition matroid, 77
Partition problem, 307, 440
Partition-respecting equivalence
transformation, 231
Path-matching, 437
PE-irreducible, 237
PE-irreducible component, 238
PE-irreducible decomposition, 238
Pencil, 275
PE-reducible, 237
Perfect linking, 66
Perfect matching, 55
Perfect-matching lemma, 81
PE-surplus function, 233
PE-transformation, 231
Pfaffian, 433
Physical matrix, 127
PID, 199, 272
Pivotal transform, 226, 435
Polynomial, 31
Potential criterion for VIAP, 309
Principal ideal domain, 199, 272
Principal partition, 54
Principal partition with respect to
matroid union, 222
Principal structure, 253
Principal structure of generic matrix,
255
Principal structure of submodular
system, 254
Principal sublattice, 253
Principle of dimensional homogeneity,
18, 122
Problem decomposition by CCF, 190
Product, 103, 294
Proper, 31
Proper block-triangular form, 42
Proper rational function, 31, 273
Proper rational matrix, 273
Proper spanning forest, 451
Proper tree, 451
Properly block-triangularized, 42
Rado–Perfect theorem, 87
Rank, 36, 73, 85, 98
RCG network, 446
R-controllability, 365
Reachability matroid, 427
Reachable, 44, 367, 419
Reactor-separator model, 164, 193
Recurrent set, 422
Regular pencil, 275
Representable, 78, 439
Representation graph, 156
Represented, 78, 439
Restriction, 75, 103, 283
Ring adjunction, 32
Ring of polynomials, 31
Row matroid, 99
Row set, 33, 98
Schur complement, 35
Section graph, 43
Separable valuation, 281
Separator, 66
Signal-flow graph, 47
Similarity transformation, 44, 283
Simultaneous exchange axiom, 438
Simultaneous exchange property, 79
Singular pencil, 275
Sink, 65
Skeleton, 49
Skew-symmetric, 433
Smith–McMillan form at infinity, 273
Smith normal form, 272
Source, 65
Spanning set, 74
SP-decomposition, 255
Standard form, 154, 331
State feedback, 419
State set, 419
State-space equation, 15, 419
Stem, 366
Stoichiometric coefficient, 13, 112
Strict equivalence, 275
Strictly proper, 31
Strictly upper triangular, 213
Strong component, 44
Strong component decomposition, 44
Strong map, 75
Strong quotient, 75
Strongly connected component, 44
Structural controllability, 365
Structural index, 4
Structurally controllable, 366, 373
Structurally fixed mode, 387
Structurally solvable, 155, 368
Structural solvability, 154
Structured matrix, 4
Structured system, 366
Structure at infinity, 273
Subdeterminant, 33
Sublattice, 48
Submodular function, 49, 252
Submodular inequality, 37, 49
Submodular system, 253
Support graph, 433
Surplus function, 56, 137, 233, 243
Symmetric difference, 433
Symmetric exchange axiom, 438
System parameter, 12, 113

Tight, 408
Tight coefficient matrix, 409
Totally unimodular, 123, 124
Transcendental, 32
Transfer function matrix, 274
Transformer, 448
Transition index, 421
Transpose, 103
Transversal matroid, 77
Triple matrix product, 92, 316
Trivial bimatroid, 98
Trivial matroid, 77
Trivial valuation, 280
Truncation, 75, 284
Tutte–Berge formula, 436
Tutte matrix, 435
Twisting, 438
Two kinds of numbers, 12, 107

Uncontrollable mode, 373
Underlying bipartite graph, 99
Uniform matroid, 77, 83
Unimodular, 272
Unimodular matrix, 199
Union, 94, 103, 292, 294, 439
Unique-matching lemma, 81, 82
Unique-max condition, 302
Unique-max lemma, 304
Upper-bound lemma, 301
Upper-tight, 404

Valuated bimatroid, 287
Valuated independent assignment problem, 306
Valuated matroid, 280
Valuated matroid intersection problem, 306
Valuation, 280
Value of flow, 65
Vertex-induced subgraph, 43
Vertical principal structure of LM-matrix, 258
Vertical tail, 41, 58, 174
VIAP, 306
VIAP(\(k\)), 307

Wedge product, 446
Weighted bipartite matching problem, 70
Weighted matroid intersection problem, 308
Weight splitting, 310