References to Part I

References to Part I

References to Part I

[N''] A. Neeman, Derived Categories and Grothendieck Duality, preprint.

Index to Part I

• (twisted inverse image), 203
⊗ (left-derived tensor product), 63
• (right adjoint of \(R_\ast \)) , 161
 • (• for quasi-proper •), 177

\(A \# \) (plump subcategory), 36
\(A_X \) (\(O_X \)-modules), 160
\(A_X^{\text{qc}} \) (quasi-coherent \(O_X \)-modules), 160
abstract vs concrete duality, 9
adjoint \(\Delta \)-functors, 97
adjoint pair of pseudofunctors, 122
of monoidal pseudofunctors, 122
of monoidal \(\Delta \)-pseudofunctors, 122
main example : \((L f^*, R f_\ast) \), 124
adjointness: derived inverse and
direct images, 89
adjointness: derived tensor and hom, 65
admissible square, 208

base-change setup, 204
 enlarging, 220
Base Change theorem (for • ∗), 178
 better for quasi-perfect maps, 197
base of a triangle, 16
Base Change theorem (for • ′), 208
bounded functor, 39
boundeness conditions on complexes
 or on their homology, 30

\(\chi_{E,F}^f : f^! E \otimes f^* F \to f^!(E \otimes F) \), 230–233
closed category, 110
coherence in categories, 9, 102
concentrated (= quasi-compact and
 quasi-separated), 132
cone, 15
conjugate base change, 157

conjugate functorial morphisms, 99
cylinder, 19

\(D \) (derived category), 13
\(D^*, D^\# \), 33
\(D^\#, D^\#^*, D^\#^\# \), 35
triangulated structure, 22
\(D_{\text{qc}} \) and variants (objects have
 quasi-coherent homology), 133
and \(L f^* \), 133
and \(R f_\ast \), 134
\(\Delta \) (related to triangles), 16
\(\Delta \)-category, 18
\(\Delta \)-subcategory, 29
\(\Delta \)-functor, 25
covariant, 25
contravariant, 26
morphism, 25
\(\Delta \)-adjoint pair of functors, 97
\(\Delta \)-equivalence of categories, 31
\(\Delta \)-pseudofunctor, 121
dim^\ast (upper dimension), 39
dim^− (lower dimension), 39
Deligne, Pierre, 6, 159, 161, 203, 211
derived category, 13
derived tensor product, 63
dimension of a map, 78
direct image, 73, 85
 right-derived, 74, 85
direct sums in \(K \) and \(D \), 131
 compatibility with \(\otimes \) and \(L f^* \), 131
distinguished squares, 204
duality principle, 106
duality principle II, 123
duality, global, 160
duality, sheafified, 178
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dualizing Complex, uniqueness, leading to restricted inverse image</td>
<td>241, 244</td>
</tr>
<tr>
<td>dualizing complex, and $f^!$</td>
<td>240, 241</td>
</tr>
<tr>
<td>$E_{\leq n}, E_{\geq n}$ (truncated subcategory)</td>
<td>39</td>
</tr>
<tr>
<td>flasque (flabby)</td>
<td>74</td>
</tr>
<tr>
<td>flat amplitude</td>
<td>79, 142</td>
</tr>
<tr>
<td>Global Duality theorem</td>
<td>160</td>
</tr>
<tr>
<td>Godement resolution</td>
<td>138</td>
</tr>
<tr>
<td>Grothendieck, Alexandre</td>
<td>5, 6, 7, 83, 159, 239, 249</td>
</tr>
<tr>
<td>H^n (homology functor)</td>
<td>12, 14</td>
</tr>
<tr>
<td>Hartshorne, Robin</td>
<td>6, 7, 84</td>
</tr>
<tr>
<td>Hashimoto, Mitsuyasu,</td>
<td>7</td>
</tr>
<tr>
<td>homology sequence of a triangle, homotopy category</td>
<td>24</td>
</tr>
<tr>
<td>Illusie, Luc</td>
<td>172</td>
</tr>
<tr>
<td>independent square</td>
<td>150</td>
</tr>
<tr>
<td>’-independent</td>
<td>150</td>
</tr>
<tr>
<td>Künneth-independent</td>
<td>150</td>
</tr>
<tr>
<td>tor-independent</td>
<td>150</td>
</tr>
<tr>
<td>equivalence of the above</td>
<td>153</td>
</tr>
<tr>
<td>internal hom</td>
<td>110</td>
</tr>
<tr>
<td>inverse image</td>
<td>73, 85</td>
</tr>
<tr>
<td>left-derived</td>
<td>73, 85</td>
</tr>
<tr>
<td>isofaithful map</td>
<td>151</td>
</tr>
<tr>
<td>K (homotopy category)</td>
<td>12</td>
</tr>
<tr>
<td>$K^\bullet, K^\bullet_#, \overline{K^\bullet}, \overline{K^\bullet}_#$</td>
<td>35</td>
</tr>
<tr>
<td>triangulated structure</td>
<td>18</td>
</tr>
<tr>
<td>Künneth map</td>
<td>145</td>
</tr>
<tr>
<td>Kiehl, Reinhardt</td>
<td>172</td>
</tr>
<tr>
<td>L (left-derived functor of)</td>
<td>44</td>
</tr>
<tr>
<td>Lf^* (derived inverse image)</td>
<td>85</td>
</tr>
<tr>
<td>left-acyclic</td>
<td>49</td>
</tr>
<tr>
<td>and derivability</td>
<td>51</td>
</tr>
<tr>
<td>left-derived functor</td>
<td>44</td>
</tr>
<tr>
<td>local hypertor</td>
<td>63</td>
</tr>
<tr>
<td>localizing subcategory</td>
<td>30</td>
</tr>
<tr>
<td>lower dimension</td>
<td>39</td>
</tr>
<tr>
<td>Lucier, Bradley</td>
<td>5</td>
</tr>
<tr>
<td>monoidal category (symmetric)</td>
<td>102</td>
</tr>
<tr>
<td>monoidal Δ-category</td>
<td>122</td>
</tr>
<tr>
<td>morphism of Δ-functors</td>
<td>25</td>
</tr>
<tr>
<td>Nagata’s compactification theorem</td>
<td>203</td>
</tr>
<tr>
<td>Nayak, Suresh</td>
<td>6, 203, 240, 249</td>
</tr>
<tr>
<td>Neeman, Amnon</td>
<td>7, 161, 178, 191, 202, 239, 240</td>
</tr>
<tr>
<td>orientation of a commutative square</td>
<td>144</td>
</tr>
<tr>
<td>reversed</td>
<td>145</td>
</tr>
<tr>
<td>pasting of base-change setups</td>
<td>211</td>
</tr>
<tr>
<td>pasting of pseudofunctors</td>
<td>209</td>
</tr>
<tr>
<td>perfect complex</td>
<td>191, 234</td>
</tr>
<tr>
<td>perfect amplitude</td>
<td>191</td>
</tr>
<tr>
<td>perfect map</td>
<td>191, 231</td>
</tr>
<tr>
<td>plump subcategory</td>
<td>35</td>
</tr>
<tr>
<td>projection morphisms</td>
<td>107</td>
</tr>
<tr>
<td>isomorphisms</td>
<td>139</td>
</tr>
<tr>
<td>pseudo-coherent (complexes, maps)</td>
<td>172</td>
</tr>
<tr>
<td>and Lf^*</td>
<td>173</td>
</tr>
<tr>
<td>and Rf_*</td>
<td>172, 173</td>
</tr>
<tr>
<td>and $R\text{Hom}$,</td>
<td>174</td>
</tr>
<tr>
<td>and projective maps</td>
<td>175</td>
</tr>
<tr>
<td>pseudofunctor</td>
<td>120</td>
</tr>
<tr>
<td>covariant</td>
<td>120</td>
</tr>
<tr>
<td>contravariant</td>
<td>120</td>
</tr>
<tr>
<td>morphism</td>
<td>120</td>
</tr>
<tr>
<td>monoidal</td>
<td>121</td>
</tr>
<tr>
<td>$Q: K \to D$ (canonical functor)</td>
<td>14</td>
</tr>
<tr>
<td>q-flat</td>
<td>60</td>
</tr>
<tr>
<td>q-flat resolution</td>
<td>61</td>
</tr>
<tr>
<td>q-injective</td>
<td>52</td>
</tr>
<tr>
<td>q-injective resolution</td>
<td>53</td>
</tr>
<tr>
<td>quasi-isomorphism</td>
<td>13</td>
</tr>
<tr>
<td>quasi-perfect map</td>
<td>190–198</td>
</tr>
<tr>
<td>quasi-proper</td>
<td>173</td>
</tr>
<tr>
<td>R (right-derived functor of)</td>
<td>44</td>
</tr>
<tr>
<td>Rf_* (derived direct image)</td>
<td>85</td>
</tr>
<tr>
<td>$R\text{Hom}$</td>
<td>57</td>
</tr>
<tr>
<td>$R\text{Hom}$</td>
<td>57</td>
</tr>
<tr>
<td>$R\text{Hom}$</td>
<td>59</td>
</tr>
<tr>
<td>Rf'_* (higher direct image)</td>
<td>138</td>
</tr>
<tr>
<td>and \lim</td>
<td>138</td>
</tr>
<tr>
<td>relative dualizing sheaf</td>
<td>168</td>
</tr>
<tr>
<td>right-acyclic</td>
<td>49</td>
</tr>
<tr>
<td>and derivability</td>
<td>50</td>
</tr>
<tr>
<td>right-derived functor</td>
<td>44</td>
</tr>
<tr>
<td>ringed space</td>
<td>73</td>
</tr>
<tr>
<td>morphism (map)</td>
<td>73</td>
</tr>
</tbody>
</table>
Index to Part I

Sastry, Pramathanath, 249
Serre, Jean-Pierre, 6, 8
 Serre Duality, 9
Sheafified Duality theorem, 178
special map, 218
special subcategory, 217
summit of a triangle, 16
symmetric monoidal category, 102
dual, 106
symmetric monoidal closed category, 110
symmetric monoidal functor, 103
\(\tau^+, \tau^- \) (truncation operators), 33
\(\tau_{\leq n}, \tau_{\geq n} \) (truncation functors), 37
\(\theta \) (base-change for adjoint pair), 127

tordim (tor-dimension, or flat dimension), 79
 flat amplitude, 142, 191
translation functor, 16
triangle, 16
triangulation, 16
triangulated category, 18
truncation functors, 37
twisted inverse image pseudofunctor, 203
upper dimension, 39

van den Bergh, Michel, 239
Verdier, Jean-Louis, 6, 7, 9, 11, 159, 161
way-out, 38, 39
Glossary to Part II

[?, −] the internal hom, 277

\(\heartsuit\) stands for either PA, AB, PM, or Mod, 294

\((?\rangle_J\) the pull-back associated with the inclusion \(J \hookrightarrow I\), 322

\((?\rangle_J\heartsuit\) the abbreviation for \(Q(X_\bullet, J)^\#\), 323

\((?\rangle_J^\heartsuit\) the restriction \(\heartsuit(X_\bullet|_J) \rightarrow \heartsuit(X_\bullet|_{J_1})\), 323

\((?\rangle_J^{\text{PA}}\) the abbreviation for \(Q(X_\bullet, J)^{\#}_{\text{PA}}\), 322

\((?\rangle_J^{\text{AB}}\) the abbreviation for \(Q(X_\bullet, J)^{\#}_{\text{AB}}\), 322

\(\otimes\) the product structure, 277

\(\otimes_{\mathcal{O}_X}\) the sheaf tensor product, 290

\(\otimes^p_{\mathcal{O}_X}\) the presheaf tensor product, 290

\((?\rangle^1\) the equivariant twisted inverse, 417

\((?\rangle_{x}^\heartsuit\) the restriction functor, 295

\(\mathcal{A}\) the category of noetherian \(I^{\text{op}}\)-diagrams of schemes and morphisms separated of finite type, 415

\(\mathcal{A}\text{b}\) the category of abelian groups, 287

\(\mathcal{A}\text{b}(X)\) the category of sheaves of abelian groups on \(X\), 287

\(\mathcal{A}_G\) the category of noetherian \(G\)-schemes and \(G\)-morphisms separated of finite type, 445

\(\alpha\) the associativity isomorphism, 277

\((\alpha)\) the canonical map \((d_0)^* \rightarrow (?\langle_{\Delta}) \circ (?\rangle', 364

\((\alpha^+)\) the canonical map \((d_0^+)^* \rightarrow (?\rangle' \circ (?\langle_{\Delta}), 364

\(\alpha_{\heartsuit}\) the translation map, 322

\(\mathcal{A}(R_\bullet)\) the total ring of \(R_\bullet\), 465

\(\alpha(X, \text{AB})\) the sheafification functor \(\text{PA}(X) \rightarrow \text{AB}(X)\), 287

\(\alpha(X, \text{Mod})\) the sheafification \(\text{PM}(X) \rightarrow \text{Mod}(X)\), 289

\(B^M_G(X)\) the restriction \(B_G(X)|_{\Delta_M}\), 446
\(B_G(X)\) the simplicial groupoid associated with the action of \(G\) on \(X\), 445

\(C\) the morphism adjoint to \(\eta\), 281

\(\tilde{c}\) the canonical isomorphism \(f^!_R R_J \to R R_J(f_\bullet | J)^!\), 428

\(c'\) the canonical isomorphism \(R R_J(f_\bullet |_J)^! \to f^!_\bullet R R_J\), 428

\(C(\mathcal{A})\) the category of complexes in \(\mathcal{A}\), 311

\(C^b(\mathcal{A})\) the category of bounded complexes in \(\mathcal{A}\), 311

\(C^- (\mathcal{A})\) the category of complexes in \(\mathcal{A}\) bounded above, 311

\(C^+ (\mathcal{A})\) the category of complexes in \(\mathcal{A}\) bounded below, 311

\(\check{\text{C}}\) the \(\check{\text{C}}\)ech complex, 387

\(c = c(f)\) the identification \(q f^\# = f^# q\) or its inverse, 294

\(c_{f,g}\) the canonical isomorphism \((gf)^# \cong g# f^#\) of an almost-pseudofunctor, 271

\(\chi(f\bullet)\) the canonical map \(f\bullet \otimes \mathcal{L}_O X \to f\bullet \otimes \mathcal{L}_O Y\), 432

\(\bar{\chi} = \bar{\chi}(p_\bullet, i_\bullet)\) see page, 433

\(\bar{c}_{J,f\bullet}\) the canonical isomorphism \(\bar{c}^{\langle \cdot \rangle}_{J,f}\) of an almost-pseudofunctor, 271

\(\text{Coh}(G, X)\) the category of coherent \((G, \mathcal{O}_X)\)-modules, 446

\(\text{Cone}(\varphi)\) the mapping cone of \(\varphi\), 313

\(\text{cosk}_J\) the right adjoint of \(\langle ?| J \rangle\), 322

\(\text{Cos}(\mathcal{M})\) the cosimplicial sheaf associated with \(\mathcal{M}\), 365

\(\text{Cos}^+(\mathcal{N})\) the augmented cosimplicial sheaf associated with \(\mathcal{N}\), 365

\(\mathbb{D}\) the descent functor, 368

\((d_0)(X_\bullet)\) the natural map \(X_\bullet (\delta_0) : X_\bullet | (\Delta) = X_\bullet \text{shift } \iota \to X_\bullet\), 363

\((d_0^+)\) the natural map \((Y_\bullet | (\Delta))' = Y_\bullet \iota\text{ shift } Y_\bullet (\delta_0^+) \to Y_\bullet\), 363

\(\text{D}^2(\mathcal{A})\) the derived category of \(\mathcal{A}\) with the boundedness ?\), 311

\(\text{D}^b_{\mathcal{A}}(\mathcal{A})\) the localization of \(K^b_{\mathcal{A}}(\mathcal{A})\) by the épaisse subcategory of exact complexes, 311

\(D_{\text{Coh}}^b(\text{Qch}(X_\bullet))\) a short for \(D_{\text{Coh}}^b(\text{Qch}(X_\bullet))\), 351

\(\Delta\) see page, 281

\(\langle \Delta \rangle\) see page, 359

\(\langle \Delta \rangle^\text{mon}_S\) see page, 359

\(\langle \Delta^+ \rangle\) see page, 359

\(\langle \Delta^+ \rangle^\text{mon}_S\) see page, 359

\((\delta_0)\) the natural map \(\text{Id}_{\langle \Delta \rangle} \to \text{shift } \iota\), 363

\((\delta_0^+)\) the standard natural transformation \(\text{Id}_{\langle \Delta^+ \rangle} \to \iota \circ \text{shift}\), 363

\(\Delta_M\) \(\langle \Delta^\text{mon}_{[0,1,2]} \rangle\), 359
\[\Delta_M^+ \] (\(\Delta^+ \))_{\{0,1,2\}}; \ 359
\[D^+_\text{EM}(X_\bullet) \] a short for \(D^+_\text{EM} (X_\bullet) (\text{Mod}(X_\bullet)) \), 351
\[d_{f,g} \] the natural isomorphism \(f\#g\# \to (gf)\# \) of a contravariant almost-pseudofunctor, 272
\[d = d(gf = f'g') \] the isomorphism \((g')^* (f')^* \xrightarrow{d^{-1}} (f'g')^* = (gf)^* \xrightarrow{\text{d}^{-1}} f^* g^* \), 272
\[D(G, X) \] stands for \(D(B^M_G(X)) \), 446
\[d^\omega_{I,J,K} \] the canonical isomorphism \(L^\omega_{I,J} \circ L^\omega_{J,K} \cong L^\omega_{I,K} \); 328
\[d^\omega_{f,*} \] the canonical isomorphism \(L^\omega_J (f_\ast)_{\omega} \cong (f_\ast)_{\omega} \circ L^\omega_J \); 328
\[D^+_{\text{Qch}}(G, X) \] stands for \(D^+_{\text{Qch}(G,X)} (\text{Mod}(G, X)) \), 446
\[D^+_{\text{Qch}}(X) \] a short for \(D^+_{\text{Qch}(X)} (\text{Mod}(X)) \), 351
\[D(X_\bullet) \] a short for \(D(\text{Mod}(X_\bullet)) \), 351
\[D(X_\bullet) \] stands for \(D_{\text{Lqc}}(X_\bullet) \), 415
\[D^-(X_\bullet) \] locally bounded above derived category of \(X_\bullet \); 408
\[D^+(X_\bullet) \] locally bounded below derived category of \(X_\bullet \); 408
\[D^\omega(X_\bullet) \] the category of structure data, 331
\[\text{EM}(G, X) \] the category of equivariant \((G, \mathcal{O}_X)\)-modules, 446
\[\text{EM}(X_\bullet) \] the category of equivariant sheaves of \(\mathcal{O}_{X_\bullet} \)-modules, 324
\[\varepsilon \] the counit map of adjunction, 273
\[\eta = \eta(f) \] the map \(\mathcal{O}_Y \to f_* \mathcal{O}_X \), 278
\[\text{ev} \] the evaluation map, 278
\[\epsilon_X \] the isomorphism \(\text{Id}_{X_\#} \to (\text{id}_X)_\# \), 271
\[\mathcal{F} \] the subcategory of \(\mathcal{A} \) consisting of objects with flat arrows and cartesian morphisms, 417
\[f^\sharp_* \] the twisted inverse for a cartesian finite morphism \(f_\bullet \), 437
\[(f_\bullet)^* \] the inverse image functor, 327
\[(f_\bullet)^\omega \] the direct image functor, 327
\[f_* \] the right adjoint of \(R(f_\bullet)_* \), 402
\[f^\# \] the pull-back associated with \(f \), 289
\[f^\times \] the right adjoint of \(Rf_* : D_{\text{Qch}}(X) \to D(Y) \), 391
\[f^\#_{\text{AB}} \] the pull-back \(\text{AB}(X) \to \text{AB}(Y) \), 289
\[f^{\#}_{\text{AB}} \] the left adjoint of \(f^\#_{\text{AB}} \), 290
\[f^\circ_{\#} \] the left adjoint of \(f^\circ_{\#} \), 290
\[(f_\bullet)^{\text{Lqc}} \] the direct image functor for \(\text{Lqc} \), 349
\[\mathcal{F}_M \] see page, 445
\[f^\#_{\text{Mod}} \] the pull-back \(\text{Mod}(X) \to \text{Mod}(Y) \) for a ringed continuous functor \(f : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X) \), 294
\[f^\#_{\text{Mod}} \] the left adjoint of \(f^\#_{\text{Mod}} \), 294
\[f^\#_{\text{PA}} \] the pull-back \(\text{PA}(X) \to \text{PA}(Y) \) for \(f : Y \to X \), 289
\(f_{\#} \) the left adjoint of \(f_{\#} \), 289
\(f_{\#} \) the right adjoint of \(f_{\#} \), 294
\(f_{\#} \) the pull-back \(\text{PM}(X) \to \text{PM}(Y) \) for a ringed functor \(f: (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X) \), 294
\(f_{\#} \) the left adjoint of \(f_{\#} \), 294
\(F(X) \) the forgetful functor \(\text{Mod}(X) \to \text{AB}(X) \), 289
\(f_{\#} \) the isomorphism \(\text{id}_X^\# \to \text{Id}_X^\# \), 272
\(\gamma \) the twisting (symmetry) isomorphism, 277
\(\Gamma \) the twisting (symmetry) isomorphism, 277
\(\text{hocolim} \) the homotopy colimit, 381
\(\text{holim} t_i \) the homotopy limit of \((t_i) \), 381
\(\text{Hom}_{\mathcal{O}_X}(\mathcal{M}, \mathcal{N}) \) the sheaf Hom functor, 295
\(\iota \) the inclusion \((\Delta) \hookrightarrow (\Delta^+) \), 363
\(I_\mathcal{I}^f \) see page, 290
\(K^?_\mathcal{A}(\mathcal{A}) \) the homotopy category of \(\mathcal{A} \) with the boundedness \(? \), 311
\(K^?_\mathcal{A}'(\mathcal{A}) \) the full subcategory of \(K^?_\mathcal{A}(\mathcal{A}) \) consisting of complexes whose cohomology groups lie in \(\mathcal{A}' \), 311
\(\lambda \) the left unit isomorphism, 277
\(\lambda_{J,J_1} \) the canonical isomorphism \((L^\vartriangleleft J(\mathcal{M}))_{J_1}^i \cong \lim_{\to}(X_{\phi})^\vartriangleleft_{J}(\mathcal{M}_j) \), 334
\(\text{Lch} \) the category of locally coherent sheaves, 384
\(L^\vartriangleleft J \) the left induction functor, 327
\(L^\vartriangleleft_{J,J_1} \) the left adjoint of \((?)^{\vartriangleleft}_{J,J_1} \), 327
\(\text{lqc} \) the local quasi-coherator for a diagram of schemes, 385
\(\text{Lqc}(G, X) \) the category of locally quasi-coherent \((G, \mathcal{O}_X) \)-modules, 446
\(\text{Lqc}(X_\bullet) \) the full subcategory of locally quasi-coherent sheaves in \(\text{Mod}(X_\bullet) \), 346
\(L^\vartriangleleft_{\mathcal{I}} \) the left adjoint of \((?)^{\vartriangleleft} \), 295
\(\text{Ly}(X) \) the Lyubeznik diagram of \(X \), 463
\(\mathcal{M}' \) the pull-back \(F_{\mathcal{I}}^\#(\mathcal{M}) \), 364
\(m = m(f) \) the natural map \(f_* a \otimes f_* b \to f_*(a \otimes b) \), 278
\(m_i \) the isomorphism \(\mathcal{M}_i \otimes \mathcal{O}_{X_i}, \mathcal{N}_i \cong (\mathcal{M} \otimes \mathcal{O}_{X_\bullet}, \mathcal{N})_i \), 331
\(\text{Mod}(G, X) \) the category of \((G, \mathcal{O}_X) \)-modules, 446
\(\text{Mod}(X) \) the category of sheaves of \(\mathcal{O}_X \)-modules, 289
\(\text{Mod}(X_\bullet) \) the abbreviation for \(\text{Mod}(\text{Zar}(X_\bullet)) \), 323
\(\text{Mod}(Z) \) the category of \(\mathcal{O}_Z \)-modules of a scheme \(Z \), 267
\(\mu^\vartriangleleft \) the canonical map \(f^* R J \to R J(f^*_J)^* \), 341
\(\mu(g^*_J, J) \) the canonical map \(g^* R R J \to R R J(g^*_J)^* \), 428
\(\text{Nerve}(f) \) the \(\check{C}ech \) nerve of \(f \), 360
ν the canonical isomorphism $\tilde{H}^0(\mathcal{U}, f^!\mathcal{M}) \cong \tilde{H}^0(f\mathcal{U}, \mathcal{M})$, 295

ν the canonical isomorphism $\tilde{H}^0 f^!\mathcal{M} \to f^! \tilde{H}^0 \mathcal{M}$, 296

ωY the G-canonical sheaf of Y, 455

O_x $I_x^{\text{Mod}}(O_x|_x) \cong aO_x^p$, 316

P the canonical map $f^*[a, b] \to [f^*a, f^*b]$, 283

Ψ the category of strongly K-flat complexes, 316

Ψ the full subcategory consisting of the direct limits of Ψ-special direct systems, 316

Ψ the full subcategory consisting of the inverse limits of Ψ-special inverse systems, 316

PA(X) the category of presheaves of abelian groups on X, 287

ϕ^\triangledown stands for the pull-back $(\mathcal{A}_\phi)^\# : \triangledown(X/y) \to \triangledown(X/x)$, 295

ϕ^\triangledown_x stands for $(\mathcal{A}_\phi)^\circ : \triangledown(X/x) \to \triangledown(X/y)$, 295

Φ^{RA} the Radu-André homomorphism, 464

$\mathcal{P}(I, \mathcal{C})$ the category of presheaves over the category I with values in \mathcal{C}, 287

$\Pi(f)$ the canonical map (projection morphism) $f_*a \otimes b \to f_*(a \otimes f^*b)$, 431

PM(X) the category of presheaves of O_X-modules, 289

PM(X_\bullet) the abbreviation for PM(Zar(X_\bullet)), 323

$\mathcal{P}(X_\bullet, \mathcal{C})$ the abbreviation for $\mathcal{P}(\text{Zar}(X_\bullet), \mathcal{C})$, 322

Q the localization $K^\prime(A) \to D^\prime(A)$, 311

Ω the full subcategory of $C(\text{Mod}(X))$ consisting of bounded above complexes whose terms are direct sums of copies of O_x, 316

Qch(G, X) the category of quasi-coherent (G, O_X)-modules, 446

qch(X) the quasi-coherator on a scheme X, 385

Qch(X_\bullet) the full subcategory of Mod(X_\bullet) consisting of quasi-coherent modules, 346

Qch(Z) the category of quasi-coherent O_Z-modules of a scheme Z, 267

$q(X, AB)$ the inclusion $AB(X) \to PA(X)$, 287

$Q(X_\bullet, J)$ the inclusion Zar($(X_\bullet)|_J) \hookrightarrow \text{Zar}(X_\bullet)$, 322

$q(X, \text{Mod})$ the inclusion Mod($X) \to PM(X)$, 289

R^* the set of nonzerodivisors of R, 459

ρ the right unit isomorphism, 282

$\rho^{j, i}$ the canonical isomorphism $(R^\circ_j(M))_i^{\triangledown} \cong \varprojlim(X^\phi_j)^\circ(M_j)$, 337

R°_j the right induction functor, 327

R°_{j, j_1} the right adjoint of $(?)^{\triangledown}_{j_1, j}$, 327
\(R_{\phi} \) the canonical functor \(\mathbb{X}/x \to \mathbb{X}/y \) for \(\phi : x \to y \), 295

\(R_x \) the canonical functor \(\mathbb{X}/x \to \mathbb{X} \), 295

\(\text{Sch} \) the category of schemes, 321

\(\text{Sch}/S \) the category of \(S \)-schemes, 321

\(\text{Set} \) the category of small sets, 287

\(\text{shift} \) the standard shifting functor \((\Delta^+) \to (\Delta) \), 363

\(\Sigma \) the suspension of a triangulated category, 311

\(\Sigma_i \) the right adjoint of \(\Gamma_i \), 408

\(\Sigma(\mathbb{X}^\cdot) \) the simplicial \(S \)-scheme associated with \(\mathbb{X}^\cdot \), 376

\(\mathbb{S}(\mathbb{X}, \mathcal{C}) \) the category of sheaves over \(\mathbb{X} \) with values in \(\mathcal{C} \), 287

\(\mathbb{S}(\mathbb{X}^\cdot, \mathcal{C}) \) the abbreviation for \(\mathbb{S}(\text{Zar}(\mathbb{X}^\cdot), \mathcal{C}) \), 322

\(\tau_{\geq n} F \) the truncation of a complex, 317

\(\tau_{\leq n} F \) the truncation of a complex, 317

\(\bar{\theta} \) the canonical map \(\mathbb{R}(g^X_\cdot)_* (p'_{\mathbb{X}})^! \to f^X_\cdot |^! (\mathbb{X}) \), 419

\(\bar{\xi} \) the canonical map \(\mathbb{R}(g_\cdot^X)_* (p'_\cdot)^! \to f_\cdot^X |^! (\mathbb{X}) \), 420

\(\zeta(\sigma) \) the canonical map \(\mathbb{R}(g'_{\mathbb{X}})^* f^X_\cdot \to (f'_{\mathbb{X}})^* g^X_\cdot \), 413

\(\zeta(\sigma) \) the canonical map \(\mathbb{R}(g^X_\cdot)^* f_\cdot^X \to (f'_{\mathbb{X}})^! g^X_\cdot \), 420

\(\text{Y}(\mathcal{M}) \) the canonical map \(\mathcal{M} \to \mathcal{H}^0(\mathcal{M}) \), 288

\(\text{Zar}(\mathbb{X}^\cdot) \) the Zariski site of \(\mathbb{X}^\cdot \), 321

\(\zeta(\sigma) \) the canonical map \(\mathbb{R}(g^X_\cdot)^* f^X_\cdot \to (f'_{\mathbb{X}})^* g^X_\cdot \), 413

\(\zeta(\sigma) \) the canonical map \(\mathbb{R}(g^X_\cdot)^* f_\cdot^X \to (f'_{\mathbb{X}})^! g^X_\cdot \), 420
References to Part II

adjoint pair, 267
admissible functor, 282, 330
admissible subcategory, 329
almost-S-groupoid, 371
almost-pseudofunctor, 263
ascent functor, 360
associated pseudofunctor, 265
augmented simplicial object, 351
augmented simplicial scheme, 352
big, 338
the canonical sheaf, 446
cartesian, 313
Čech complex, 379
Čech nerve, 352
coherent, 338
compact object, 381
compactification, 389
compactly generated, 381
composite, 390
composition data, 387
concentrated, 339, 365
conjugate, 266
connected component, 431
contravariant almost-pseudofunctor, 264
d-connected, 431
defining ideal sheaf, 433
descent functor, 360
direct image, 319
dualizing complex, 444
equivariant, 316
equivariant Grothendieck’s duality, 421
equivariant twisted inverse, 409
F-acyclic, 306
F-sheaf, 455
finite projective dimension, 432
the G-canonical sheaf, 447
G-dualizing complex, 447
G-invariance, 441
(G, \mathcal{O}_X)-module, 438
G-scheme, 437
Grothendieck, 281
homotopy colimit, 373
homotopy limit, 373
hyperExt, 311
hyperTor, 311
independence diagram, 389
independence isomorphism, 389
inverse image, 319
invertible, 431
K-flat, 308
K-injective, 304
K-injective resolution, 304
K-limp, 308
left conjugate, 266
left induction, 319
Lipman, 275
Lipman’s theta, 268
local complete intersection, 433
local quasi-coherator, 377
locally an open immersion, 360
locally coherent, 337
locally free, 431
locally of finite projective dimension, 432
locally quasi-coherent, 337
Lyubeznik diagram, 455
monoidal, 269
morphism of almost-pseudofunctors, 264
opposite adjoint pair, 267
ordered category, 399
\(\mathfrak{P} \)-special, 307
perfect complex, 383, 431
pi-square, 387
plump subcategory, 259, 315
presheaf, 279
presheaf tensor product, 282
projection formula, 423
projection morphism, 423
pseudofunctor, 263

quasi-coherator, 377
quasi-coherent, 337
quasi-separated, 339

\(R_\bullet \)-module, 457
Radu-André homomorphism, 456
refinement, 280
regular embedding, 433
right conjugate, 266
right induction, 319
right unit isomorphism, 274
ringed continuous functor, 286
ringed functor, 286
ringed site, 281

\(S \)-groupoid, 368
sheaf tensor product, 282
sheafification, 279
simplicial groupoid, 355
simplicial object, 351
simplicial scheme, 352
site, 279
small, 279
stalk, 431
strictly injective, 305
strictly injective resolution, 305
strongly \(K \)-flat, 308
symmetric, 269
total ring, 457
twisted inverse, 391

\(U \)-category, 279
\(U \)-small, 279
UJD, 400
upper Jordan-Dedekind, 400
weakly \(K \)-injective, 308
Zariski site, 313
For information about earlier volumes please contact your bookseller or Springer LNM Online archive: springerlink.com
1. Lecture Notes aim to report new developments in all areas of mathematics and their applications - quickly, informally and at a high level. Mathematical texts analysing new developments in modelling and numerical simulation are welcome.

Monograph manuscripts should be reasonably self-contained and rounded off. Thus they may, and often will, present not only results of the author but also related work by other people. They may be based on specialised lecture courses. Furthermore, the manuscripts should provide sufficient motivation, examples and applications. This clearly distinguishes Lecture Notes from journal articles or technical reports which normally are very concise. Articles intended for a journal but too long to be accepted by most journals, usually do not have this “lecture notes” character. For similar reasons it is unusual for doctoral theses to be accepted for the Lecture Notes series, though habilitation theses may be appropriate.

2. Manuscripts should be submitted either to Springer’s mathematics editorial in Heidelberg, or to one of the series editors. In general, manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet be reached on the basis of the first 2 reports, further referees may be contacted: The author will be informed of this. A final decision to publish can be made only on the basis of the complete manuscript, however a refereeing process leading to a preliminary decision can be based on a pre-final or incomplete manuscript. The strict minimum amount of material that will be considered should include a detailed outline describing the planned contents of each chapter, a bibliography and several sample chapters.

Authors should be aware that incomplete or insufficiently close to final manuscripts almost always result in longer refereeing times and nevertheless unclear referees’ recommendations, making further refereeing of a final draft necessary.

Authors should also be aware that parallel submission of their manuscript to another publisher while under consideration for LNM will in general lead to immediate rejection.

3. Manuscripts should in general be submitted in English. Final manuscripts should contain at least 100 pages of mathematical text and should always include

- a table of contents;
- an informative introduction, with adequate motivation and perhaps some historical remarks: it should be accessible to a reader not intimately familiar with the topic treated;
- a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form, in the latter case preferably as pdf- or zipped ps-files. Lecture Notes volumes are, as a rule, printed digitally from the authors’ files. To ensure best results, authors are asked to use the LaTeX2e style files available from Springer’s web-server at:

4. Careful preparation of the manuscripts will help keep production time short besides ensuring satisfactory appearance of the finished book in print and online. After acceptance of the manuscript authors will be asked to prepare the final LaTeX source files (and also the corresponding dvi-, pdf- or zipped ps-file) together with the final printout made from these files. The LaTeX source files are essential for producing the full-text online version of the book (see www.springerlink.com/content/110312 for the existing online volumes of LNM).

The actual production of a Lecture Notes volume takes approximately 12 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled to a discount of 33.3% on the price of Springer books purchased for their personal use, if ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract. Springer-Verlag secures the copyright for each volume. Authors are free to reuse material contained in their LNM volumes in later publications: a brief written (or e-mail) request for formal permission is sufficient.

Addresses:
Professor J.-M. Morel, CMLA,
École Normale Supérieure de Cachan,
61 Avenue du Président Wilson, 94235 Cachan Cedex, France
E-mail: Jean-Michel.Morel@cmla.ens-cachan.fr

Professor F. Takens, Mathematisch Instituut,
Rijksuniversiteit Groningen, Postbus 800,
9700 AV Groningen, The Netherlands
E-mail: F.Takens@math.rug.nl

Professor B. Teissier, Institut Mathématique de Jussieu,
UMR 7586 du CNRS, Équipe “Géométrie et Dynamique”,
175 rue du Chevaleret
75013 Paris, France
E-mail: teissier@math.jussieu.fr

For the “Mathematical Biosciences Subseries” of LNM:
Professor P.K. Maini, Center for Mathematical Biology,
Mathematical Institute, 24-29 St Giles,
Oxford OX1 3LP, UK
E-mail: maini@maths.ox.ac.uk

Springer, Mathematics Editorial I, Tiergartenstr. 17
69121 Heidelberg, Germany,
Tel.: +49 (6221) 487-8259
Fax: +49 (6221) 4876-8259
E-mail: lnm@springer.com