List of Symbols

Sets

\(\in \) element
\(\subseteq \) subset
\(\subset \) proper subset
\(\supseteq \) superset
\(\supset \) proper superset
\(\cup \) union
\(\cap \) intersection
\(\setminus \) set difference
\(\Delta \) symmetric difference
\(\emptyset \) empty set
\(|S| \) cardinality of set \(S \)
\(2^S \) power set (set of all subsets) of set \(S \)
\(S \times T \) Cartesian product of sets \(S \) and \(T \)
\(S^n \) \(n \)-fold Cartesian product of set \(S \)
\(\mathbb{N} \) the set of natural numbers
\(\mathbb{Q} \) the set of rational numbers
\(\mathbb{R} \) the set of real numbers

Logic

\(\land \) conjunction (and)
\(\lor \) disjunction (or)
\(\neg \) negation
\(\rightarrow \) implication
\(\leftrightarrow \) implication (in program clauses)
\(\equiv \) equivalence
\(\forall \) universal quantifier
\(\exists \) existential quantifier
\(T \) true
\(F \) false
LIST OF SYMBOLS

|= logical implication
⇔ logical equivalence
∈ empty substitution
S set of negations of formulas in set S
MII least Herbrand model of definite program II
FII SLD finite failure set of definite program II
comp(II) completion of normal program II
Γr (unconstrained) derivation
Γd (unconstrained) deduction
Γlr linear derivation
Γld linear deduction
Γir input derivation
Γid input deduction
Γsr SLD-derivation
Γsd SLD-deduction
Γsnf SLDNF-resolution
R computation rule

Languages and quasi-orders

A set of all atoms in a language
H Horn language
C clausal language
Cnewsize C bounded by newsize
Ch hypothesis language in model inference
Co observational language in model inference
Cl part of Co that is true under interpretation I
R set of all reduced clauses in C
Rnewsize R bounded by newsize
S set of all theories from C
Cpos clause consisting of all positive literals in clause C
Cneg clause consisting of all negative literals in clause C
C+ head of program clause C
C− body of program clause C
⊤ top element in lattice
⊥ bottom element in lattice
□ empty clause
≥ arbitrary quasi-order
⟨S, ≥⟩ set S quasi-ordered by ≥
A ⊓ B greatest lower bound of {A, B}
A ⊔ B least upper bound of {A, B}
≥ subsumption
≈ equivalence relation induced by quasi-order (for atoms: variants)
~ subsume-equivalence
19.8. **LIST OF SYMBOLS**

\[
\begin{align*}
\preceq_a & \quad \text{atomic order} \\
\mathcal{B} & \quad \text{background knowledge} \\
\preceq_B & \quad \text{relative subsumption} \\
\models_B & \quad \text{relative implication} \\
\succeq_B & \quad \text{generalized subsumption}
\end{align*}
\]

Refinement operators

\[
\begin{align*}
\rho_A & \quad \text{downward refinement operator for atoms} \\
\rho_L & \quad \text{downward refinement operator under subsumption} \\
\rho_r & \quad \text{downward refinement operator for reduced clauses} \\
\rho_I & \quad \text{downward refinement operator under implication} \\
\delta_A & \quad \text{upward refinement operator for atoms} \\
\delta_u & \quad \text{upward refinement operator under subsumption} \\
\delta_r & \quad \text{upward refinement operator for reduced clauses}
\end{align*}
\]

PAC learning

\[
\begin{align*}
\Sigma^* & \quad \text{set of all finite strings over alphabet } \Sigma \\
X^n & \quad \text{set of all strings of length at most } n \text{ in domain } X \\
\mathcal{F} & \quad \text{concept class} \\
f^n & \quad \text{projection of concept } f \text{ on } X^n \\
\mathcal{F}^n & \quad \text{projection of concept class } \mathcal{F} \text{ on } X^n \\
\mathcal{P} & \quad \text{probability distribution} \\
\mathcal{D}_{VC} & \quad \text{Vapnik-Chervonenkis dimension} \\
\delta & \quad \text{confidence parameter} \\
\varepsilon & \quad \text{error parameter} \\
\eta & \quad \text{rate of malicious or random classification noise} \\
\eta_b & \quad \text{upper bound on } \eta \\
l_{\text{min}}(f, R) & \quad \text{size (shortest name) of concept } f \text{ in representation } R
\end{align*}
\]
Bibliography

[AB95] H. Adé and H. Boström. JIGSAW: Puzzling together RUTH and SPECTRE. In [LW95], pages 263–266.

BIBLIOGRAPHY

BIBLIOGRAPHY

[Hil74] R. Hill. LUSH-resolution and its completeness. DCL Memo 78, Department of Artificial Intelligence, University of Edinburgh, 1974.

BIBLIOGRAPHY

BIBLIOGRAPHY

BIBLIOGRAPHY

[Mug96a] S. Muggleton. Learning from positive data. In [Sto96], pages 225–244.

BIBLIOGRAPHY

I. Stahl. The efficiency of predicate invention in ILP. In [DR95], pages 231–246.

I. Stahl. Predicate invention in inductive logic programming. In [DR96], pages 34–47.

R. Wirth. Completing logic programs by inverse resolution. In [Mor89], pages 239–250.

Author Index

Adé, H., 171, 197, 346, 347, 357
Aha, D., 357
Akiba, S., 197
Alexin, Z., 357
Angluin, D., 175, 331
Anthony, M., 332
Apt, K., ix, x, 65, 106, 115, 118n, 120, 133, 142, 149, 150, 153–155, 159
Arikawa, S., 175
Arimura, H., 225n, 337
Aristotle, 174
Austin, G., 175
Bacon, F., 174
Bain, M., 76, 354n
Banerji, R., 175, 354
Bergadano, F., x, 171, 197, 346, 347, 357, 358
Bezem, M., 106
Biggs, N., 332
Blum, L., 193
Blum, M., 193
Blumer, A., 326
Bol, R., 142, 149
Boole, G., 3
Boolos, G., 18, 33, 56, 168
Boström, H., 208, 210, 357
Boswell, R., 355
Bratko, I., 154, 155, 352, 353, 355, 358
Brazdil, P., 176
Bruner, J., 175
Bruynooghe, M., 197, 300, 316, 355, 356
Buntine, W., xii, 176, 197, 279n, 280, 289, 291, 294, 354
Califf, M., 358
Cameron-Jones, R., 300, 354
Carnap, R., 174
Cestnik, B., 355
Chang, C. L., ix, 65, 76, 77n, 90, 91, 93, 94
Chervonenkis, A., 325
Church, A., 56
Clark, K., 106, 128
Clark, P., 355
Clocksin, W., 154, 155
Cohen, B., 176
Cohen, W., 334, 337, 339, 340, 347, 358
Colmerauer, A., 154
Cormen, T., 55, 326, 338n
Daidoji, M., 358
Dawes, M., 300
De Raedt, L., x, 172, 197, 266, 300, 316, 341, 347, 355, 356, 359
Dehaspe, L., 347, 358
Dimopoulos, Y., 173
Doets, K., ix, 106, 114n, 115, 133, 153n
Dolšak, B., 358
Eder, E., 65
Ehrenfeucht, A., 326
AUTHOR INDEX

Emde, W., x, 356, 359
Emden, M. van, 106
Feng, C., 176, 336n, 355
Fermüller, C. G., 248
Flach, P., 172, 175n, 197, 347
Frazier, M., 334
Frege, G., 18
Frisch, A., 337
Gamberger, D., 353
Garey, M., 246n, 326, 338n
Genesereth, M., 90, 92
Giordana, A., x
Gold, E. M., 175, 194, 321
Goodman, N., 174
Goodnow, J., 175
Gottlob, G., 248, 266, 267
Grobolnik, M., 316, 355
Gunetti, D., x, 197, 347, 357, 358
Gyimóthy, T., 357
Hanschke, P., 125
Haussler, D., 326
Helft, N., 172
Hempel, C., 174, 175n
Herbrand, J., 45
Hill, R., 106
Hopcroft, J., 55, 338n
Horn, A., 105
Horváth, T., x, 338, 339
Hume, D. (philosopher), 174
Hume, D. (researcher), 197
Idestam-Almquist, P., 197, 208, 210, 266, 357
Inoue, K., 90, 94
Ishizaka, H., 225n, 337
Jaffar, J., 153, 359
Jeffrey, R., 18, 33, 56, 168
Jevons, S., 174
Jezernik, A., 358
Johnson, D., 246n, 326, 338n
Kakas, A., 173
KearnS, M., 330, 332
Kietz, J-U., x, 246n, 334, 338, 356
King, R., 357, 358
Komorowski, H., 210
Konenk0, I., 355
Kowalski, R., 55, 76, 90, 94, 105n, 173
Križman, V., 358
Kuehner, D., 90, 94, 105n
Laag, P. van der, 220, 243, 261, 266, 300, 311
Laird, P., 220, 305, 331
Lapointe, S., 357
Lassèz, J-L., 65, 153
Lavrač, N., x, 176, 300, 352, 353, 355, 358
Lee, R. C. T., ix, 65, 76, 77n, 90, 91, 93, 94
Leiserson, C., 55, 326, 338n
Lewis, R., 358
Li, M., 338, 353
Ling, C., 197, 300, 334, 357
Lloyd, J., ix, 65, 105, 114n, 118n, 119, 133, 142, 149, 150, 153, 157n, 158
Loveland, D., 90, 94
Lübme, M., 246n
Luckham, D., 94
Maher, M., 65, 359
Marcinkowski, J., 125
Marriott, K., 65
Martelli, A., 65
Matwin, S., 357
Mellish, C., 154, 155
Mendelson, E., 18
Michalski, R., 354
Mill, J. S., 174
Minicozzi, E., 90, 94, 98
Minsky, M., 164
Mitchell, T., 169, 171
Mizoguchi, F., 358
Montanari, U., 65
Mooney, R., 358
AUTHOR INDEX

Morik, K., x, 356
Muggleton, S., x, xii, 76, 164, 176, 197, 220n, 266, 267, 273, 300, 325n, 336n, 337–339, 354, 355, 357–359

Narayan, M., 197
Natarajan, B., 322, 326, 329, 332
Nédellec, C., 171, 346, 347
Niblett, T., 261, 285, 311, 355
Nienhuys-Cheng, S-H., 76, 197, 209, 220, 243, 261, 266, 300, 311, 326, 339
Nilsson, N., 90, 92
Norvig, P., 164

Ohwada, H., 358
Otsuki, S., 225n

Pacholski, L., 125
Page, C. D., 267, 273, 325n, 334, 337, 358
Paterson, M., 65
Peirce, C. S., 173, 174
Pettorossi, A., 207n
Pirnat, V., 358
Plotkin, G., ix, 175, 176, 219, 226, 228, 243, 248, 252, 280, 283
Polman, M., 326, 339
Popper, K., 174, 175n
Proietti, M., 207n
Puget, J-F., 197, 350
Quinlan, J. R., 176, 300, 354

Reichenbach, H., 174
Reiter, R., 90, 94, 98, 127
Reynolds, J., ix, 175, 219, 226, 228, 240, 260
Rieger, A., 347
Rissanen, J., 353
Rivest, R., 55, 326, 338n
Robinson, J. A., 66, 76, 91, 93
Rouveirol, C., 171, 197, 346, 347, 350, 351, 354, 359

Ruck, B., 358
Russell, B., 18, 174
Russell, S., 164, 337–339

Sablon, G., 197
Saitta, L., x
Sammut, C., 175, 197, 354
Sato, T., 197, 210, 213
Schmidt-Schauss, M., 88
Sebag, M., 359
Shapiro, E., ix, xii, 154, 155, 159, 168, 175, 176, 179, 184–186, 192, 205, 220, 261, 299, 300, 306, 310, 354
Shepherdson, J., 118n
Shinohara, T., 175, 225n, 337
Shirato, S., 358
Skolem, T., 39
Slagle, J. R., 76, 93, 94
Sloan, R., 332, 338, 339
Smith, B., 175
Sommer, E., 347
Srinivasan, A., 354n, 358
Stahl, J., 348–350, 354
Stärk, R., 106
Sterling, R., 154, 155, 159
Sternberg, M., 357, 358
Tamaki, H., 210, 213
Tarski, A., 18
Tausend, B., 171, 346, 347
Taylor, K., 197
Teusink, F., 159
Toni, F., 173
Torre, L. van der, 243, 300
Turán, G., 338, 339
Turing, A., 56

Ullman, J., 55, 338n
Urbančič, T., 358
Utgoff, P., 171
Valiant, L., 321, 331
Van Laer, W., 316
Vapnik, V., 325
AUTHOR INDEX

Varček, A., 358
Vazirani, U., 330, 332
Vere, S., 175
Vitányi, P., 338, 353

Walley, W., 358
Warmuth, M., 326
Wegman, M., 65
Wettschereck, D., 359
Whitehead, A. N., 18
Wirth, R., 197
Wolf, R. de, 76, 209, 243, 266
Wrobel, S., x, 225n, 356
Würtz, J., 125

Yamamoto, A., x, 175, 334, 357n
Subject Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ-subsumption</td>
<td>77, see subsumption</td>
</tr>
<tr>
<td>abduction</td>
<td>173</td>
</tr>
<tr>
<td>accuracy</td>
<td>357</td>
</tr>
<tr>
<td>admissible (pair of languages)</td>
<td>182, 183</td>
</tr>
<tr>
<td>admissible PAC algorithm</td>
<td>324</td>
</tr>
<tr>
<td>adversarial noise</td>
<td>331, see malicious noise</td>
</tr>
<tr>
<td>AI, see artificial intelligence</td>
<td></td>
</tr>
<tr>
<td>algorithm</td>
<td>55</td>
</tr>
<tr>
<td>allowed clause</td>
<td>142, 335, 347</td>
</tr>
<tr>
<td>allowed set of clauses</td>
<td>142, 153, 335</td>
</tr>
<tr>
<td>alphabet</td>
<td>4, 18</td>
</tr>
<tr>
<td>Anti-Unification Algorithm</td>
<td>228, 244</td>
</tr>
<tr>
<td>antisymmetric relation</td>
<td>220</td>
</tr>
<tr>
<td>application of ILP</td>
<td>xiii, 346, 354, 357</td>
</tr>
<tr>
<td>approximated correct</td>
<td>323</td>
</tr>
<tr>
<td>AQ</td>
<td>354</td>
</tr>
<tr>
<td>arithmetical computation</td>
<td>358</td>
</tr>
<tr>
<td>arity</td>
<td>18</td>
</tr>
<tr>
<td>artificial intelligence</td>
<td>30, 55, 164, 174</td>
</tr>
<tr>
<td>ASSISTANT</td>
<td>355</td>
</tr>
<tr>
<td>atom</td>
<td>4, 20, 219, 225, 300</td>
</tr>
<tr>
<td>atomic generalization</td>
<td>243</td>
</tr>
<tr>
<td>atomic order</td>
<td>243</td>
</tr>
<tr>
<td>attribute-value learning</td>
<td>175, 176, 355</td>
</tr>
<tr>
<td>background knowledge</td>
<td>xi, xii, 163, 165, 279, 281, 287, 290, 304, 352</td>
</tr>
<tr>
<td>in inverse resolution</td>
<td>199</td>
</tr>
<tr>
<td>Backtracing Algorithm</td>
<td>176, 188, 356, 357</td>
</tr>
<tr>
<td>correctness of</td>
<td>190</td>
</tr>
<tr>
<td>basecase query</td>
<td>339</td>
</tr>
<tr>
<td>batch learning</td>
<td>171, 354-357</td>
</tr>
<tr>
<td>Bayes' Theorem</td>
<td>359</td>
</tr>
<tr>
<td>bias</td>
<td>171, 346</td>
</tr>
<tr>
<td>bias shift</td>
<td>172</td>
</tr>
<tr>
<td>binary resolvent</td>
<td>293</td>
</tr>
<tr>
<td>binding</td>
<td>59</td>
</tr>
<tr>
<td>blocked goal</td>
<td>142</td>
</tr>
<tr>
<td>body (of a clause)</td>
<td>106, 135</td>
</tr>
<tr>
<td>bottom element (\perp)</td>
<td>226</td>
</tr>
<tr>
<td>bottom-up approach to ILP</td>
<td>xii, 170, 197, 354, 355</td>
</tr>
<tr>
<td>bound variable</td>
<td>21</td>
</tr>
<tr>
<td>center clause</td>
<td>94</td>
</tr>
<tr>
<td>chain of refinements</td>
<td>300</td>
</tr>
<tr>
<td>Church's Theorem</td>
<td>56</td>
</tr>
<tr>
<td>CIGOL</td>
<td>176, 198, 354</td>
</tr>
<tr>
<td>CLAUDIEN</td>
<td>300, 356, 358</td>
</tr>
<tr>
<td>clausal language (C)</td>
<td>36</td>
</tr>
<tr>
<td>clause</td>
<td>ix, xi, 36, 59, 165, 175</td>
</tr>
<tr>
<td>alternative notations</td>
<td>51</td>
</tr>
<tr>
<td>as a set of literals</td>
<td>91, 246</td>
</tr>
<tr>
<td>as atom</td>
<td>244</td>
</tr>
<tr>
<td>names of variables in</td>
<td>40</td>
</tr>
<tr>
<td>tautology</td>
<td>45</td>
</tr>
<tr>
<td>universally quantified</td>
<td>39, 53</td>
</tr>
<tr>
<td>Clause Set</td>
<td>347, 357</td>
</tr>
<tr>
<td>CLINT</td>
<td>x, 347, 355</td>
</tr>
<tr>
<td>closed formula</td>
<td>22, 28</td>
</tr>
</tbody>
</table>
restriction to, 29
closed recursive clause, 338
Closed World Assumption (CWA),
127, 145, 149
CN2, 355
C^f_o-complete axiomatization, 182
Compactness Theorem, 33
compatible clauses, 243, 312
complementary pair, 45, 66, 68
complete (with respect to exam-
ples), 166, 184
completed definition of a predicate symbol, 148
completeness, 58
of computed answers, 118, 122, 125
of linear resolution, 98, 99
of negation as finite failure, 153
of SLD-resolution, 109, 111
of UDS specialization, 216
of unconstrained resolution, 83, 84
completion, 145, 149, 166n
complexity class NP, 246n, 338
complexity class P, 338
complexity class PSPACE, 338
complexity class RP, 338
composite formula, 4, 20
composition, 61
computable, 55, 114n
computation rule, 120, 141
first in, first out, 119, 132
independence of, 121
computed answer, 114, 141
concept, 179, 323
concept class, 323
Condition *, 114, 139
confidence parameter, 324, 326n
confirmatory problem setting, 172
CONFUCIUS, 176
conjunction, 6, 15
connected clause, 335, 347
connective, 4, 18
informal explanation of, 6
interpretation of, 8
consistent, 12, 31
consistent (with respect to examples), 166, 184
constant, 18
constrained atom, 335
constrained clause, 335, 347
constrained set of clauses, 335
constraint logic programming, 359
constraint predicate, 335
contingent, 12, 31
contradiction, 12, 31
conventional atom, 226
correct (with respect to examples), 166, 184, 328n
in PAC learning, 328
correct answer, 114, 150
counterexample, 331
cover, xii, 205, 223, 225
finite chain of, 234
cover-refinement operator, 316
covering, 290
covering approach, 354
CRUSTACEAN, 357
cut (!), 157
CWA, see Closed World Assump-
tion
cycle, 257
cyclical background knowledge, 337
data mining, xi, 172, 177
De Morgan’s laws, 14
decidable, 56, see also undecidable
implication for function-free clauses, 270
implication for ground clauses, 270
in polynomial time, 342
propositional logic, 30, 56
decision procedure, 56
decision tree, 164, 176, 354, 355
deduction, 76, 77, 128, 283
how to find, 88
undecidable, 88
Deduction Theorem, 11, 32
definite goal, 106
definite program, 111, 127, 150, 166, 167, 207, 319, 327n
definite program clause, 106, 200, 289
definition of a predicate symbol, 147, 335
denumerable set, 168
depth of a term or clause, 267
derivation, 57, 66, 71, 73, 76
determinate clause, 335
disagreement set, 63
disjunction, 6, 15
domain, 22, 24, 179
domain (in PAC learning), 323
downward cover, xii, 223, 301
 complete set of, 224
 finite chain of, 236, 239
 of atom, 232, 236, 237, 240, 302
 of sets under implication, 317
 under implication, 278
 under subsumption, 259
 with background knowledge, 281
downward refinement operator, xii, 205, 300, 355, 356
 \(\rho_f \), 318
 \(\rho_L \), 305, 317, 349, 350
 \(\rho_A \), 301
 \(\rho_r \), 312
 complete, 300
 for finite set, 310
 for Horn clauses, 304, 312
 ideal, 300
 does not exist, 304
 locally finite, 300
 proper, 300
Duce, 176
duplication of literals, 307

E-Herbrand interpretation, 147
elementary substitution, 233, 305
empty clause (\(\Box \)), 36

is a contradiction, 68
empty substitution, 59
enumerably infinite set, 168
enumeration, 168, 181, 184
equality axioms, 146
equality theory, 146
equivalence, 12, 31
 connective, 7
equivalence class, 220
equivalence query, 331
equivalence relation, 220
equivalent
 in a quasi-order, 221
error parameter, 323, 326n
evaluable representation, 327
example, 165, 172, 323
existential quantifier, 18, 23
 interpretation of, 27
existential query, 339
explanatory problem setting, 168
expression, 59
extension of a relation, 179

fact of interpretation, 180
factor, 70, 200
failure branch, 123
fair SLD-tree, 132
fair SLDNF-tree, 141
false, 9, 29
falsify, 9, 29
ffga program, 337
FILP, x

Finite Downward Cover Chain Algorithm, 235
finitely failed SLD-tree, 131, 132, 153
finitely failed SLDNF-tree, 138, 140
first-order language, 21
first-order logic, xi, 3, 17
fitting, 328
flattening, 346, 350, 360
 preserves implication, 352, 363
 preserves subsumption, 352, 361
Flattening Algorithm, 351
floundering, 134, 138, 141, 142, 156
SUBJECT INDEX

FOIL, 176, 300, 354
forest background knowledge, 337
formula, 31
free variable, 21
function symbol, 18, 34, 350
function-free, 265, 267, 272, 289, 296, 335, 346, 350
g-subsumption, see generalized subsumption
general program, 135, see normal program
generality order, xii, 191, 205, 219, 225
generalization, xi, 169, 225, 299
generalized subsumption, 280, 289, 290
generative clause, 335, 347
genetic algorithm, 164
glb, see greatest lower bound
GOLEM, 176, 286, 355, 357, 358
Gottlob’s Lemma, 267
grammar (for language bias), 347
greatest lower bound (glb), 221, 225
greatest specialization (GS), xii, 225
in first-order logic, 275
of atoms, 227
under implication (GSI), 275, 276
for Horn clauses, 276
under subsumption (GSS), 251
for Horn clauses, 251
ground atom, 46
ground formula, 22
ground instance, 59
ground substitution, 59
ground term, 22, 46
GS, see greatest specialization
GSI, see greatest specialization under implication
GSS, see greatest specialization under subsumption

h-easiness, 193
head (of a clause), 106, 135
Herbrand base, 46
Herbrand interpretation, xi, 35, 47, 172, 273, 290, 340
Herbrand model, 48, 112
Herbrand pre-interpretation, 46
Herbrand universe, 46
Herbrand’s Theorem, 79
hierarchical program, 153
higher-order logic, 18n
Horn clause, xi, 55n, 102, 105, 106
Horn language (H), 106
hypothesis language (Ch), 180
ID3, 354
identification from equivalence queries, 331
identification in the limit, 194, 321
identity substitution, 59
iff (if, and only if), 11
ij-determinate clause, 336, 347, 355
ij-nondeterminate clause, 336
ILP, see inductive logic programming
imperfect data, 352
implementation of ILP, xiii, 346, 354
implication, xi, xii, 10, 11, 30, 49, 50, 55, 191, 265, 273, 280, 287, 304, 317, 352, 363
connective, 6, 11
for atoms, 226
is a quasi-order, 265n
non-clausal, 87
IMPUP, 357
incomparable, 221
incompatible clauses, 243, 312
incompleteness
of input resolution, 100, 101
of SLDNF-resolution, 153
inconsistent, 12, 31
incremental learning, 171, 354, 355
induction, ix, 163, 197
inductive inference, 175
SUBJECT INDEX

inductive logic programming, ix, 36, 55, 154, 164, 167, 173, 175, 222, 225, 345

history of, 174
infinite branch, 123
initial pre-SLDNF-tree, 138
input clause, 100, 107
input deduction, 100, 128
input derivation, 100
input refutation, 100
input resolution, 100
instance, 59, 61
instance of a concept, 179
instance set, 268
integrity constraint, 356
intension of a relation, 179
interactive learning, 171, 354, 355
interpretation, xi, 7, 23, 26
invalid, 12, 31
inverse reduction, 249
Inverse Reduction Algorithm, 250, 311, 315
inverse resolution, xii, 176, 197, 207, 220n, 319, 349, 354
for program restructuring, 348
inverse substitution, 238
ITOU, 354

JIGSAW, 357
jk-clausal theory, 341

k-ary recursive clause, 338
k-clause program, 335
k-literal clause, 335
k-literal program, 335
knowledge discovery, 172
Kolmogorov complexity, 353

label of an example, 323
language bias, xiii, 171, 346
shift, 347, 349
lattice, 222
for atoms, 231
under implication, 276
under subsumption, 255, 256
learnability theory, 321
least generalization (LG), xii, 175, 205, 225
in first-order logic, 275
of atoms, 230
summary of results, 297
under atomic generalization (LGA), 244, 252, 253
under generalized subsumption (LGGS), 280n, 294, 295
under implication (LGI), 265, 266, 272, 273, 279
computability of, 275
for Horn clauses, 267
special, 272
under relative implication (LGRI), 289
for Horn clauses, 288
under relative subsumption (LGRS), 285, 286, 355
for Horn clauses, 287
under subsumption (LGS), 251, 254, 265, 274, 279, 286, 355
for Horn clauses, 255
least Herbrand model, 112, 129, 213
as a concept, 327n, 333
polynomial time algorithm for, 342
least upper bound (lub), 221, 225
length (of a set of examples), 328
length (of an example), 323
length parameter, 324
level-saturation method, 88, 124
LG, see least generalization
LGGS, see least generalization under generalized subsumption
LGI, see least generalization under implication
LGI Algorithm, 274
LGRI, see least generalization under relative implication
SUBJECT INDEX

LGRS, see least generalization under relative subsumption

LGS, see least generalization under subsumption

LGS Algorithm, 255, 274

Lifting Lemma, 82
 for linear resolution, 96
 for SLD-resolution, 109

linear deduction, 95, 128

linear derivation, 94

linear refutation, 94

linear resolution, xi, 93, 100

linearly recursive clause, 338

link-depth of a clause, 336

linked clause, 336

LINUS, x, 176, 300

literal, 36

logic programming, ix, xi, 55, 164, 176, 345, 359

logical consequence, 10, 11, 30, 49

logical implication, 12, see implication

lower bound, 221, 225

lub, see least upper bound

machine learning, ix, 164, 321, 345

main tree in SLDNF-tree, 133, 140

malicious noise, 331

MARVIN, 176, 354

matrix (in prenex form), 36

maximal lower bound (mlb), 223, 225
 complete set of, 224

maximal specialization (MS), 225
 under implication (MSI)
 for Horn clauses, 276

maxsize, 261

MDL, see Minimum Description Length

membership query, 330, 331

MG, see minimal generalization

MGI, see minimal generalization under implication

mgu, see most general unifier

minimal generalization (MG), 225
 under implication (MGI), 273
 for Horn clauses, 267

minimal upper bound (mub), 223, 225
 complete set of, 224

Minimum Description Length, 353, 354n

MIS, 176, 192, 300, 354

ML-SMART, x

mlb, see maximal lower bound

MOBAL, x, 356

mode declaration, 339

model, 9, 30, 48

Model Inference Algorithm, 193, 306, 354

model inference problem, xii, 168, 176, 179, 184, 299

modus ponens, 57

most general atom, 233

most general literal, 305

most general unifier (mgu), 63

MS, see maximal specialization

mub, see minimal upper bound

multiple-predicate learning, 170, 354–357

mutagenesis, 358

n-step refinement, 300

name (in a representation), 327

necessary condition, 11

negation, 6

negation as (finite) failure, 128

negative example, 165, 172, 180, 323

negative literal, 36

neural network, 164

newsize, 261, 311

noise, xiii, 170–172, 177, 346, 352
 in PAC learning, 331

noise rate, 332

non-interactive learning, 171, 354–357

non-recursive clause, 277, 335, 347

non-recursive program, 335
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonmonotonic problem setting, 172, 173, 340</td>
</tr>
<tr>
<td>nonmonotonic rule, 128, 141</td>
</tr>
<tr>
<td>nonmonotonic setting, xi, 177</td>
</tr>
<tr>
<td>normal form, 35</td>
</tr>
<tr>
<td>normal goal, 133</td>
</tr>
<tr>
<td>normal problem setting, xi, 167, 168, 280, 327n, 333</td>
</tr>
<tr>
<td>non-existence of solution for, 168</td>
</tr>
<tr>
<td>normal program, 130, 135, 166n</td>
</tr>
<tr>
<td>notational conventions, 15, 33, 53</td>
</tr>
<tr>
<td>observational language ((C_0)), 180</td>
</tr>
<tr>
<td>occur check, 64</td>
</tr>
<tr>
<td>OL-resolution, 94</td>
</tr>
<tr>
<td>not refutation-complete, 94n</td>
</tr>
<tr>
<td>one-step refinement, 300</td>
</tr>
<tr>
<td>optimal cover-refinement operator, 316</td>
</tr>
<tr>
<td>oracle, 181, 184, 186, 330</td>
</tr>
<tr>
<td>ordered clause, 246, 307</td>
</tr>
<tr>
<td>overly general (with respect to examples), 167</td>
</tr>
<tr>
<td>overly specific (with respect to examples), 167</td>
</tr>
<tr>
<td>PAC algorithm, 324</td>
</tr>
<tr>
<td>PAC learning, xiii, 321, 347</td>
</tr>
<tr>
<td>in nonmonotonic ILP setting, 340</td>
</tr>
<tr>
<td>in normal ILP setting, 333</td>
</tr>
<tr>
<td>in propositional logic, 332</td>
</tr>
<tr>
<td>is worst case analysis, 325</td>
</tr>
<tr>
<td>under simple distributions, 338</td>
</tr>
<tr>
<td>PAC predicting, 330</td>
</tr>
<tr>
<td>parent clauses, 70</td>
</tr>
<tr>
<td>partial order, 220</td>
</tr>
<tr>
<td>induced by quasi-order, 221</td>
</tr>
<tr>
<td>place, see position</td>
</tr>
<tr>
<td>polynomial sample PAC learnable, 325, 326, 328</td>
</tr>
<tr>
<td>polynomial time fitting, 328</td>
</tr>
<tr>
<td>polynomial time identification from equivalence queries, 331</td>
</tr>
<tr>
<td>polynomial time PAC learnable, 328, 329</td>
</tr>
<tr>
<td>polynomial time PAC predictable, 330</td>
</tr>
<tr>
<td>polynomial VC dimension, 326</td>
</tr>
<tr>
<td>polynomially evaluable representation, 327</td>
</tr>
<tr>
<td>position, 228</td>
</tr>
<tr>
<td>positive example, 165, 172, 180, 323</td>
</tr>
<tr>
<td>positive literal, 36</td>
</tr>
<tr>
<td>post-processing, 170</td>
</tr>
<tr>
<td>power set, 168</td>
</tr>
<tr>
<td>pre-interpretation, 24</td>
</tr>
<tr>
<td>pre-processing, 170</td>
</tr>
<tr>
<td>pre-SLDNF-tree, 138</td>
</tr>
<tr>
<td>via (R), 141</td>
</tr>
<tr>
<td>predicate invention, xiii, 172, 177, 203, 346, 347, 354</td>
</tr>
<tr>
<td>utility of, 349</td>
</tr>
<tr>
<td>predicate symbol, 18</td>
</tr>
<tr>
<td>predicate topology, 356</td>
</tr>
<tr>
<td>prenex, 36</td>
</tr>
<tr>
<td>prenex conjunctive normal form, 35, 36</td>
</tr>
<tr>
<td>transformation to, 37</td>
</tr>
<tr>
<td>probability distribution, 323</td>
</tr>
<tr>
<td>probably approximately correct, 321, 324</td>
</tr>
<tr>
<td>probably approximately correct learning, see PAC learning</td>
</tr>
<tr>
<td>problem setting of ILP, 207</td>
</tr>
<tr>
<td>PROGOL, 300, 357, 358</td>
</tr>
<tr>
<td>program clause, 130, 134</td>
</tr>
<tr>
<td>program transformation, 207n, 347</td>
</tr>
<tr>
<td>projection, 326</td>
</tr>
<tr>
<td>PROLOG, xi, 105, 113, 130, 154, 176</td>
</tr>
<tr>
<td>computation rule, 155</td>
</tr>
<tr>
<td>cut operator, 157</td>
</tr>
<tr>
<td>declarative side, 155, 159</td>
</tr>
<tr>
<td>depth-first search, 155</td>
</tr>
<tr>
<td>lists, 154</td>
</tr>
<tr>
<td>procedural side, 155, 159</td>
</tr>
</tbody>
</table>
syntax, 154
proof procedure, xi, 56, 57
propositional language, 5, 8
propositional logic, xi, 3, 17, 332
embedded in first-order logic, 19, 26, 68
punctuation symbol, 4, 18

quasi-order, 220, 300
query, 330

R-computed answer, 120
random classification noise, 332
range restricted clause, 335, 347
RDT, 356
real numbers, 177, 358
recursive atom, 338
recursive clause, 277, 338
reduced clause, 247, 310
Reduction Algorithm, 248
reduction of clause, 247
refinement graph, 301
for optimal cover-refinement operator, 316
refinement operator, xii, 176, 191, 220, 300
in predicate invention, 349
reflexive relation, 220
refutation, 67, 71, 73
refutation completeness, x, xi, 58, 76, 84
of linear resolution, 98
of SLD-resolution, 109
of unconstrained resolution, 84
relation, 179, 220
relative implication, 280, 287
relative subsumption, 280, 281, 287, 294
renaming substitution, 62
representation, 327
by definite programs, 333
by theories, 340
resolution, xi, 57, 58, 65, 93, 197, 317
alternative definitions of, 91

restriction to clauses, 66
resolvent, 70
restriction of a substitution, 59
RiBL, 359
rule schema, 356

safe computation rule, 142, 156
sample complexity, 322, 324
satisfiable, 12, 31
satisfy, 9, 29
scope, 21
search bias, 171, 346
search heuristics, 346, 358
search space, 169
selection (of two clauses), 252
self-saturated clause, 273
semantic resolution, 93
semantics, 4, 5, 22
semi-decidable, 56n
shatters, 325
side clause, 94
Sim, 300
simple expression, 59
single-predicate learning, 170, 334, 354, 355, 357
size, 240, 260, 310
difficulty with, 261
size of a concept, 327
Skolem constants, 41
Skolem functions, 41
Skolem standard form, 42
Skolem substitution, 83
Skolemization, 41
Skolemized form, 41
SL-resolution, 94
SLD finite failure set, 129, 131
SLD-deduction, 107, 128, 293
SLD-derivation, 107, 141
of infinite length, 123
SLD-refutation, 107
via R, 120
SLD-resolution, xi, 94, 102, 105n, 198
SLD-tree, 123, 128, 141
effect of unfolding on, 208
via R, 123
SLDNF-derivation, 140
SLDNF-refutation, 140
via R, 141
SLDNF-resolution, xi, 58n, 130
SLDNF-tree, 133, 140, 155
via R, 141
SOL-resolution, 94
soundness, 58
of computed answers, 116, 122, 125
of deduction, 77
of derivation, 73
of negation as finite failure, 151
of resolution, 66, 72
of SLDNF-resolution, 152
specialization, xi, 169, 225, 299
under subsumption, 305, 307
specialization problem, xii, 207
SPECTRE, 357
SPECTRE II, 357
standard form, 35, 39, 40, 42
non-equivalence of, 43
of set of formulas, 43
preserves unsatisfiability, 45
standardized apart, 69, 114
statistical query, 332n
statistics, 359
stochastic definite program, 359
subsidiary tree, 133, 138
substitution, 59
as a mapping, 60
subsume-equivalence class, 246
subsume-equivalent, 246
subsumption, xii, 76, 77, 175, 191, 209, 215, 246, 265, 280, 282, 291, 294, 304, 305, 317, 352, 361
for atoms, 226
is a quasi-order, 246
is decidable, 246
is NP-complete, 246n
proper, 246
weaker than implication, 265
Subsumption Theorem, x, xi, 58, 76, 84, 287, 318
for linear resolution, 99
for SLD-resolution, 111, 209
for unconstrained resolution, 78, 83, 86
succeeds, 140
success branch, 123
success set, 113
successful SLDNF-tree, 138, 140
sufficient condition, 11
symmetric difference, 323
symmetric relation, 220
syntax, 4, 15, 18
T-implication, 266
target concept, 321
tautology, 12, 31, 45, 77
term, 19
term assignment, 22, 25
term occurrence, 228
term set, 268
term-related clause, 339
test set, 357
theorem proving, ix, 58n
theory, 166
theory revision, 169n
time complexity, 322, 326, 328
with background knowledge, 334
too strong (with respect to examples), 167
too weak (with respect to examples), 167
top clause, 94, 107
top element (T), 226
top-down approach to ILP, xii, 170, 354, 356, 357
TRACY, x, 357
training set, 357
transitive relation, 220
true, 9, 29
truth table, 8, 13
truth value, 7, 9, 27, 29, 127, 153n
SUBJECT INDEX

Turing machine, 326

type, 358

type 1 program (unfolding), 210
 preserves M_Π, 213

type 2 program (unfolding), 210
 preserves equivalence, 213

U-learning, 325n

UDS specialization, xii, 209, 215, 319

uncountable set, 168

undecidable, 56, see also decidable
 clausal implication, 88
 Horn clause implication, 125
 language bias shift problem, 349
 logical implication, 56
 satisfiability of set of Horn clauses, 125

unfolding, xii, 197n, 208, 210, 357

unifiable, 63

Unification Algorithm, 64, 227

Unification Theorem, 65

unifier, 63

universal distribution, 338

universal quantification, 39

universal quantifier, 18, 23, 287
 interpretation of, 27

unsatisfiable, 12, 31, 43, 45

unsoundness
 of cut, 158
 of floundering, 142
 of PROLOG, 156

upper bound, 221, 225

upward cover, xii, 223
 complete set of, 224
 finite chain of, 239
 of atom, 234, 239, 240
 under implication, 277
 under subsumption, 257
 with background knowledge, 281

upward refinement operator, xii, 300

δ_r, 316

δ_u, 309
 complete, 300
 for finite set, 310
 for Horn clauses, 304
 ideal, 300
 does not exist, 304
 locally finite, 300
 proper, 300

V-operator, 200, 201, 205

valid, 12, 31

validation bias, 171, 346

Vapnik-Chervonenkis dimension, see
 VC dimension

variable, 18

variable assignment, 25, 28

variable-depth, 336

variant, 62

VC dimension, 325, 328

W-operator, 203, 205, 349, 354

weak confirmation, 172

well-formed formula, xi, 4, 20
Lecture Notes in Computer Science