Bibliography

[Ba1] Barth, G. Interprozedurale Datenflußsysteme. Habilitationsschrift, University of Kaiserslautern, Germany, 1981.

[HU1] Hecht, M. S., and Ullman, J. D. Analysis of a simple algorithm for global flow problems. In Conference Record of the 1st ACM Symposium on Principles
of Programming Languages (POPL’73) (Boston, Massachusetts), 1973, 207 - 217.

[LY] Li, Z., and Yew, P.-C. Interprocedural analysis for program parallelization and restructuring. In Proceedings of the ACM SIGPLAN'88 Conference

abstract interpretation, 18, 109
– global abstract semantics
– interprocedural, 114
– intraprocedural, 19
– local abstract semantics
– interprocedural, 111
– intraprocedural, 19
alias, 5, 264
– computation, 91, 264
– may, 5, 91, 264
– must, 5, 91, 264
busy code motion
– interprocedural, 173
– IBCM-optimality, 187
– IBCM-transformation, 175
– down-safety, 174
– earliestness, 174
– intraprocedural, 38
– BCM-optimality, 40
– BCM-transformation, 39
– down-safety, 38
– earliestness, 39
closure analysis, 265
code motion
– interprocedural, 166
– IBCM-transformation, 175
– LCM-transformation, 194
– admissible, 168
– canonical, 36
– computationally better, 170
– computationally optimal, 170
– lifetime better, 171
– lifetime optimal, 171
– intraprocedural, 33
– BCM-transformation, 39
– LCM-transformation, 41
– admissible, 35
– computationally better, 36
data flow analysis, DFA
– backward, 25, 139
– bidirectional, 25, 139
– complete, 108
– forward, 25, 139
– higher order, HO-DFA, 79
– information, 19, 110
– interprocedural, IDFA, 108
– intraprocedural, DFA, 16
– precise, 25
– stacks, STACK, 110
– unidirectional, 25, 139
data flow analysis, IDFA
– precise, 107
DFA-algorithm
– A_d: delayability, 58
– A_d: down-safety, 49
– A_{en}: earliestness, 54
– A_u: unusability, 63
– MOP-complete, 24
– MOP-correct, 24
– φ-correct, 24
– φ-precise, 24
– correct, DFA-algorithm
– precise, 25
– finite, 24
– generic, 21
– specification, 23
flow graph, G, 16
– $G = (N, E, s, e)$, 16
– interprocedural, G^*, 102
– $G^* = (N^*, E^*, s^*, e^*)$, 102
– system, S, 99
– $S = (G_0, G_1, \ldots, G_k)$, 99
– fg, callee, caller, start, end, 101
formal callability, FC, 82
- undecidability, 83
formal equivalence, 6
formal passability, FP, 84
formal reachability, FR, 82
- computational complexity, 83
- undecidability, 83
identifier, Idf, 72
- P, FP, OP, V, 73
- binding rules, 72
- external, Ext, 72
- global, 72
- internal, 72
IDFA-algorithm
- Adl: delayability, 229
- Ad: down-safety, 209
- Aas: earliestness, 221
- Auc: unusability, 238
- IMOP-correct, 138
- IMOP-precise, 138
- φ: complete, 137
- φ: correct, 137
- correct, IDFA-algorithm
- -- precise, 139
- generic, 126, 131, 135
- specification, 137
- terminating, 138
incarnation
- $SameInc[i,j]$, 162
- level
- -- left hand side, $LhsLev$, 161
- -- right hand side, $RhsLev$, 161
- term, 162
- variable, 161
lazy code motion
- interprocedural, 191
- -- $ILCM$-optimality, 198
- -- $ILCM$-transformation, 194
- -- isolation, 194
- -- latestness, 192
- intraprocedural, 40
- -- LCM-optimality, 42
- -- LCM-transformation, 41
- -- isolation, 41
- -- latestness, 40
lifetime range, $LtRg$
- interprocedural, 171
- -- first use, $FU-LtRg$, 173
- intraprocedural, 37
- -- first use, $FU-LtRg$, 38
maximal fixed point approach
- -- intraprocedural, 20
- -- MFP-solution, 20
maximal fixed point strategy
- interprocedural, 116
- -- $IMFP$-solution, 116
meet over all paths approach
- interprocedural, 19
- -- MOP-solution, 20
meet over all paths strategy
- interprocedural, 114
- -- $IMOP$-solution, 114
mode depth, MD, 5, 75
- finite, 5, 75
- identifier, 75
- infinite, 5, 75
- program, 75
modularity, 6
- undecidability, 6
most recent property, 5
- strong formal, $sfmr$, 5
- -- complexity, 6
- -- decidability, 5
notations
- G, 99
- CM_{Adm}, 35
- ICM_{Adm}, 168
- CM, 34
- $CM_{CompOpt}$, 36
- $ICM_{CompOpt}$, 170
- CM_{Can}, 36
- ICM_{Can}, 170
- CM, 167
- T, T^d, 73
- CM_{LdOpt}, 37
- ICM_{LdOpt}, 171
- $ModLev$, 163
- \mathbb{I}, 115
- Var, 160
- B, 50
- $CalledProc$, $ParLst$, 74
- decl, pos, c-occ, p-occ, occ, 74
- $N^s, N^s_c, N^s_r, N^s_{fc}$, 99
- f_g, callee, caller, start, end, 101
- FC, 82
- FP, 84
- FR, 82
- FO, FC, FR, 112
- N^s, N^s_c, N^s_r, 102
- Int, 24, 137
- N, 210
- $LhsLev$, 161
\[\Pi = (\pi_1, \ldots, \pi_k), \] 71
- distinguished, 73
- formal equivalence, 6
- module, 76
- property, \(\varphi \), 17
- syntax, 71
- transformation, \(Tr \)
 - interprocedural, 107
programming language, \(\text{Prog} \), 71
 - \(\text{Prog}_{fm(k)}, \omega_{gfp} \), 76
 - \(\text{Prog}_{fm(z)} \), 76
 - \(\text{Prog}_{agfp} \), 76

safety analysis, 265
scoping
- dynamic, 265
- static, 72

term, \(T \), 73
- incarnation, 162
- range, 161
type analysis, 266

variable, \(V \), 71
- external, 72
- global, 71, 72
- incarnation, 161
- local, 71, 72