Author Index Volumes 201–233

Author Index Vols. 26–50 see Vol. 50
Author Index Vols. 51–100 see Vol. 100
Author Index Vols. 101–150 see Vol. 150
Author Index Vols. 151–200 see Vol. 200

The volume numbers are printed in italics

Augé J, see Lubineau A (1999) 206: 1–39
Barré L, see Lasne M-C (2002) 222: 201–258
Bartlett RJ, see Sun J-Q (1999) 203: 121–145
Bohme DK, see Petrie S (2003) 225: 35–73
Bourissou D, see Bertrand G (2002) 220: 1–25
Bowers MT, see Wyttenbach T (2003) 225: 201–226
Brand SC, see Haley MM (1999) 201: 81–129
Buono G, see Brunel JM (2002) 220: 79–106
Cadierno V, see Majoral J-P (2002) 220: 53–77
Ceroni P, see Balzani V (2003) 228: 159–191
Cloutet E, see Astruc D (2000) 210: 229–259
Co CC, see Hentze H-P (2003) 226: 197–223
Cooper DL, see Raimondi M (1999) 203: 105–120
Croteau R, see Davis EM (2000) 209: 53–95
Crouzel C, see Lasne M-C (2002) 222: 201–258
Curran DP, see Maul JJ (1999) 206: 79–105
Currie F, see Häger M (2003) 227: 53–74
Dabkowski W, see Michalski J (2003) 232: 93–144
Davies JA, see Schwert DD (2002) 221: 165–200
de Keizer A, see Kleinjan WE (2003) 230: 167–188
de la Plata BC, see Ruano JLG (1999) 204: 1–126
Diederich F, Gobbi L (1999) Cyclic and Linear Acetylenic Molecular Scaffolding. 201: 43–79
Diederich F, see Smith DK (2000) 210: 183–227
Djakovitch L, see Astruc D (2000) 210: 229–259
Dolle F, see Lasne M-C (2002) 222: 201–258
Donges D, see Yersin H (2001) 214: 81–186
Dorn H, see McWilliams AR (2002) 220: 141–167
Dorshow RB, see Achilefu S (2002) 222: 31–72
Author Index Volumes 201–233

Fuhrhop J-H, see Li G (2002) 218: 133–158

Gamelin DR, Güdel HU (2001) Upconversion Processes in Transition Metal and Rare Earth Metal Systems. 214: 1–56

Geraldes CFGC, see Frullano L (2002) 221: 25–60

Glasbeek M (2001) Excited State Spectroscopy and Excited State Dynamics of Rh(III) and Pd(II) Chelates as Studied by Optically Detected Magnetic Resonance Techniques. 213: 95–142

Gobbi L, see Diederich F (1999) 201: 43–129

Goodwin HA (2004) Spin Crossover in Iron(II) Tris(diimine) and Bis(terimine) Systems. 233: 59–90

Goodwin HA, see Gültlich P (2004) 233: 1–47

Gouzy M-F, see Li G (2002) 218: 133–158

Güdel HU, see Gamelin DR (2001) 214: 1–56

Kepert CJ, see Murray KS (2004) 228: 193–204
Khlebnikov AF, see de Meijere A (2000) 207: 89–147
Kim K, see Lee JW (2003) 228: 111–140
Kirtman B (1999) Local Space Approximation Methods for Correlated Electronic Structure Calculations in Large Delocalized Systems that are Locally Perturbed. 203: 147–166
Knochel P, see Betzemeier B (1999) 206: 61–78
Kosugi M, see Fugami K (2002) 219: 87–130
Kozhushkov SI, see de Meijere A (1999) 201: 1–42
Kozhushkov SI, see de Meijere A (2000) 207: 89–147
Kozhushkov SI, see de Meijere A (2000) 207: 149–227
Kunkely H, see Vogler A (2001) 213: 143–182
Kutzelnigg W, see Kloorer W (1999) 203: 21–42
Lawless LJ, see Zimmermann SC (2001) 217: 95–120
Lemon III BI, see Crooks RM (2001) 212: 81–135
Leung K-F, see Chow H-F (2001) 217: 1–50
Levitzki A (2000) Protein Tyrosine Kinase Inhibitors as Therapeutic Agents. 211: 1–15
Li X, see Paldus J (1999) 203: 1–20
Linclau B, see Maul JJ (1999) 206: 79–105
Mrksich M, see Houseman BT (2002) 218:1–44
Müllen K, see Wiesler U-M (2001) 212: 1–40
Müller A, see Mori H (2003) 228: 1–37
Müller H, see Klopfer W (1999) 203: 21–42
Nakahama T, see Yokoyama S (2003) 228: 205–226
Namboothiri INN, Hassner A (2001) Stereoselective Intramolecular 1,3-Dipolar Cycloadditions. 216: 1–49
Nixon TD, see Kee TP (2003) 223: 45–65
Nomura M, see Miura M (2002) 219: 211–241
Okuno Y, see Yokoyama S (2003) 228: 205–226
Ostrowski PJ, see Maul JJ (1999) 206: 79–105
Otomo A, see Yokoyama S (2003) 228: 205–226
Pak JJ, see Haley MM (1999) 201: 81–129
Paulmier C, see Ponthieux S (2000) 208: 113–142
Penadés S, see Rojo J (2002) 218: 45–92
Perrio C, see Lasne M-C (2002) 222: 201–258
Yeung LK, see Crooks RM (2001) 212: 81–135
Zhao M, see Crooks RM (2001) 212: 81-135
Subject Index

4-Amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole 131
Anion effects 26
Anion size 26
Anisotropy effects 17
Applied magnetic field 32
Aryl-aryl interactions 85
Azole SCO compounds 123
trans-4,4'-Azopyridine 243
2,2'-Bipyridine 60
2,2'-Bipyrimidine 167
γ-Bipyrimidine family, Real 220, 224
6,6'-Bis(aminomethyl)-2,2'-bipyridine 163
Bis(benzimidazole)pyridyl ligand 208
Bis(α-dimine) ligand 169
2,6-Bis(pyrazolyl)pyridine systems 75
1,4-Bis(4-pyridyl-butadiyne) 244
Bispyridylethylene 243
Bis(terimine) systems 59, 69
1,2-Bis(tetrazol-1-yl)butane 139
1,2-Bis(tetrazol-1-yl)ethane 139
1,2-Bis(tetrazol-1-yl)propane 139
Bis-1,2,4-triazole, 3D 239
2,6-Bis(triazolyl)pyridine systems 75, 129
Bis(X-semicarbazone)iron(III) 276
Bistability 7, 201, 229, 230, 236
Bond lengths 14
Bonding 206
Cages, tris(1,2-diaminoethane) 162
Calorimetry 293
Carbamates, N,N-substituted 260
Carbon sulfideselenide 271
Cd(II) complexes 93
Chalcogen donor atoms, Fe(III) 262
Chemical pressure 26
Clathrates, Hofmann 215, 229, 246
Co(II) 6, 91, 107
Co(II)Co(II) 195
—, pyridazine-bridged 210
Co(III) 5
[Co(HB(pz)₃)₂] 107
Configurational coordinate 49, 53
Cooperative interactions 27, 33
Cooperativity 7, 195, 200, 234, 242, 247, 253, 293
Cooperativity effect, negative 68
Coordination, pseudooctahedral 102
Coordination polymers 197, 229, 242
Crystal quality 29
Crystal-field theory 49
Cyanide compounds, Hofmann-like 246
Cyanide ligands 153
Dehydration 26
Dicyanoargentate anion 249
Diimines 20, 59
—, Schiff base 69
Diketonates 260
β-Diketones, N₄O₂-donating ligands 312
Dimensionality 247, 249
Dinuclear structural motifs 204
Dinuclear systems 168, 195, 199, 203, 232
—, covalently bridged 208
Diselenocarbamates 271
Dithiocarbamate 260
Dithiocarbamato-based Fe(III) 262
Domains 33
Donor atom sets 24, 25
Elastic interactions 27, 34
Electron-electron repulsion 50, 51
Electronic spectra 12
Encapsulation 214
Enthalpy change 13
Entropy change 13
EPR spectroscopy 17, 269
Evans method 315
Everett model 33
EXAFS 15, 235
Facial geometry 130
Far-infrared spectra 12
[Fe(bypym)]3+ 170
[Fe(bypym)(py)2(NCS)2]1/4py 170
[Fe(HB(3,5-(CH3)3pz)2] 106
[FeHB(3,5-(CH3)3pz)2] 101
[FeHB(pz)3] 94
–, NMR spectra 117
[Fe(HC(3,5-(CH3)2(pz)3)2(BF4)2 112
[Fe(HC(pz)3)2(BF4)2 109
Fe(II) complexes 19, 91, 123
– networks, polymeric 229
–, linear polynuclear 126
Fe(II)(NCX)2(py)2-type systems 196
Fe(II) 1,2,4-triazole chain 235
Fe(II)Fe(II) species 195
–, bipyrimidine-bridged 209
–, dicyanamide-bridged 209
–, pseudo-dimer 211
Fe(II)N6 123
Fe(III), bipyrimidine-bridged 167
–, dithiocarbamato-based 262
Fe(III) thioselenocarbamates 271
{[Fe(L)(NCX)2]2(bypym)} series 171
{Fe(L)2[Ag(CN)2]} guest, interpenetrated 249
{Fe(L)2[M(CN)4]} 3D 246
{[Fe(phdia)(NCX)2]2(phdia)} 186
{Fe(phen)2(NSC)2}] 19
[Fe(phen)2(ox)] 22
[Fe2(2,6-di(aminomethyl)-4-tert-butyli-thiophenol)3]+ 283
Fe2(4,4'-azpy)4(NCS)2 x(guest) 216
[Fe2(NCS)2] compounds, pyridine-type, 2D 243
FeN6 coordination 24
Field strength 3
Fluoroborate salt 72
Frameworks, molecular 215

Gibbs free energy 13
Grinding, effect 28
Ground state, high spin 51
Guest-dependence, reversible 245

Heat capacity 13
Hexakis(1-alkyl-tetrazole)iron(II) 138
High-pressure studies 91
Hofmann clathrates 215, 229, 246
Host-guest systems, reversible 196, 215
HS-HS to HS-LS 196, 220
Hydrogen bonding 8, 26, 211
Hysteresis 1, 7, 230
–, light induced/perturbed thermal 31
Hysteresis loop 33, 73, 77, 139, 173, 201

Image pressure 26
Imines 59
Interactions, pi-pi 8
–, short-range 9
Interlocking networks 245
Interpenetration 245, 249, 250, 252
Inverse energy gap law 28
Iron metal proteins, non-heme 156
Iron(II) complexes 19, 91, 123
–, bis(terimine)/tris(diimine) 59
–, dinuclear compounds, 2,2'-bipyrimidine-bridged 167
–, five-coordinate 23
– networks, polymeric 229
–, linear polynuclear 126
Iron(III) 259
–, five-coordinate 23
Iron(III) dithiocarbamate 3
Irradiation 30
–, Fe(III) 313
Isomer shift 10
Isotopic substitution 27
Isoxazole 123, 136

Jahn-Teller coupling 34
β-Ketoimine ligands 312

Lamb-Mössbauer factors 10
Lattice expansion 34
LD-LISC 31, 314
LIESST 167, 181, 198, 313
– effect 19, 30
–, reverse 30

Subject Index
Ligand design 152
Ligand driven light induced spin change (LD-LISC) 31, 314
Ligand field 49
– aspects 206
– splitting 50, 60
– stabilisation energy 5
– strength 50
Ligand reorganization 164
Ligand substitution 25
Ligand vibrations 13
Ligands, multidentate 151, 285
Ligand-to-metal charge transfer (LMCT) 314
Light induced thermal hysteresis 31
Light irradiation, spin-interconversion 313
Light perturbed thermal hysteresis (LiPTH) 32
Liquid crystal 316
LITH 31

Magnetic dipole splitting 11
Magnetic field, effect 32
Magnetic moment 10
Magnetic resonance studies 16
Magnetic susceptibility measurements 9
Magnetism 1
Magnetometers 9
Memory 195
Meridional geometry 130
Metal dilution 27
Metal-ligand distance 49
2-Methyl-phenanthroline 61
Microporosity 196, 214, 215
Monte Carlo calculations 34
Mössbauer spectroscopy 1, 6, 10, 91, 168, 269
Multidentate ligands 151, 285
Multiproperty materials 169
Muon spin rotation (MuSR) 18
N$_2$O-donating ligands, tridentate 286
N$_2$O$_2$C$_2$ 25
N$_2$O$_2$-donating ligands, pentadentate 305
N$_4$ ligands, tetradeinate 153, 296
N$_4$O$_2$ 25, 295
– hexadentate 158, 307
N$_5$S$_2$ 25
N$_5$ ligands, pentadentate 156
N$_7$ ligands, heptadentate 163
N$_8$ ligands, octadentate 163
Nephelauxetic effect 52
Networks, anionic, magnetically coupled 213
– extended 197
– interpenetrated 202
– polymeric 231
– supramolecular 229, 231
Ni(III) 6
NIESST 31
NMR 16, 91
Nuclear forward scattering (NFS) 16
Nuclear inelastic scattering (NIS) 16

Optical properties 49
Optical spectroscopy 12
Optical switching 30
Order-disorder transition 8

P$_4$Br$_2$ 25
P$_4$Cl$_2$ 25
PAS 18
Pentadentate ligands, N$_5$ 156
Phase transition 14
1,10-Phenanthroline 59, 60
4,7-Phenanthroline-5,6-diamine 168
Photoelectron multiple scattering calculation 108
Photo-isomerisation 31
Photo-switching, spin pairs 181
Plateau, bpym-bridged dinuclear compounds 168, 177
– two-step spin transition 186
Poly(pyrazolyl)borate 93
– solution studies 116
Poly(pyrazolyl)methane ligands 109
Polymer matrices 316
Polymeric systems, cooperativity/hysteresis 201
Polymorphism/polymorphs 29, 267
Polynuclear compounds 196, 200
– cooperativity 200
Porous character 245
Positron annihilation spectroscopy (PAS) 18
Pressure, effect 29
Pseudo-octahedral coordination 102
Pyrazolylborate complexes 91
Pyrazolylmethylene complexes 91, 109
3-(Pyridin-2-yl)-1,2,4-triazole 130
Pyridoxal 4-R-thiosemicarbazone 281
Pyruvic acid thiosemicarbazone 280

Quadrupole splitting 10
Racah parameters 51
Raman spectra 13
Russel-Saunders coupling 51

Salbzen 292
Salicylaldehyde, \(\text{N}_2\text{O}_2\)-donating ligands 308
Salicylaldimine ligands, \(\text{Fe(III)}\) 158
Schiff base ligands, \(\text{N}_2\text{O}_2\)-donating 297
\(\ldots\), \(\text{N}_2\text{O}\)-donating 287
\(\ldots\), tetradeinate 295
Schiff base-type ligands 260
\(\ldots\), multidentate 285
SCO (spin crossover), occurrence 4
\(\ldots\), perturbation 25
\(\ldots\), principles 1
Scorpionates 92
Selenium 271, 276
Selenocarbazones 276
Self-assembly 232
Semicarbazones 260
Sextipyridine 71
Silicon dioxide, surface adsorbed 316
Solution data 164
Solvate effects 26
SOXIESST 30
Spectrochemical series 51
Spin equilibrium 4, 5
Spin interconversion processes, dynamics 19, 313
Spin pairing energy 5, 51
Spin state, intermediate 22
Spin transition 4, 59
Spin transition curves 7
\(\ldots\), types 7
Spin-allowed \(d\)-\(d\) transition 52
Spin-forbidden transitions 54
Spin-lattice relaxation 17
Spin-spin exchange, synergism 199
SQUID 9
Steric effect 25
Steric interference 20
Structural phase change 8, 14
Sulfur donor atoms, \(\text{Fe(III)}\) 282

Synchrotron radiation 15
Synergism 8
\(\ldots\), spin-spin exchange 199
Tanabe-Sugano diagram 22, 51
TCNQ 131
Template 213
Terimines 59
\(\ldots\), Schiff base 83
Terpyridine 60
Tetrakis(2-pyridylmethyl)-1,2-ethanediamine 159
Tetrazac-macrocycles 155
Tetrazole systems 123, 242
Tetrazoles, \(\text{Fe(II)}\) SCO 138
Thermal spin transition 49
Thermochromism 12, 61, 271, 312
Thermodynamic parameters 152
Thiosemicarbazone 260, 276
Transition, continuous/discontinuous 7
Transition temperature 4
1,4,7,10-Triazadecane 153
Triazole 123
\(\ldots\), \(\text{Fe(II)}\) 231
\(\ldots\), \(\text{N}\)-donor heterocyclic 229
\(\ldots\), tautomerism 125
\(\ldots\), tridentate chelating 128
2-Triazolyl-1,10-phenanthroline 129
Triethylenetetramine 153, 308, 312
Trinuclear complexes 233
Tris(2-aminoethyl)amine, branched tetradeinate 154
Tris\((\text{N,N-dialkyldithiocarbamato})\) iron(III) 261, 262
Tris(1,2-diaminoethane) cages 162
Tris\((\text{N,N-diethyldithiocarbamato})\) iron(III) 267
Tris(diimine) systems 59, 61
Tris(monothio-\(\beta\)-diketonato) iron(III) 274
Tris(pyrazolyl)methane 93, 109
\(\ldots\), solution studies 118
Tris\((\text{1-pyrrole-dithiocarbamato})\) iron(III) hemikis(dichloromethane) 262
Tris\((\text{1-pyrrolidine-dithiocarbamato})\) iron(III) 263
Tris(substituted-X-xanthato) iron(III) 273
Two-step transition 8, 168
Vibrational bands/spectra 12, 13
Vibronic structure 49
WAXS 235
XAFS 15
XANES 15
Xanthates 260, 273
XAS 15
X-ray absorption fine structure analysis 108
X-ray diffraction 15
Zeeman mixing 95
Zero-point energy difference 53