NOTATION AND TERMINOLOGY

\(\mathbb{Z} \) and \(\mathbb{Q} \) are, respectively, the ring of integers and the field of rational numbers.

Let \(n \) be a positive integer. \(\zeta_n \) denotes a primitive \(n \)-th root of unity. \(\mathbb{Z} \mod n \) is the multiplicative group of integers modulo \(n \).

Let \(z \in \mathbb{Z} \) and let \(p \) be a prime number. If \(p^m \) is the exact power of \(p \) dividing \(z \), then we call \(p^m \) the \(p \)-part of \(z \) and write \(p^m \| z \).

If \(A \) is a ring with \(1 \), then \(M_n(A) \) is the ring of \(n \times n \) matrices with coefficients in \(A \). \(A^* \) is the group of invertible elements of \(A \).

All fields are assumed to be of characteristic 0. Let \(k \) be a field. We say that a field \(K \) is a cyclotomic extension of \(k \), only if there is a root of unity \(\zeta \) and an element \(\alpha \) of the cyclotomic field \(\mathbb{Q}(\zeta) \) such that \(K = k(\alpha) \).

\(G(K/k) \) is the Galois group of \(K \) over \(k \).

For \(\sigma \in G(K/k) \) and \(x \in K \), both \(\sigma(x) \) and \(x^\sigma \) denote the image of \(x \) by \(\sigma \).

\(N_{K/k} \) is the norm of \(K \) over \(k \).

The 2-cohomology group \(H^2(G(K/k), K^*) \) is, as usual, denoted by \(H^2(K/k) \).

Let \(K \) and \(k \) be cyclotomic extensions of \(\mathbb{Q} \) such that \(K \supseteq k \).

Let \(p \) be a rational prime and \(P \) (resp. \(p \)) a prime of \(K \).
(resp. k) lying above p. Then K^p/k_p represents the isomorphy type of the completion of K/k for $p|p$. We refer the ramification index (resp. the residue class degree) of P from k to K as the ramification index (resp. the residue class degree) of p in K/k. If T (resp. ϕ) is the inertia group (resp. a Frobenius automorphism) of P with respect to the extension K/k, then we say that T (resp. ϕ) is the inertia group (resp. a Frobenius automorphism) of p in K/k, etc.

Let A and B be central simple algebras. If A is similar to B, we write $A \sim B$.

If k is a finite extension of Q_p, the rational p-adic numbers, then $\text{inv}_k(A)$ is the (Hasse) invariant of A.

If k is a finite extension of Q and p a prime of k, then $\text{inv}_p(A)$ is the invariant of A at p.

All groups are assumed to be finite. Let G be a group.

$|G|$ is the cardinality of G.

By an irreducible character χ of G, we mean an absolutely irreducible one.

$m_k(\chi)$ is the Schur index of χ over k.

$k(\chi)$ is a field obtained from k by adjunction of all values $\chi(g)$, $g \in G$.

For $\sigma \in G(k(\chi)/k)$, χ^σ is the character of G defined by $\chi^\sigma(g) = \sigma(\chi(g))$ for all $g \in G$.

If χ and ψ are class functions on G, then $(\chi, \psi) = |G|^{-1} \sum_{g \in G} \chi(g) \cdot \psi(g^{-1})$.
If H is a subgroup of G, then $\chi|_H$ is the restriction of χ to H.

If θ is a class function on H, then θ^G is the class function on G induced by θ.

$\langle a, b, \cdots \rangle$ is the group generated by a, b, \cdots.
REFERENCES

[9] ________, On the representation of a group of order g in the field of the g-th roots of unity, Amer. J. Math. 67 (1945), 461-471.

[24] ________ and I. N. Herstein, On the Schur subgroup of
the Brauer group, J. Algebra 20 (1972), 70-71.

of finite groups, Illinois J. Math. 7 (1963), 515-520.

[26] C. Ford, Some results on the Schur index of a representa-

[27] ______ and G. J. Janusz, Examples in the theory of the
Schur group, (to appear).

[28] D. M. Goldschmidt and I. M. Isaacs, Schur indices in finite
groups, (to appear).

Amer. Math. Soc. 35 (1972), 387-388.

[32] ________, The Schur group of cyclotomic fields,

[33] P. Roquette, Realisierung von Darstellungen endlicher

[34] I. Schur, Arithmetische Untersuchungen über endliche
Wiss. (1906), 165-188.

[36] L. Solomon, The representation of finite groups in algebraic

