References

Cohen LM, Short JM, Oppenheim AK (1975b) A computational technique for the evaluation of dynamic effects of exothermic reactions. Comb. & Flame 24: 319-334
Dorodnitsyn AA (1956a) On the method of numerical solution of certain non-linear problems in aero-hydrodynamics, Proc. 3rd All-Union Mathematical Congress AN USSR, Moscow, 447-453
Gardiner WC (1972) Rates and mechanisms of chemical reactions. WA Benjamin Inc. Menlo Park, California, x + 284
Ghoniem AF, Gharakhani A (1997) Three-dimensional vortex simulation of time-dependent incompressible internal viscous flows, Journal Computational Physics, 134: 75-95
Glass II, Hall JG (1959) Handbook of supersonic aerodynamics- Section 18-Shock Tubes, Bureau of Ordnance, Department of the Navy, Navord Report 1488, 6, XXXVIII + 604 pp
Hicks BL (1954) Theory of ignition considered as a thermal reaction. J. chem. Phys. 22, 414-429
Jouguet E (1917) Mécanique des Explosifs, 0. Doin et Fils, Paris, XX + 516 (esp. § 193 pp. 278-279)
Korobeinikov VP, Sharotova KV (1969) Gasdynamic functions of point explosions. Computer Center, USSR Academy of Sciences, Moscow
Lie S, Engel F (1880) Theorie der Transformationsgruppen. Teubner,
Leipzig
Lotka AJ (1924) Elements of Mathematical Biology., Dover Publications reprint xxx + 465 pp
McDonald H (1979) Combustion modeling in two and three dimensions - some numerical considerations. Prog. Energy Combust. Sci. 5: 97-122
Mitrofanov VV (1962) Struktura detonatsionnoi volny v ploskom kanale (Structure of detonation wave in a flat channel) Zh. Prikl. Mekhan i Techn. Fiz. 4, 100-105
Oppenheim AK, Kamel MM (1972) Laser cinematography of explosions. Courses and Lectures no. 100. The International Centre for Mechanical Sciences, Udine, Springer-Verlag, New York, 226 pp
Oppenheim AK, Maxson JA (1994) A thermochemical phase space for combustion in engines. Twenty-Fifth Symposium (International) on
Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, pp. 157-165

Oppenheim AK, Smolen JJ, Kwak D, Urtiew PA (1970) On the dynamics of shock intersections 5th Symposium (International) on Detonation, Pasadena, California, 17pp

Oppenheim(293,676),(725,701)

Rashevsky N (1948) Mathematical Biophysics The University of Chicago Press, xxiii+669 pp

Reynolds WC (1996) STANJAN interactive computer programs for chemical equilibrium analysis, Department of Mechanical Engineering, Stanford University, Stanford, California, 48 pp

Rotman, DA, Pindera, MZ, and Oppenheim, AK (1989) Fluid Mechanical Properties of Flames Propagating in Closed Channels. Dynam-

Sedov LI (1946) Raspriostraneniya sil’nnykh vzryvnych voln (Propagation of intense blast waves) Prikladnaya Matematika i Mekhanika, 10: 241-250

Spalding B (1957) I. Predicting the laminar flame speed in gases with temperature-explicit reaction rates. II. One-dimensional laminar flame. Theory for temperature-explicit reaction rates” Combustion and Flame, I: 287-295; II: 296-307
References

Wilkins ML (1969) Calculations of elastic-plastic flow, University of California Radiation Laboratory, Report No 7322'

Zel’dovich YaB, Frank-Kamenetskii DA (1938) Teoriya teplovoogo rasprotraneniya plameni (A theory of thermal flame propagation) Zhurnal Fizicheskoikhimii, 12: 100-105

Zeldovich YaB, Barenblatt G1, Librovich VB, Machviladze GM. (1980) Mathematical theory of combustion and explosion Izdatel'stvo Nauka, Moscow, 478 pp
Nomenclature

Symbols

A area

$C_K = (\partial \varepsilon_K / \partial w_K)_p$ gradient of a vector in the state phase diagram

$c_{Kp} = (\partial h_K / \partial T)_p$ specific heat at constant volume

$c_{Kv} = (\partial e_K / \partial T)_v$ specific heat at constant pressure

D mass diffusivity

e_K internal energy

e_K^v constant internal energy and specific volume

G Green's function

$g = \frac{p}{\rho_s w_n^2}$ normalized pressure

$F = \frac{\tau}{x} f = \frac{t}{\mu r}$ velocity coordinate of phase space for blast waves

$f = \frac{u}{w_n}$ normalized velocity

$h = \frac{\rho}{\rho_s}$ normalized density

h_K enthalpy

hp constant enthalpy and pressure

M mass

M_K molecular mass

$m_k = 1 - n_k^{-1}$

n polytropic index

p pressure

$P = p/p_i$ normalized pressure
Nomenclature

- \(q_{Ro} \): Reference exothermic energy
- \(q_{Ro} - u_{Po} \): Reference exothermic energy
- \(q_{W} \): Energy expended by heat transfer to the walls
- \(R \): Reactants, universal gas constant
- \(R_K \): \(R/M_K \)
- \(t \): Time
- \(T_K \): Temperature
- \(U \): Velocity normal to exothermic front
- \(u \): Internal energy in thermodynamic tables
- \(v \): Specific volume
- \(V \): \(V_{k/v_i} \)
- \(w \): Dynamic potential
- \(w_{W} \): Energy expended by work on the surroundings
- \(W_K \): \(w_{K}/w_{Si} \)
- \(x \): Progress parameter, \(r/r_n \)
- \(Y_K \): Mass fraction
- \(Y_R \): Mass fraction of reactants
- \(Z \): \(\left(\frac{\tau}{\epsilon} \right)^2 \frac{g}{h} = \left(\frac{t}{\mu r} \right)^2 \frac{p}{\rho} \) Velocity of sound coordinate
- \(z_K \): \(e_{K,w_{K}} \), Generalized state coordinate
- \(\alpha \): Thermal diffusivity; coefficient of the life function
- \(\chi \): Power index of life function
- \(\Delta \): Dilatation
- \(\delta \): Dirac delta function; Index in life function
- \(\varepsilon \): \(e/w_n^2 \), Normalized internal energy
- \(\Phi \): Scalar potential of (irrotational) velocity
- \(\gamma \): Isentropic index
- \(\kappa \): Bulk viscosity
- \(\lambda \): Air-equivalence ratio
- \(\lambda \): \(d \ln \gamma / d \ln \xi = \frac{1}{2} d \ln w_n / d \ln r_n = -2 \frac{r_n t_n}{\tilde{r}_n^2} \) Decay parameter of blast waves
- \(\mu \): \(d \ln r_n / d \ln t_n = \frac{d \ln \xi}{d \ln \eta} = \frac{w_n t_n}{r_n} = \frac{\lambda + 2}{2} \) Velocity modulus of blast waves
- \(\mu \): Shear viscosity
ν ν_s/ν_c normalized volume, stoichiometric coefficient, kinematic viscosity
π pν^n polytropic pressure model
θ crank angle
ρ density
σ air/fuel mass ratio

τ \frac{t - t_i}{t_f - t_i}, \frac{\Theta - \Theta_i}{\Theta_f - \Theta_i} progress parameter of time, \frac{t}{r_o}
ξ \frac{r_n}{r_o} normalized front radius of a blast wave
ζ exponent of the life function

Vectors

B vector potential of (rotational) velocity
n_F unit vector normal to front
s unit vector unidirectional to front
u velocity vector
u_A dilatational velocity component
u_ω vortical velocity component
U component of velocity vector normal to exothermic front
W_F exothermic front velocity
x space co-ordinate
ω vorticity vector

Subscripts

A air
a atmosphere of surroundings
c compression
E effective part of generated products, or of consumed fuel
f final state
F front, fuel
i initial state
I ineffective part of generated products or of consumed fuel
n front
p piston, effective part of consumed fuel
Nomenclature

P products
R reactants
st stoichiometric
S system

Designations

A air
B inert component
C charge
c compression
e expansion
E effective
F fuel
f final
i initial
I ineffective
K A, F, R, B, C, P
R reactants
P products
s surroundings
S system
t terminal
Index

advect 125, 141
air-equivalence ratio 3
Algebraic Solution 269
analytic functions 11
Arpaci 68
Arrowhead intersection 220, 221
Atom Bomb Explosion 270
auto-catalytic chain reactions 52
Autonomous Form 244

balance of volumes 18
Barenblatt 253
baroclinic 125, 126
Bazhenova 297
Belotserkovskii 274
Berthelot & Vieille 298
Biot-Savart 120
Blast wave coordinates 233, 238
Blast waves 231
Bone, Fraser and Wheeler 317
Boundary conditions 247, 263
Brinkley and Kirkwood 274

Carslaw and Jaeger 68
Chapman-Jouguet 181, 182, 183, 184, 186, 197, 198, 200, 213, 214, 307, 311, 320
chemical source 83
CHEMKIN 83, 84
Chester 274
Chorin 118, 120, 125, 127, 131, 133, 134, 137, 141
circulation 133
collision 210, 213, 214, 220, 225, combustion system 3
compatibility conditions 165
complex potential 141
components 3
conservation principles 18
conservation vector 237
continuity 128, 161
control logistics 30
convection operator 132
convolution integral 119, 120
coordinate transformation 20
Courant & Friedrichs 231, 253
cylinder charge 19

Damköhler number 121
DDT 297, 308, 311, 312, 313, 316
decay coefficient 234
deflagration polars 189, 193, 194
density profiles 266
diffusion operator 132
dilatation 118, 119, 120, 121, 124, 125, 141
Dirac delta 122, 130, 133
Döring 197
Duhamel integral 71
dynamic potential 6, 10, 13, 15
dynamic stage 5, 6

Edwards 297
effective 5
eikonal 119, 125
energy balance 3, 24, 161
energy expenditure 24
energy integral 251
Eulerian space profiles 240, 256
Eulerian time profiles 241, 255
Evolutionary Aspects 45
exothermic center 18
Exothermic Center 171
exothermic energy 20
exothermic process 17
expanded Form 243
expansion fan 206, 207, 208
explosion in explosion 307, 311
exponential front trajectory 264
far flow field 231
field 235, 265
field coordinates 235
final state 6
Friedman 274
front 234, 263
front coordinates 234
fronts of explosions 227
fuel equivalence ratio 3
Fujiiwara 297
G.I. Taylor 231
gasdynamic discontinuity 177
Gaussian random variable 133
generalized state parameter 19
Ghoniem 120, 125, 127
Gibbs
Goldstein and von Neumann 273
Green's function 120, 130
Guderley 261
heat release 20
heat release analysis 26
Heavyside 122
Helmholz 118, 119
hodograph 122
Hugoniot 179, 180, 181, 182, 184, 186, 199, 225, 249
Hugoniot equation 248
ineffective 5
initial state 6
integral functions 250
irrotational component 119, 120
isentropic index 22, 183
isentropic relationships 22
Jacobian 238
Jouguet 182, 186, 198, 201
Kestin
Korobeinikov 253
Korobeinikov and Chushkin 273, 281
Lagrangian grid-less 121
Lagrangian time profiles 255
Lagrangian Time Profiles 242
law of population growth 46
Lee 297
level set method 121, 125
life function 12, 58
linear state trajectories 22
locus of states 17
logarithmic front trajectory 264
Lundstrom & Oppenheim 320
Mach intersection 218, 220, 222, 223, 224, 225, 226
Mach number 180, 182, 186, 188, 191, 204, 213, 220, 222, 223, 226
Macor 68
Mallard & Le Chatelier 297
Manson 297
mass fraction of products 24
mass integral 251
merging 216, 217
method of characteristics 164
Meyer 312
mixing 17
momentum equation 161
Navier-Stokes equation 117, 127
normalized form 236
numerical shear layer 135, 137, 138
oblique detonation polars 205
Oppenheim and Kamel 304
Oshima 274
Oswatitsch 166, 167
Peter Gray 82
phase coordinates 277
phase plane 257
phase space method 273, 274
Poisson equation 119, 120, 140
polar diagrams 188
polytropes 11
polytropic index 22
polytropic pressure model 11
Prandtl-Meyer expansion 206
pressure diagnostics 5, 35
pressure profiles 265
products 3
propagation 124, 125
propagation velocity 234
random vortex method 127
Rankine-Hugoniot 180, 186, 198, 199, 250, 261
rarefaction polars 195, 196, 197
Rayleigh line 180, 182, 183, 186, 199, 200, 249
reference radius 252
Reynolds number 118
rotational component 118, 119, 120
Sakurai 231, 274
scalar potential 119
Schwarz-Christoffel theorem 132, 143
Schwarz-Christoffel transformation 141
Sedov 231, 253
self-advancement 141
self-similar blast waves 253
self-similarity 70
Semenov 81
Sharatova
Shchelkin & Troshin 297, 312
shock intersections 219
shock merging 215
shock polars 188, 189, 203, 211, 216
shock tube 210, 211, 212
simple waves 194
singularities in the phase plane 261
Soloukhin 297, 318
source blobs 139
Stanyukovich 253
state diagram 28
Stefan-like interface 141
stoichiometric proportions 3
stream function 130, 131, 139

Strehlow 297
struggle for life 47
substantial derivative 128
Taylor 253
Taylor & Tankin 297
temperature explicit 53
temperature profiles 265
terminal point 17
thermodynamic phase space 15
thermodynamic stage
thermodynamic states 15
Tollmien-Schlichting 306, 307, 311
Trinity explosion 231
Urtiew and Oppenheim 303
Van Tiggelen 297
vector form 236
vector potential 130
velocity modulus 234
velocity of sound 22
velocity profiles 266
Vibe function 55
Voitsekhovsky 297
volume balance 23
von Neumann 182, 186, 197, 210, 215, 231, 253
vortex blobs 130
vortex dynamics 130
vortex sheets 134
vortex transport equation 129
vorticity 134
vorticity field 129, 132, 133

wave interactions 210
wave intersections 218
White 316
Whitham 274
Whitham rule 274
Zel’dovich 197, 231
Zel’dovich & Kompaneets 297
Zel’Dovich & Raizer 253
z-plane 142
ζ-plane 142