References

Allee WC (1951) Cooperation among Animals. Henry Schuman, New York

Anderson CM, Putterman L (2005) Do non-strategic sanctions obey the law of demand? Games Econ Behav, in press

References

Barclay P (2004) Trustworthiness and competitive altruism can also solve the “tragedy of the commons”. Evol Hum Behav 25:209–220
Basolo AL (1990) Female preference predates the evolution of the sword in swordtail fish. Science 250:808–810
References

Bowles S, Fehr E, Gintis H (2003) Strong reciprocity may evolve with and without group selection. Theoret Primatol Proj Newslett 1, December issue

Brosnan SF (in prep) A sense of fairness in animals

Brosnan SF, de Waal FBM (2004a) Social learning about value in capuchin monkeys, Cebus apella. J Comp Psychol, 118:133–139

References

Bshary R, Grutter AS (2002b) Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: the cleaner ﬁsh case. Ecol Lett 51:130–136
Busse C (1977) Chimpanzee predation as a possible factor in the evolution of red colobus monkey social organization. Evolution 31:907–911

Chalmers R, Visalberghi E, Gallo A (1997) Capuchin monkeys (Cebus apella) fail to understand a cooperative task. Anim Behav 54:1215–1225

Cleveland J, Snowdon CT (1984) Social development during the first twenty weeks in the cotton-top tamarin (Saguinus o. oedipus). Anim Behav 32:432–444
References

Crawford M (1937) The cooperative solving of problems by young chimpanzees. Comp Psychol Monogr 14:1–88
Di Bitteti MS (1997) Evidence for an important social role of grooming in a platyrrhine primate. Anim Behav 54:199−211
References

Dugatkin LA (2002a) Animal cooperation among unrelated individuals. Naturwissenschaften 89:533−541

Dugatkin LA (2002b) Cooperation in animals: an evolutionary overview. Biol Philos 17:459−476

References

Falk A, Fehr E, Fischbacher U (2004) Driving forces behind informal sanctions. IEW Working paper No. 59, Univ of Zürich, Zürich

Fehr E, Fischbacher U (2002) Why social preferences matter — the impact of non-selfish motives on competition, cooperation and incentives. Econ J 112:C1–33

References

References

Furuichi T, Ihobe H (1994) Variation in male relationships in bonobos and chimpanzees. Behaviour 130:212–228

Goodall J (1968) The behaviour of free-living chimpanzees in the Gombe Stream area. Anim Behav Monogr 1:161−311
Goodall J (1971) In the Shadow of Man. Houghton Mifflin, Boston
Gray SJ, Jensen SP, Hurst JL (2000) Structural complexity of territories: effects on preference, use of space and territorial defence in commensal house mice (Mus domesticus). Anim Behav 60:765−772
Hammerstein P (2003b) Why is reciprocity so rare in social animals? A protestant appeal. In: Ham-
Hammond KA, Diamond J (1992) An experimental test for a ceiling on sustained metabolic rate in
lactating mice. Physiol Zool 65:952–977
Harcourt AH (1992) Coalitions and alliances: are primates more complex than non-primates. In: Har-
court AH, de Waal FBM (eds) Coalitions and Alliances in Humans and other Animals. Oxford Univ
Press, Oxford, pp 445–471
Press, Oxford
Harcourt AH, Greenberg H (2001) Do gorilla females join males to avoid infanticide? Anim Behav
62:905–915
hints from gorillas. Anim Behav 35:182–190
Harcourt AH, Stewart KJ (1989) Functions of alliances in contests within wild gorilla groups. Behav-
iour 109:176–190
Hare B, Call J, Tomasello M (2001) Do chimpanzees know what conspecifics know? Anim Behav
61:139–151
Hare B, Addessi E, Call J, Tomasello M, Visalberghi E (2003) Do capuchin monkeys, Cebus apella,
know what conspecifics do and do not see? Anim Behav 65:131–142
62:771–800
44:1073–1083
Hashimoto C, Furuichi T, Takenaka O (1996) Matrilineal kin relationship and social behavior of
wild bonobos (Pan paniscus): sequencing the D-loop region of mitochondrial DNA. Primates 37:305–318
Hauert C, Doebeli M (2004) Spatial structure often inhibits the evolution of cooperation in the
snowdrift game. Nature 428:643–646
Hauert C, Schuster HG (1998) Extending the iterated prisoner’s dilemma without synchrony. J theo-
ret Biol 192:155–166
Hauert C, de Monte S, Hofbauer J, Sigmund K (2002) Volunteering as red queen mechanism for
Haug M (1978) Attack by female mice on “strangers”. Aggress Behav 4:133–139
Hauser MD, Carey S, Hauser LB (2000) Spontaneous number representation in semi-free-ranging
cotton-top tamarin monkey preferentially give food to those who altruistically give food back.
Proc R Soc Lond B 270:2363–2370
among female baboons (Papio cynocephalus). Science 217:752–754
Hawkes K (1990) Showing off: tests of an hypothesis about men’s foraging goals. Ethol Sociobiol
12:29–54
Hayes LD (2000) To nest communally or not to nest communally: a review of rodent communal nesting and nursing. Anim Behav 59:677–688
Hemelrijk CK (1990a) Models of and tests for reciprocity, unidirectionality and other social interaction patterns at a group level. Anim Behav 39:1013–1029
Hemelrijk CK (1990b) A matrix partial correlation test used in investigations of reciprocity and other social interaction patterns at group level. J theor Biol 143:405–420
Hemelrijk CK (1994) Support for being groomed in long-tailed macaques, Macaca fascicularis. Anim Behav 48:479–481
Hemelrijk CK, Ek A (1991) Reciprocity and interchange of grooming and “support” in captive chimpanzees. Anim Behav 41:923–935
Izawa K (1994) Group division of wild black-capped capuchins. Field Stud New World Monkeys, La Macarena, Colombia 9:5–14
References

Keverne EB, Martensz ND, Tuite B (1989) Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology 14:155−161
Komdeur J (1994) Experimental evidence for helping and hindering by previous offspring in the cooperative breeding Seychelles warbler, Acrocephalus seychellensis. Behav Ecol Sociobiol 34:175–186

Lee PC, Oliver JJ (1979) Competition, dominance and the acquisition of rank in juvenile yellow baboons (*Papio cynocephalus*). Anim Behav 27:576–585

Magrath RD, Whittingham LA (1997) Subordinate males are more likely to help if unrelated to the breeding female in cooperatively breeding white-browed scrubwrens. Behav Ecol Sociobiol 41:185–192

McDonald DB (1989b) Correlates of male mating success in a lekking bird with male-male cooperation. Anim Behav 37:1007–1022
References

References

Müller C, König B (submitted) Energetic peak load reduction in lactating wild-bred house mice can diminish reproductive costs. Front Zool

Noë R (1990) A veto game played by baboons: a challenge to the use of the prisoner’s dilemma as a paradigm for reciprocity and cooperation. Anim Behav 39:78–90

Noë R (1994) A model of coalition formation among male baboons with fighting ability as the crucial parameter. Anim Behav 47:211–213

Noordwijk MA van, van Schaik CP (1985) Male migration and rank acquisition in wild long-tailed macaques. Anim Behav 33:849–861

Noussair C, Tucker S (2005) Combining monetary and social sanctions to promote cooperation. Econ Inq, in press

References

Pereira ME (1989) Agonistic interactions of juvenile savanna baboons. II. Agonistic support and rank acquisition. Ethology 80:152−171

References

Price EC (1992a) Changes in the activity of captive cotton-top tamarins (Saguinus oedipus) over the breeding cycle. Primates 33:99−106

Rutte C, Taborsky M (in review) Generalized reciprocity in female rats

References

Schaller GB (1972) The Serengeti Lion. Univ of Chicago Press, Chicago

Semmann D, Krambeck HJ, Milinski M (2005) Reputation is valuable within and outside one’s own social group. Behav Ecol Sociobiol 57:611–616

References

Silk JB (2002c) Practice random acts of aggression and senseless acts of intimidation: the logic of status contests in social groups. EvolAnthropol 11:221–225

Visalberghi E, Quaranototti BP, Tranchida F (2000) Solving a cooperation task without taking into account the partner’s behavior: the case of capuchin monkeys (Cebus apella). J Comp Psychol 114:297–301

Voland E, Engel C (1990) Female choice in humans: a conditional mate selection strategy of the Krummhörn women (Germany, 1720–1874). Ethology 84:144–154

Waal FBM de (1986a) Class structure in a rhesus monkey group; the interplay between dominance and tolerance. Anim Behav 34:1033–1040

Waal FBM de (2000c) Attitudinal reciprocity in food sharing among brown capuchin monkeys. Anim Behav 60:253−361
Walters JR (1980) Interventions and the development of dominance relationships in female baboons. Folia Primatol 34:61−89
References

Zak PJ, Kurzban J, Matzner WT (submitted) Oxytocin is associated with interpersonal trust in humans. Proc Natl Acad Sci
Subject Index

A
agonistic support (see coalitions) 4
alliances 19−20, 35−36, 44, 54, 61, 107, 151−152, 163, 165, 210−212
allomothering 53, 58, 63, 116, 224
allonursing 183, 188
alloparental care 24, 26, 165, 173, 181, 184
altruism 5−6, 8, 10, 18, 20, 38, 40, 42−43, 47−48, 61, 63, 67ff, 85−86, 82, 92, 95, 97, 102−103, 107, 117−118, 149, 190, 215, 230, 234−236, 271, 280−281, 283, 287, 289, 291, 297−299
 − nepotistic altruism (see nepotism)
 − reciprocal altruism (see reciprocity)
 − return-benefit altruism 68
 − unilateral altruism 8, 20, 40, 42−43, 47−48
 − tag-based altruism 73
altruistic punishment 15−18, 80, 82, 280, 290, 293, 297−299, 301
Atelinae 34

B
Badger 181, 192
Barbary macaques 118
Bats 88, 173, 191−192, 199, 203, 240
Birds 9, 27, 175, 179, 181, 183, 187, 189, 191, 196, 240
biological markets 2, 89, 128−129, 135−136, 209ff, 235−236, 240, 242, 255
 − and evolution of cognition 226, 230−231
 − baby market 224−225, 261
 − grooming market 9, 236
 − mating market 241, 244, 251, 255, 258−259
 − neurobiological markets 229
biological markets paradigm 235
Black-capped capuchins 35
Blue monkeys 31, 116
Bonnet macaques 36, 39, 116, 219−220
Bonobos 20, 34, 56, 116
brain 74, 810, 226−229, 232, 240−241, 247−248, 252, 255−256, 258, 260, 297, 299
 − modularity 231, 240
 − size expansion 229
breeders 7, 12, 29, 129, 173−177, 180−181, 187−192, 196
brood parasitism 204
Brown capuchins 86, 116
Brown lemurs 35
byproduct mutualism 5, 7, 10−12, 19, 86, 140, 190
 − defined 5

C
Callitrichids 25, 27−29, 37, 126−127, 129, 135, 191
Capuchins 15, 31−32, 35, 77, 86, 89, 93−97, 100−103, 116, 170, 192, 217, 219−220, 253−254
Central American squirrel monkeys 34
Chacma baboons 51, 116, 118, 123, 165, 210, 216−217, 231
cheating 15, 68, 76, 139, 219, 232, 236, 243, 246, 252
 − cheating avoidance 68, 246, 252
 − cheat detection 14, 16, 232, 252
 − cheater discrimination 67, 72
Cheetahs 140
Chimpanzees 11−12, 14−16, 19−20, 32, 34, 37, 44, 48, 54, 56−57, 61−62, 77, 86−87, 89−93, 103−104, 107ff, 121, 125, 139ff, 152, 165, 168, 170, 228−229, 253
choice 6, 9, 12, 19, 50, 54−55, 72−73, 100, 197, 204, 214−216, 218−219, 223, 231, 235−238, 241−244, 248−249, 251−260, 267, 282
 − male-male 151ff
 − female-female 210
Coatis 192
cocercion 7, 118, 180, 188−189, 218−219
cognition 15, 18, 34, 37, 40–42, 44–45, 61, 86, 99, 162, 198, 226, 230–231
– and brain areas 229
collective action problem 11
Common marmosets 27–28, 127, 189
communication 9, 19, 95, 134, 136, 151, 280, 287–289, 301
competence 47ff
competence-dependent cooperation 50–63, 213–214
– among kin 29, 143
– food competition 216, 220, 227, 254
– male-male competition 153
concession model 8, 179
conflict resolution 99, 131–133
cooperation
– among humans 13, 276, 287, 299
– among male Chimpanzees 61–62, 107, 117
– and reconciliation 121, 135, 136
– and reproduction 251
– conditional cooperation 280, 283, 286
– defined 3
– dyadic cooperation 12, 19
– effect of age similarity 54, 61–62
– effect of rank similarity 58–59
– group-level (multi-player) cooperation 14, 17–20
– high-risk cooperation 14
– impact of kinship 48, 51
– phylogeny of cooperation 239, 250
– proximate mechanisms 14, 86, 102, 105, 192, 214
– homology and analogy of strategies and mechanisms 247
cooperation markets 9, 209ff, 233ff
cooperative breeding 3, 27, 29, 63, 173ff
cooperative hunting 3–4, 12, 17, 93, 139ff, 233, 250, 279
Cotton-top tamarin 97, 116, 178
Coquerel's dwarf lemur 19, 30,
cultural group selection 17, 239, 299
D
DNA 30, 34, 56, 109, 117, 144, 148
– nuclear DNA 117, 144
decision-making 17, 98–99, 171, 231–232, 256
defection 5, 8–9, 11, 13–14, 16, 70, 74–75, 212, 281, 283, 298–299
despotism 126, 153, 158, 160, 168
Dictator game 78
division of labor 14, 17, 139, 184, 251, 279
dispersal 8–9, 12, 32–36, 57, 107, 126, 149, 162, 171, 175, 177, 179–180, 183, 185, 237, 300
– and genetic composition of social groups 28
– female 32, 34, 107
– time delay of 'helpers-at-the-nest' 175
– male 35–36
Domestic cats 192
– dominance rank and reproductive success 31
dominance gradients and power differentials 213, 216
– matrilineal hierarchies 31, 55, 60
E
economic games 67, 77–78, 83
emotions 17, 67, 69, 80–81, 102, 239, 251–253, 256, 258, 260, 280, 295–297, 300–301
envy 77–78, 251–255
Erythrocebus 192
eusociality 174
exploitation 4–5, 16, 71, 203–204, 219, 248
F
fairness 17, 67, 75–78, 80, 82
fishes 7, 9, 11
forgiveness 67, 70, 81
food sharing 3, 7, 16, 20, 37, 42
Foxes 173
free-riding 12–13, 16–17, 19, 204
friendship 10, 20, 67, 92, 151–152, 167, 256
G
genetic composition of social groups 28
gene-culture co-evolution 298
Giant squirrels 93
gratitude 17, 67, 93, 97
good mood hypothesis 89, 91
Gorillas 32, 37, 39, 43–44, 115, 125, 227
– Lowland gorilla 37
– Mountain gorilla 32, 37, 125
Goeldi's monkeys 192
Golden lion tamarins 28, 37, 116
green-beard effect 73
Grey mouse lemur 30, 43
group augmentation 7, 20, 190
group hunting (see cooperative hunting)
group selection 5–6, 17, 68, 76, 239, 247, 299
– cultural group selection 17, 239, 299
Subject Index

− trait-group selection 6

H
 Hamadryas baboons 32–33, 37
 Hamilton’s rule 7, 25ff
 Hanuman langurs 31, 35, 43–44, 60
 ‘helpers-at-the-nest’ 173, 191
 honest signaling theory 242
 hormones 177–178, 252
 House mice 12, 191ff
 Howler monkeys 8, 170
 Hyenas 141, 173, 176, 185

I
 image scoring 76, 268–269
 imitation 69
 Impalas 11, 72, 88
 inbreeding avoidance 8–9, 27
 inclusive fitness theory (see kin selection)
 inequity aversion 100, 102
 infanticide 29, 33, 36, 42, 196, 227

J
 Jackals 173, 181
 Japanese macaques 29, 42, 57–59, 123, 167, 171
 jealousy 252–253, 260
 justice 17, 67, 76–78, 80–82, 88

K
 kin-biased behavior 63, 215
 kin discrimination 18–19, 41, 57–58, 61
 kin recognition 18, 34, 37, 40–42, 44–45, 61, 162
 – maternal kin recognition 40
 – paternal kin recognition 34, 41–42, 44
 – critiques 25–26
 – defined 5
 – or effect of age similarity 54, 61–62
 – or effect of availability and familiarity 49
 – or mutualism 17, 25, 40, 43, 45, 48, 63, 86, 117, 139–141, 143, 145, 149–150, 190, 234
 – or effect of rank similarity 58–59

L
 lactation 191, 193, 196–203
 Lemurs 15, 30, 35, 43, 170, 192, 228
 lions 8, 15, 140–141, 170, 173, 191–192, 196, 203, 233, 254
 local resource competition model of sex ratio adjustment 29
 Long-tailed macaques 38, 116, 122, 125, 130, 165–166, 171

M
 ‘Machiavellian intelligence’ hypothesis 226, 231
 Major Histocompatibility Complex (MHC) 198
 Marmosets 27–28, 126–127, 173, 181, 189, 192, 223, 225
 Microcebus 30, 192
 Miopithecus 192
 Meerkats 27, 140, 174–188
 Mole-rats 174, 177–178, 186, 188
 Mongooses 173, 179, 181
 moralistic aggression (see altruistic punishment)
 – byproduct mutualism 5, 7, 10–11, 12, 19, 86, 140, 190
 – defined 3
 Muriquis 34–35, 56

N
 nepotism 4, 8, 18–19, 25–26, 29–34, 36–40, 42, 44–45, 48, 52, 54, 57–61, 63, 152, 154
 – among females 30, 37
 – among males 34, 37
 – defined 3
 – effect of age similarity 54, 61–62
 – effect of availability and familiarity 49
 – effect of rank similarity 54, 57–59, 61

O
 observer effects 67, 69, 76, 79
 Otters 192
 Orangutans 19, 32, 44, 227

P
 partner control 9, 12–13, 20, 218–219, 225, 235, 245, 251, 260
 Patas monkeys 116
 phenotype matching 61
philopatry 19, 26, 31, 34, 57, 168, 186
− and genetic composition of social groups 28
− female philopatry 19, 26, 31
− male philopatry 34, 168
Pigs 192
Pig-tailed macaques 125
post-conflict behavior 121
Presbytis 36, 60, 192
Prosimians 26, 44, 228−229
Prisoner’s Dilemma (PD) 6, 67, 70−71, 212, 218, 231, 235−236, 247, 271, 281−282
public goods 12, 16, 78, 265, 269−276, 279−281, 283−285, 287−288, 290, 295, 300
public goods game 16, 78, 265, 269−274, 276, 283−284, 290
punishment 12, 14−18, 68−70, 74, 80, 84, 100, 103−104, 133, 218, 246−247, 265, 280, 287, 289−295, 297−301
rank reversal between mother and daughter 40, 44
rational choice model 100, 258
reciprocity 4−11, 15−17, 19−20, 25, 38−40, 44−45, 68−69, 72−80, 82, 85ff, 107−113, 115−118, 139−140, 149, 190, 196, 209, 216, 220, 231, 234, 247, 256, 265−278, 280, 287−289, 291, 297−301
− and cognition 86, 99
− attitudinal reciprocity 97, 103−104, 231, 256
− calculated reciprocity 11, 88, 92, 94, 103−104
− contingency-based reciprocity 10
− defined 5
− effect of age similarity 113
− effect of rank similarity 113
− generalized reciprocity 10, 89, 91, 190
− indirect reciprocity 16, 76, 265−266, 268−278, 280, 287, 289, 291, 298−299
− intrapersonal reciprocity 74
− proximate mechanisms 86, 102, 105
− reciprocal exchange 85, 91, 107−108, 113−119
− symmetry-based reciprocity 88−90, 92, 94, 97
− strong reciprocity 78−80, 247, 297−301
reconciliation 10, 31, 121ff, 226
Red-bellied tamarins 127
Red colobus monkeys 14, 33−35, 44, 141
Red-fronted lemur 35
Red howler monkeys 30, 33, 36−37, 44
Rhesus macaques 36, 39, 41, 59, 61, 113, 166
reproductive inhibition 26
reproductive suppression 179−180
reproductive skew 8, 27−28, 30, 33−35, 44, 61−62, 191, 194−195
− concession model 8, 179
reputation 15−16, 18, 20, 76, 246, 265ff, 280, 282−283, 287−289, 291, 300
revenge 81, 87−88, 297
Ring-tailed lemurs 15, 35
Rodents 173, 181, 192−193, 199, 204
Samango monkeys 219, 225
Savanna baboons 61, 164−165
self-directed behavior 122−123, 133
selfish herd effect 13, 19
sense of fairness 67, 75, 77−78, 82
sense of justice 67, 76−77, 82
sense of self 230
sense of social regularity 100
sense of space 228
sense of time 228
Sifakas 35
skew (see reproductive skew)
snowdrift game 72, 82
’social brain’ hypothesis 226
social dilemma 265ff, 290
social (dis-)approval 280, 288, 301
social groups 14−15, 28−30, 143, 173, 175, 199−200, 214, 275−276, 281, 295
− female-bonded 209, 224
− genetic composition 28
social intelligence 99, 231, 250
social norms 17, 295
social play 52, 54
social relationship 10−11, 19, 34−35, 44, 117, 122−126, 128, 130−132, 136, 253−254, 258
− social relationship negotiation 121, 132−133, 136
− social relationship value 133
social thermoregulation 50−51
Sooty mangabey 60
Spider monkeys 227
Squirrel monkeys 31, 34−35, 44
Stumptailed macaques 131−132
Tamarins 27−28, 37, 97, 116, 126−127, 173, 178, 181, 183
Thomas’ langurs 36
Tit-for-Tat 6, 69−71, 247
Titi monkeys 128
torture 82
trading 3, 16, 75, 80, 116, 212–214, 216–218, 221, 224–225, 228, 230–231, 233ff
 – human trading behavior 256
‘tragedy of the commons’ 265, 270–271, 276, 279
truth 75–76, 222

U
Ultimatum game 78–81, 297

V
Varecia 192
Vervet monkeys 30, 35, 53, 89, 115–116

W
Wedge-capped capuchins 31
White-faced capuchins 32, 93
Wild dogs 174, 176, 179, 181, 185, 191
Wolves 141

Y
Yellow baboons 210