Conclusion and Future Topics

This edited book has provided an overview of new enabling technologies for fiber-wireless (Fi-Wi) convergence in support of 5G mobile transport networks.

In the first part, to introduce the reader to the larger societal and economical ecosystem where transition to 5G is happening, Chap. 1 describes the current market and deployment status for broadband services. A similar, yet more technical, background on the current and evolutionary technical trends of LTE and LTE-A is provided in Chap. 2 that serves also as comprehensive technical introduction to relevant concepts for 5G wireless access. Chapter 3 elaborates on the main topic of the book, i.e., the role of fiber-wireless (Fi-Wi) convergence in support of 5G mobile transport networks, introducing the main technical issues motivating this book.

In Parts II, III, and IV, Fi-Wi technologies have been discussed at the three major network levels involved in the path toward convergence: system level, network architecture level, and network management level.

In Part II, devoted to system-level technologies, the basic principles and current standardization of the various analog-to-digital radio-over-fiber techniques currently available have been overviewed. These are instrumental to the understanding of the 5G transport network architectures described in Part III. As the backhaul/fronthaul of mobile traffic will not necessarily happen over optical fiber media, other competing wireless technologies in the field of millimeter wave have been also described.

In Part III, devoted to network architecture technologies, the concept of C-RAN is comprehensively overviewed under different viewpoints and by introducing a state-of-the-art picture of the level of advancement of important technologies at the network architecture level (NGPON, WDM-PON, BBU Hotelling, “No More Cell”). Chapter 8 shows how A-RoF, combined within an advanced PON architecture, can be used to build a scalable access network architecture. Chapter 9 overviews PON access architectures for building mobile backhauls, which will scale to the increased capacity requirements of future next-generation wireless broadband access network (NG-WBAN) technologies, and also includes the design of a fully distributed PON-based access architecture. Chapter 10 shows how the deployment of BBU hotels over a WDM access/aggregation network can be
optimized. Finally, Chap. 11 elaborates on the novel concept of “No More Cell” and how Fi-Wi convergence is a key enabler for it.

In Part IV, the next-generation point-of-presence architecture is initially described in Chap. 12, introducing the concept of a flexible platform that combines aggregation of fixed and mobile access traffic, IP edge routing, and the ability to host additional network functions and services, benefiting greatly from network functions virtualization (NVF) and software-defined networking (SDN) concepts. Subsequently, Chap. 13 describes the cooperative multipoint system that utilizes a base station (BS) cooperation technique to enhance the received signal quality, decrease the received interference, as well as improve the channel capacity of cell-edge users in the network.

The role of SDN is also extensively covered in two distinct Chaps. 7 and 14. While Chap. 7 focuses more on how SDN can cope with raising system-level challenges of convergence, Chap. 14 considers management aspects of SDN related to the support of cloud and mobile cloud computing services.

An overview of future topics in Fiber-Wireless (Fi-Wi) convergence

In the quickly evolving landscape of 5G research, several projects worldwide are currently contributing to the 5G transition. As an example, in Europe, the EU 5G infrastructure public–private partnership (5G-PPP) has been established with the aim of fostering the European ICT industry [3].

Clearly, 5G research is quickly evolving, and it was not possible to cover in this book the latest trends that have emerged in the last months prior to publication. We provide in the following a quick overview of some emerging topics that we consider particularly relevant to our book.

Impact of traffic dynamics and machine-to-machine (M2M) services. The growth in mobile traffic will not be homogenous, with busy-hour Internet traffic expected to grow more rapidly than average Internet traffic. The uptake of M2M services will, in addition, result in locally and over time varying characteristics of the mobile traffic. Thus, not only the future 5G mobile transport infrastructure will have to support a fast-growing overall mobile data volume and a significantly increased number of connected mobile devices at significantly improved energy- and cost-efficiencies, but it also will have to provide the capability to flexibly adapt to dynamically fluctuating traffic demands (over time, location, and characteristics) and a broad range of potentially new service requirements of future service portfolios. The wider use of M2M communications requires wider geographic coverage, with implications for the network architecture.

Mobile edge computing (MEC). MEC is a new technology which is currently being standardized by ETSI. MEC promotes the insertion of cloud computing capabilities at the edge of the mobile network, within the radio access network (RAN), in close proximity to mobile subscribers. The aim is to reduce latency, ensure highly efficient network operation and service delivery, and offer an improved user experience. MEC represents a key technology and architectural concept to enable the evolution to 5G, as it helps advance the transformation of the mobile network toward a programmable platform, by contributing to satisfy the
demanding requirements of 5G in terms of expected throughput, latency, scalability, and reconfigurability.

Midhaul/x-haul. As seen in Chap. 10, in traditional CRAN implementations, the BBU-hoteling technique consists in geographically separating the BBU from its RRH, which remains located at the cell site, and consolidating BBUs into a common BBU hotel. In the first deployments of BBU-hoteling technique, the RRHs only perform basic layer 1 functions (i.e., digital-to-analog/analog-to-digital conversion (DAC/ADC) of the baseband signals, frequency up-/down-conversion, power amplification, and some signal measurements), but such configuration requires very high volumes of traffic, the so-called fronthaul traffic, to be exchanged between BBUs and RRHs through, e.g., the CPRI interface (see Chap. 5).

As of today, more efficient solutions are being investigated to reduce the amount of bandwidth to be exchanged between the RRH and the BBU. This is especially true if we consider future 5G deployment, where a large number of small cells are expected to be deployed, featuring high MIMO counts and large radio bandwidths. Therefore, different interface points (RAN splits), i.e., different functional separations between L1 and L2/L3 cell processing, are being investigated, in terms of potential cost/performance benefits and required capacity. These split points determine the separation of a cell site into two components, a central cell, where higher-layer cell functions are virtualized and consolidated for a set of cell sites, and remote cells, i.e., base stations. In contraposition to traditional fronthaul, the traffic transported between remote and centralized cell is also known as midhaul or x-haul. Some of these techniques are currently under standardization, e.g., in the IEEE 1914 workgroup, but research studies are needed to identify the most effective split point in the midhaul architecture. Even technical solutions enabling reconfigurability of the split point are currently being proposed, which could be used to select the split point according to the requested amount of traffic or to the specific coordination requirements of the cellular network.

Energy efficiency. 5G systems have to resolve the fundamental challenge of handling the anticipated dramatic growth in the number of terminal devices, the continuous growth of traffic (at a 50–60% CAGR), and heterogeneous network layouts, without causing a dramatic increase in the power consumption and management complexity within the network. Specifically, 5G communication systems need to support unprecedented requirements for the wireless access connection, targeting cell throughput capacities of $1000 \times$ current 4G technology and round-trip latency of about 1 msec. Since the perlink data rates will be increased by about $100 \times$, energy efficiency becomes a critical challenge of 5G systems, e.g., the joules per bit will need to fall by at least $100 \times$. Thus, 5G will have to be designed to be a sustainable and scalable technology.

Potential solutions to the energy efficiency issue include recourse allocation, network planning, renewable energy, and hardware architectures. Thus, this energy chase will eventually cover terminal devices, network elements, and the network as a whole, including data centers. Specifically, sophisticated resource allocation policies that optimize system energy efficiency and can be implemented in a centralized/distributed fashion are of paramount importance. Energy-efficient
network planning refers to techniques that minimize the number of base stations (BSs) for a coverage target and intelligent BS sleep mode mechanisms for energy savings. On the other hand, the integration of renewable energy sources on 5G networks is a promising solution for network sustainability and energy efficiency. This technology enables the exploitation of natural energy resources such as solar power, wind, and mechanical vibration, as well as energy harvesting from ambient and/or controlled electromagnetic radiation. Finally, energy efficiency requires the design of low-power consumption circuits such as power amplifiers and analog front ends in microwave and millimeter frequency ranges, DSP-enabled optical transceivers for access and backhaul networks, and ultra-low-power wireless sensors harvesting ambient energy (e.g., solar, thermal, vibration, and electromagnetic energy). Further, hardware architectures incorporating wireless power transfer technologies and having sleep mode capabilities (i.e., specific hardware components can be switched off for energy savings) present another exciting alternative to battery-less sensor operation for machine-to-machine (M2M) and device-to-device (D2D) communications.

Advanced modulation format in the wireless side. 5G will support diverse use of various waveforms for enhanced mobile broadband connection, wide area Internet of Things and high-reliability services. Current OFDM modulation developed for the 4G system is not capable of serving the rapidly increasing demands for data volume and types of user equipment. In order to accommodate new applications carried by 5G, system operation issues of DSP complexity, system latency, and battery life are drawing more attention for researchers. The design and optimization of next-generation physical layer waveforms is a hot topic in both academia and industry.

Several waveforms are actively investigated and developed as the candidates for 5G system. OFDM-based multicarrier modulations are preferable for a balance between performance and complexity, including GFDM (Generalized FDM), FBMC (filter bank multicarrier), UFMC (universal and filtered multicarrier), and other minor modification versions of OFDM.

FBMC is a multicarrier modulation with filter-shaped subcarriers, which significantly suppress the out of band leakage and relax the carrier frequency offset (CFO) synchronization requirement in receiver. However, its high DSP complexity and PAPR issue limit it to downlink applications. UFMC, on the other hand, is beneficial in uplink due to its comparably lower DSP complexity in the transmitter and supports asynchronous transmission that omits the time-advance process in multiuser environment. The uplink transmission can benefit from reduced latency and increased compatibility with burst-mode packet uploading. The above modulations are widely investigated in traditional bands below 6 GHz and also millimeter-wave bands beyond 30 GHz.

Recently, more modulations closer to OFDM are being proposed and studied. One example is the CP-OFDM (CP stands for cyclic prefix) with weight overlap and add (WOLA), which does not change the FFT/IFFT-based OFDM core. By applying simple weight overlap and add, different OFDM symbols are combined within the time-domain windowing, which improves the performance with
out-of-band (OOB) leakage. Another candidate, flexible CP-OFDM (FCP-OFDM), is designed to provide a flexible trade-off between multipath handling and OOB leakage suppression by splitting the cyclic prefix (CP) to CP and zero prefix (ZP) portion before feeding into shaping filter. These modulations emphasize more on the DSP complexity and power efficiency aspect of the system, while maintaining an acceptable performance in terms of OOB leakage, spectral efficiency, and asynchronous transmission.

Currently, there is no clear winner on the next-generation 5G modulation. Hence, we believe traditional OFDM modulation will be around a little bit longer even beyond 3GPP release 14 for conventional carrier frequency up to 6 GHz and release 15 for higher frequency up to 110 GHz.
Index

Note: Page numbers followed by f and t indicate figures and tables, respectively

A
AAA (authentication, authorization, and accounting) mechanisms, 323, 329–330, 330f
Accelerator design, 307–308
8-antenna precoding, 307
Access gateway (AGW), 237, 239
universal access gateway (UAG), 331–332, 332f
Adaptive photonics-aided CoMP, 348–349
Additive white Gaussian noise (AWGN), 354
All-band coverage, 89–91
Amplified spontaneous emission (ASE), 177
Analog and digitized radio-over-fiber, 99
analog radio-over-fiber (A-RoF), 99–100, 109
by means of SCM, 112–114
by means of WDM, 114–117
for IF-over-fiber, 110–112
for RF-over-fiber, 109–110
A-RoF versus baseband-over-fiber, 102
baseband-over-fiber, 104
IF-modulated signals, 103–104
RF-modulated signals, 103
digitized radio-over-fiber (D-RoF), 117
band-pass sampling theory, 118–120
for multiple-antenna site, 122–124
for single-antenna site, 120–122
existing radio cellular networks, 100–102
transmission of microwave signals on optical fibers, 104
external modulation and direct detection, 106–107
intensity modulation and direct detection, 105–106
photo-detector-based HE-DD, 107–109
Analog-to-digital conversion, 164, 167, 168f
Analog-to-digital converter (ADC), 120–121, 123, 352, 353
Antenna polarization multiplexing, 175–178
Application-Controller Plane Interface (A-CPI), 374
Application protocol convergence (APC) layer, 55
Application-specific integrated circuits (ASICs), 326
Arbitrary waveform generator (AWG), 166, 243
Architectures, convergence of, 80
centralization, 80–83, 81f
resource sharing, 83–84
Asymmetric Digital Subscriber Line (ADSL), 50–51
Automatic protection switching (APS) module, 258
Backhaul network, 216f, 217, 218
Backhauling wireless traffic, 236–238
Band-pass sampling theory, 118–120
Bands, convergence of, 89
all-band coverage, 89–91
MMW links, 91–92
Bandwidth aggregation, 5
Baseband-over-fiber modulation, 104
BaseBand Unit (BBU) hotelling, 222, 265
advantages of, 268
cost reduction, 268–269
energy savings, 269
improved radio performance, 269–270
BPTR
case study for, 286–289
optimization problem, 283–284
challenges of, 270
high, constant bitrate, 270–271
maximum end-to-end latency, 271–272
strict QoS requirements, 273
 evolving the base station, 267–268
FMC network architecture for, 280

© Springer International Publishing Switzerland 2017
M. Tornatore et al. (eds.), Fiber-Wireless Convergence in Next-Generation Communication Networks, Optical Networks, DOI 10.1007/978-3-319-42822-2 395
BBU placement, 281–282
general network architecture, 280–281
traffic routing, 282–283
heuristic greedy algorithm for BPTR, 284
heuristic scheme, 286
heuristic subroutines, 285–286
notation and input data, 284–285
mobile network, 266–267
open issues, 289–290
pooling techniques, 278–279
RAN architectures based on, 273
classification on BBU implementation, 278
classification on BBU placement, 274–276
classification on fronthaul transport, 276–278
virtualization, 279–280
Baseband units (BBUs), 80, 84, 221, 227
centralization, 222
function, 320
pooling, 223
Base station controller (BSC), 309
Base station cooperation, 338f
Base stations (BS), 80, 226, 239, 266–267, 337
evolving, 267–268
BBU placement and traffic routing (BPTR)
case study for, 286–289
heuristic greedy algorithm for, 284
heuristic scheme, 286
heuristic subroutines, 285–286
notation and input data, 284–285
optimization problem, 283–284
Beamforming, 18
3D, 24–25, 24f
Berkeley Wireless Research Center (BWRC), 67
Bit error rate (BER), 273
counting, 174, 181
Bit error rate tester (BERT), 231
Blind equal throughput, 17
Bring your own device (BYOD) networking environments, 200
Broadband access technologies, evolution and trends of, 43
broadband wireless access networks, 60
mobile network technology evolution and market status, 63–68
Wi-Fi technology evolution and market status, 60–63
broadband wireline access networks, 45
coaxial cable technology, 54–55
global roll-out strategies, 55–57
hybrid fiber–copper technology, 55
passive optical network (PON), 46–50
penetration of different broadband technologies, 57–60
twisted pair technology, 53
xDSL technology, 50–53
fiber-wireless convergence and technology evolution, 69
for backhaul and the fronthaul of HetNet, 71–74
distributed antenna systems (DASs), 69, 70f
ultra-high-speed fiber-wireless transmission, 70–71
traffic trend, 43–45
Broadband network gateway (BNG), 324, 324f, 331
in hardware on an existing network element, 325
with IT resources and dedicated hardware resources, 326
pure soft BNG, 325
Broadband passive optical network (BPON), 49, 241
Broadband remote access server (BRAS), 324, 331
Broadband residential gateway (BRG), 322
C
C&M data, 132
Cable TV (CATV), 54
10BASE5, 54
Capital expenditures (CAPEX), 221, 223, 268, 283
Carrier aggregation (CA), 5f, 9, 28
definitions and terminologies, 9–10
of LTE-Licensed and LTE-U CCs, 28–30
radio resource management framework for CA, 15–17
types, 10–15
Carrier frequency offset (CFO) synchronization requirement, 392
Carrier-less amplitude and phase (CAP) modulation, 86
Cascaded multi-modulus algorithm (CMMA) equalization, 181
CDMA2000, 64–65
Cell selection bias (CSB), 34
Cell-specific Reference Signal (CRS), 35
Cellular networks, 215
Centimeter-wave (CMW) bands, 89–90
Centralization, 80–83, 81f
challenges on transport networks for, 299–300
Centralized CoMP, 22–23
Centralized radio access network (C-RAN), 80
BBU hotelling in (see BaseBand Unit (BBU) hotelling)
Centralized RANs, 81, 82f
Central office (CO), 222
Channel-aware CC assignment, 16
Channel-blind CC assignment, 16
Channel state information (CSI), 21, 338
China mobile, recent progress on C-RAN from, 304
exploitation of C-RAN virtualization, 307
accelerator design, 307–308
prototype verification of soft C-RAN, 308–310
field trials on centralization with different FH solutions, 304–307
Client jitter and wander accumulation over OTN, 151–153
Client mapping over OTN, 149–151
Cloud and mobile cloud services, existing technology solutions supporting, 362
infrastructure management, 363–365
physical infrastructure solutions supporting cloud services, 362
in metro optical network solutions, 362–363
in wireless technologies solutions, 363
service provisioning, 365–366
Cloud management system (CMS), 365
Cloud radio access network (C-RAN), 221–223, 222f, 293, 296f
5G design of user-centric radio network, 294–296
advantages of, 299
architecture, 297f
challenges on transport networks for centralization, 299–300
virtualization implementation to realize resource cloudification, 302–304
concept of, 296–298
evolving toward 5G, 310
CPRI redefinition, 311–312
C-RAN to enable key 5G technologies, 310–311
edge application on C-RAN, 313–314
features, 298
potential fronthaul solutions, 300–302
recent progress on C-RAN from China mobile, 304
accelerator design, 307–308
field trials on centralization with different FH solutions, 304–307
prototype verification of soft C-RAN, 308–310
Cloudlet approach, 361f
Coarse WDM (C-WDM), 277
Coaxial cable technology, 54–55
Commercial off-the-shelf (COTS) hardware, 223, 225
Common Public Radio Interface (CPRI), 81, 100, 128, 221, 260–261, 268, 341, 357
compression, 137–138, 293
CPRI-based solutions, 192
frequency, time and latency requirements derivation with LTE fronthauling, 132f
interface description, 131
layer 1, 133–136
layer 2, 136–137
multiplexing, 148
over optical transport network, 149
client jitter and wander accumulation over OTN, 151–153
client mapping over OTN, 149–151
Communication over multi-antenna MIMO channel, 7f
Composite PON (CPON) architecture, 243
Compound annual growth rate (CAGR), 44
Constant modulus algorithm (CMA), 92, 160, 180
equalization, 181
Content delivery network (CDN), 320, 327, 328
Continuous-wavelength (CW) lightwave, 158
Converged fiber–wireless architecture, 349–350
Converged service orchestration, 378, 379f
Converged wireless access/optical metro networks, 359
architecture evaluation, 379
impact of virtualization solution on proposed architecture, 383–386
numerical results, 381–383
converged service orchestration, 378
infrastructure management, 363–365, 371–372
physical infrastructure layer, 369
integrated infrastructure, 370–371
optical physical infrastructure, 369
wireless physical infrastructure, 370
physical infrastructure solutions supporting cloud services, 362
in metro optical network solutions, 362–363
in wireless technologies solutions, 363
service provisioning, 365–366
virtual infrastructure control layer (VICL), 373
provisioning of cross-domain connectivity, 376–377
vision and architectural approach, 366–368
Coordinated beamforming/scheduling, 21
Coordinated multipoint (CoMP), 66, 191, 337
applicability of, 21
backhaul architecture, 341
adaptive photonics-aided CoMP, 348–349
converged fiber–wireless architecture, 349–350
FUTON prototype, 345–348, 346f, 347f
GROW-Net architecture, 342–345
backhaul network, requirements on, 339
capacity, 340–341
latency, 340
synchronization, 340
centralized, 22–23
distributed CoMP, 23–24
evolution of, 73f
fiber–wireless integration schemes enabling CoMP, 350
BS configuration, 350–352
experimental demonstration, 355–356
implementation of CoMP, 354–355
performance analysis, 352–354
processing (CoMP), 294
reception, 270
transmission, 19–22, 87, 214, 237, 270, 337
Coordinated scheduling and coordinated beamforming (CS/CB), 338
Core Network, 266
CPE (customer-premises equipment), 322
CRE (Cell-Range Expansion) region, defining, 35–37
Cumulative distribution function (CDF), 348

D
Data-Controller Plane Interface (D-CPI), 374
Digital Radio over Fiber (D-RoF), standardization for, 127
CPRI (Common Public Radio Interface), 128
compression and throughput examples, 137–138
interface description, 131–137
main requirements, 130–131
specification overview, 129
system description, 129–130
D-RoF transport over optical networks, 146
CPRI over OTN, 149–153
viable network applications for CPRI over WDM/OTN, 153–154
OBSAI (Open Base Station Architecture Initiative), 138
CPRI versus OBSAI RP3-01, 145–146
objectives, 139–140
RP3-01 insight, 142–145
specifications status, 139
system blocks and interfaces, 140–142
Open Radio Interface (ORI), 154–155
Digital signal processing (DSP), 160, 167
advance algorithms based on, 184
Digital Subscriber Line (DSL), 50
digital subscriber line access multiplexer (DSLAM), 50
digital-to-analog converter (DAC), 222
digitized baseband radio signals, 273
digitized radio-over-fiber (D-RoF), 117
band-pass sampling theory, 118–120
for multiple-antenna site, 122–124
for single-antenna site, 120–122
Digitized Radio-over-Fiber (D-RoF), 100, 267
Discrete Fast Fourier Transform (DFFT), 118
Discrete Fourier transform (DFT), 184
Discrete multi-tone (DMT), 50
 Distributed antenna system (DAS), 69, 70f, 84, 219–221, 227, 294, 345, 346
Distributed CoMP, 23–24
Distributed evolved packet core, 326–327
Distributed feedback (DFB) lasers, 202
laser diode (LD), 243
D-lightpaths, 282–283
Downlink CA, 13
Downlink CoMP transmission, 339f
Downlink packet scheduling, 17
Downstream traffic, wavelength assignment/sharing for, 257
Dynamic bandwidth allocation (DBA), 82, 240, 252, 256
Dynamic frequency reuse scheme, 33
Dynamic host control protocol (DHCP), 330
Dynamic Single-Frequency Networks (DSFN), 22

Effective number of bits (ENOB), 353
Electrical joint processing unit (JPUe), 347
Electrical multi-carrier modulation, 173–174
Electrical part of remote antenna unit (RAUe), 347
Electrical-to-optical (E/O) conversion module, 224
End-to-end (E2E) Multi-domain Connection Service, 377
Energy efficiency, 391
Enhanced Data Rates for GSM Evolution (EDGE), 64
Enhanced Dedicated Channel (E-DCH), 65
Enhanced inter-cell interference cancelation (eICIC), 31, 34, 65, 191, 270
enhancement with CA, 38f
with CA, 37
Erbium-doped fiber amplifier (EDFA), 163, 167, 170, 176
Error vector magnitude (EVM), 116
Ethernet passive optical network (EPON), 46, 47–48, 241
ETSI (European Telecommunications Standards Institute), 127
Industry Specification Group (ISG), 154
Evolved-Multicast Broadcast Multimedia Services (eMBMS), 6, 13, 25
and MBSFN, 25
Evolved node B (eNBs), 79, 237
Evolved Packet Core (EPC), 304
Existing fiber-wireless access architectures, 215
cloud radio access network (C-RAN), 221–223, 222f
distributed antenna system (DAS) networks, 219–221
macrocell and small cell with fiber-optic backhaul, 215–219
External cavity laser (ECL), 163
External modulation and direct detection (EM-DD), 106–107, 107f

F
Fast Fourier transformation (FFT), 165, 307
Fault, Configuration, Accounting, Performance, Security (FCAPS) model, 364
Fault detection, 259
Fault recovery, 259–260
Femtocell, 217
Fiber cables, 158
Fiber-to-the-building (FTTB), 55
Fiber-to-the-curb (FTTC), 55
Fiber-to-the-home (FTTH), 47, 48f, 55, 56, 58, 218, 236, 319
Fiber-to-the-node (FTTN), 55
Fiber-to-the-x (FTTx), 301
Fiber-wireless access networks, 213
existing fiber-wireless access architectures, 215
cloud radio access network (C-RAN), 221–223, 222f
distributed antenna system (DAS) networks, 219–221
macrocell and small cell with fiber-optic backhaul, 215–219
novel cloud radio-over-fiber access architecture, 224
generic cloud-RoF architecture and operational principle, 224–226
multi-service delivery including future-proof millimeter-wave services, 228–232
reconfigurable cloud-RoF architecture with WDM techniques, 226–228
Fiber-wireless convergence and technology evolution, 69
for backhaul and fronthaul of HetNet, 71–74
distributed antenna systems (DAs), 69, 70f
ultra-high-speed fiber-wireless transmission, 70–71
Fiber–wireless integration schemes enabling CoMP, 350
BS configuration, 350–352
experimental demonstration, 355–356
implementation of CoMP, 354–355
performance analysis, 352–354
Fiber wireless integration system, 161f
Fiber-wireless networks, convergence of, 71f
Fifth-generation system (5G), 67–68
design of user-centric radio network, 294–296
infrastructure public-private partnership (5G PPP), 261
key requirements of, 68f
network visions, 157
radio access networks, directions for, 214f
systems, 195, 314, 315, 391, 392
technologies, C-RAN to enable, 310–311
Filter bank multi-carrier (FBMC), 86
Finite impulse response (FIR) filter, 164
Fi-Wi convergence, passive optical network (PON) and. See Passive optical network (PON) and Fi-Wi convergence
Fixed–Mobile Convergence (FMC), 276, 329

FlowMod message, 205

4G telecommunication networks, 67, 87, 239

FP7 GEYSERS project, 366

Fractional frequency reuse (FFR), 31–33, 227

single macrocell interferer for, 35–36

France, national broadband strategy in, 57

Frequency division duplexing (FDD) systems, 22

Fronthaul traffic, 270

Fronthauling mobile traffic, 260–261

Full-duplex communication, 25–26, 51

Full Service Access Network (FSAN), 49, 241, 261, 301

Functional convergence, 321

FUTON prototype, 345–348, 346f, 347f

Future mobile communication system, 78f

G

G.992.5, 51

Generalized frequency division multiplexing (GFDM), 86

General purpose platforms (GPPs), 223, 293, 298

Generic cloud-RoF architecture and operational principle, 224–226

Germany, national broadband plan, 57

Gigabit passive optical network (GPON), 46, 49–50, 241, 246, 320

Global IP traffic, 44f

Global roll-out strategies, 55–57

GROW-Net architecture, 342–345

GROW-Net backhaul using IF-ROF link, 345f

GROW-Net CoMP cluster, 344f

GROW-Net grid cell
downlink transmission, 343f

uplink transmission, 344f

GROW-Net optical subnetwork, 343f

GROW-Net topology and grid cell, 342f

GSM Packet Radio System (GPRS), 64

Guaranteed Bit Rate (GBR), 14

H

HA system, 179, 183

Heterogeneous Networks (HetNets), 30, 223, 294

deployment, 294

self-organizing (see Self-organizing HetNets)

Heterodyning with direct detection (HE-DD),
photo-detector-based, 107–109

Heterogeneous transmission devices, coexistence of, 7f

High-definition (HD) cameras, 158

High-definition multimedia interfaces (HDMIs), 158

Highly distributed content delivery networks, 327

High-Speed Downlink Packet Access (HSDPA), 65

High-speed DSL (HDSL), 50

High-Speed Packet Access (HSPA), 65

High-Speed Uplink Packet Access (HSUPA), 65

Horizontal-polarization (H-polarization) state, 175

Horn antennas (HAs), 161

Hybrid automatic repeat request (HARQ), 223

Hybrid Automatic ReQuest (HARQ), 271

Hybrid fiber–copper technology, 55

Hybrid PONs, 245–246

I

IEEE 802.11ax, 62

IEEE 802.15, 60

IF-over-Fiber, 104

i-Japan strategy 2015, 57

Information-centric network (ICN), 320

Infrastructure as a Service (IaaS), 361

Infrastructure management, 363–365, 371–372

Infrastructure management layer (IML), 367, 372f

In-Phase and Quadrature (IQ) data, 129

Integrated infrastructure, 370–371

Intensity modulation and direct detection (IM-DD), 105–106, 105f

Inter-band non-contiguous CA, 11–12, 12f

Inter-cell D2D connectivity, 205

Inter-cell interference (ICI), 82, 337

Inter-cell Interference Coordination (ICIC), 31, 340

macrocell and small-cell ICIC, 33

macrocell ICIC, 31

fractional frequency reuse (FFR), 31–33

soft frequency reuse (SFR), 33

Intermediate frequency over fiber (IFoF) technology, 73

International Mobile Telecommunications (IMT), 4

Internet of Things (IoT), 77, 78

networking paradigm, 190

Internet service provider (ISP), 331

3rd party ISP, 218

Inter-site distance (ISD), 381

Inter-symbol interference (ISI), 106

Intra-band carrier aggregation, 11f

Intra-band contiguous CA, 10

Intra-band non-contiguous CA, 10–11
Intra-symbol frequency-domain averaging (ISFA) algorithm, 174
Inverse Fast Fourier Transformation (IFFT), 173, 307
IP core, 79
I/Q modulator, 163

J
Joint processing (JP), 338, 340

L
L2TP access concentrator (LAC), 331
Large-scale antenna systems (LSASs), 298
Light-emitting diode (LED), 243
Line-of-sight (LOS) channel requirement, 229
Links, convergence of, 84
 mobile backhaul, 84–87, 85f
 mobile midhaul and fronthaul, 87–89
Local Access Router Network (LARNET) architecture, 243
Local area networks (LANs), 236
Logical Infrastructure Composition Layer (LICL), 364
Long Term Evolution (LTE), 118, 360
 Advanced (LTE-A), 4
 Frequency Division Duplexing (FDD) radio interface, 271
 network architecture, 238f
Low-density parity-check (LDPC), 214
LTE principles of operation and deployment, 4
 bandwidth aggregation, 5
 network heterogeneity, 6
 spatial diversity and multiplexing, 6–9
 transmission diversity, 6

M
Machine-to-machine communications (M2M), 44, 390
Machine-type communication (MTC), 78
Mach-Zehnder modulator (MZM), 106, 163, 170
MAC Layer, 8
Macrocell and small cell with fiber-optic backhaul, 215–219
Macrocells, 30, 33, 36, 216
 backhaul networks, 216f
ICIC, 31
 fractional frequency reuse (FFR), 31–33
 soft frequency reuse (SFR), 33
Maximum throughput scheduling, 17
Medium access control (MAC) protocols, 203
 “Meta-MAC” concept, 203
Metro optical network solutions, state of the art in, 362–363
Metrocell, 218
Microcell, 218
Microwave photonic (MWP) techniques, 83
Midhaul/x-haul, 391
Millimeter microwave transmission, 301
Millimeter-wave (MMW) bands, 89–90
Millimeter-wave (MMW) links, 91–92
Millimeter wave (MMW) small cells, 348
mm-wave communication, 91, 158–159, 229
 16-ary quadrature amplitude modulation (16QAM), 159
Mobile backhaul, 84–87, 85f
Mobile broadband data, proliferation of, 3
Mobile edge computing (MEC), 390
Mobile fronthaul, 73, 87–89
Mobile midhaul, 87–89
Mobile network, 266–267
 evolution and market status, 63–68
Mobile optical virtual network operators (MOVNOs), 360, 379, 383
Mobile subscribers (MS), 227
Mobile telephone switching office (MTSO), 222
Mobile terminal interface (MT IF), 347
Mobility Management Entity (MME), 237
Modulation and Coding Scheme (MCS) rate, 4, 5
Multi-band multiplexing, 178–182
Multicast Broadcast SFN (MBSFN), 25
Multi-cell beamforming, 20f
Multi-cell packet scheduling, 270
Multi-layer Path Computation Service, 377
Multi-level modulation, advanced, 166–169
Multiple-input multiple-output (MIMO)
 systems, 7, 88, 90, 190, 214
 -OFDMA, 19
 and spatial multiplexing, 18–19
 three-dimensional MIMO (3D MIMO), 24
 wireless links, 173, 183f
Multi-point carrier aggregation (CA), 87
Multi-point control protocol (MPCP), 240, 256
Multi-radio access technology (multi-RAT)
 optimization, 295
Multi-service delivery including future-proof millimeter-wave services, 228–232
Multi-stream beamforming, 7–8
Multi-user MIMO (MU-MIMO), 61

N
Nanocell, 218
Network address translation (NAT) functionality, 331
Network as a Service (NaaS) paradigm, 366
Network densification, 194–195, 195f
Network functions virtualization (NFV), 68, 223, 302, 320, 325
Network heterogeneity, 6. See also Self-organizing HetNets
Network scenario and related work, 379
impact of virtualization solution on proposed architecture, 383–386
numerical results, 381–383
Network topology, 195–196
Network vG (N-vG), 323
Neutral-host DAS network architecture, 221
Next-generation mobile network, KPIs for, 78
Next-generation PON (NG-PON), 241, 246
NG-PON2, 248–249
Next-generation PoP (NG PoP), 319, 323/
 broadband network gateway (BNG), 324
 in hardware on an existing network element, 325
 with IT resources and dedicated hardware resources, 326
 pure soft BNG, 325
 distributed evolved packet core, 326–327
 highly distributed content delivery networks, 327
 implementing, 333
 design principles, 333–334
 dimensioning NG PoP, 334–335
 path toward fixed and mobile convergence, 329
 converged subscriber data and session management, 329–330
 universal access gateway, 331–332
 virtual residential gateway, 322
 implementing, with physical BNG, 323–324
“No More Cells” (NMC), 293, 294, 295
Novel cloud radio-over-fiber access architecture, 224
generic cloud-RoF architecture and operational principle, 224–226
multi-service delivery including future-proof millimeter-wave services, 228–232
reconfigurable cloud-RoF architecture with WDM techniques, 226–228
Nyquist region, 354
Nyquist sampling theorem, 117, 118
wavelength-division multiplexing (WDM), 159

O
OBSAI (Open Base Station Architecture Initiative), 81, 138, 341, 357
CPRI versus OBSAI RP3-01, 145–146, 147r
objectives, 139–140
RP3-01 insight, 142–145
specifications status, 139
system blocks and interfaces, 140–142
Baseband Block, 142
Control and Clock Block (CCB), 141–142
RF Block, 142
Transport Block, 141
ODFM transmission, 116
OFDMA, 3, 19, 79
OOK signals, 202
OpenFlow 1.0 control, 201
-based application programming interface (API), 202
Open Grid Forum (OGF) Open Cloud Computing Interface (OCCI), 365
Open Radio Interface (ORI), 154–155
and CPRI, 155f
OpenStack, 378
Open vSwitch (OVS), 376
Operating system (OS), 302
Operational expenditures (OPEX), 221, 223, 268–269, 381
Optical carrier suppression (OCS) modulation, 170
Optical code division multiplexing (OCDM), 248
Optical couplers (OCs), 161
Optical distribution network (ODN), 46, 239
Optical fiber-based backhaul, 218
Optical line terminal (OLT), 46, 47, 85, 158, 199, 350
Optical local oscillator (LO), 161
Optical mm-wave generation, 179f
Optical multi-carrier modulation, 169–172
Optical network unit/optical network terminal (ONU/ONT), 46, 47
Optical network units (ONUs), 85, 199, 239, 249, 350
Optical PDM combined with MIMO reception, 161–165
Optical physical infrastructure, 369
Optical splitters (OS), 227
Optical-to-electrical (O/E) conversion module, 224
Optical transport network (OTN)
CPRI and, 149–153
User-Network Interface (UNI) cards, 153
Orbital angular momentum (OAM), 185
Orbit Management Framework (OMF) Aggregate Manager service, 370
Organization for Economic Co-operation and Development (OECD), 57–58
Orthogonal frequency division multiplexing (OFDM), 86, 87, 159, 173, 362
- PON, 239, 244–245
OTN (optical transport network) solutions, 301
Out-of-band (OOB) leakage, 393
Over-the-top (OTT) Internet companies, 313
Over-the-top (OTT) services, 44

P
Packet Data Network gateway (P-GW), 237
Passive optical network (PON), 45, 46–50, 239
and Fi-Wi convergence (see Passive optical network (PON) and Fi-Wi convergence)
Passive optical network (PON) and Fi-Wi convergence, 235
10G-Epon, 247
evolution scenarios, 249
NG-PON2, 248–249
10G-PON, 247
allocation of network resources, 255
dynamic bandwidth allocation, 256
upstream traffic flows rerouting and sharing, 256
architecture design, 253–255
backhauling wireless traffic, 236–238
challenges in PON design, 251
distributed ring-based WDM-PON architecture, 251–253
fault detection, 259
fault recovery, 259–260
fronthauling mobile traffic, 260–261
GPON/EPON, 246
technology options, 239
hybrid PONs, 245–246
OFDM-PON, 244–245
TDM-PON, 239–241
WDM-PON, 241–244
wavelength assignment/sharing for downstream traffic, 257
Passive WDM, 277
Path computation element (PCE) mechanisms, 366
Peak-to-average power ratio (PAPR), 12, 87
Photonic mm-wave generation, 158f
Photonics-aided coordination, 92
PHY layer, 8
Physical Downlink Control Channel (PDCCH), 307
Physical Downlink Shared Channel (PDSCH), 307
Physical infrastructure layer (PIL), 367
Physical Resource Block (PRB), 4–5
Picocells, 30–31, 217
Point-to-multi-point (P2MP) fiber optical networks, 236
Point-to-point (PtP) dedicated links, 276–277
Point-to-point (PtP) WDM, 249
Point-to-point protocol (PPP) tunnel, 331
over Ethernet (PPPoE), 330
Point-to-point wavelength division multiplexing (PtP-WDM) scheme, 247
Polarization beam combiner (PBC), 163
Polarization beam splitters (PBSs), 161, 162
Polarization division multiplexing (PDM), 91–92, 159
quadrature-phase-shift-keying (PDM-QPSK) signal, 163, 182
Potential fronthaul solutions, 300–302
Power spectral density (PSD), 354
Power-splitting PONs (PS-PONs). See TDM-PONs
Proof of Concept (PoC), 307
Proportional fair (PF) scheduling, 17
Protection switch (PS) capability, 306
Prototype verification of soft C-RAN, 308–310
Proximity-aware services, 44
Pulse pattern generator (PPG), 163
Pure soft BNG, 325
Quadrature amplitude modulation (QAM), 87
Quadrature-phase-shift-keying (QPSK), 170
Quality-of-experience (QoE), 4, 190, 200, 330
Quality-of-service (QoS), 4, 190, 251, 361, 364
requirements, 250
support, 200
Radio access network (RAN), 78, 79f, 91, 216, 239, 266
architectures (see Radio access network (RAN) architecture)
radio performance of, 269
Radio access network (RAN) architectures, 146, 213, 253, 273
classification on BBU implementation, 278
BBU pooling, 278–279
BBU stacking, 278
BBU virtualization, 279–280
classification on BBU placement, 274
all-in-one BS (no hotelling), 274–275
BBU hotel at first CO, 175
BBU hotel at higher-level CO, 276
distributed BS (no hotelling), 275
Index 403
Radio access network (RAN) architectures (cont.)
classification on fronthaul transport, 276
dedicated point-to-point, 276–277
passive WDM, 277
TDM-over-WDM (OTN), 277–278
cloud/centralized, 148f
Radio access technologies (RAT), 68, 78, 266, 271, 296
Radio access units (RAUs), 81
Radio cellular networks, 100–102
Radio equipment (RE), 129
Radio equipment control (REC), 128, 129–130
Radio-over-fiber (RoF), 69, 81, 88, 158, 224, 341
Radio Resource Control (RRC) connection, 9–10
Radio Resource Head (RRH), 267
Radio resource management (RRM), 4, 82
framework for CA, 15–17, 15f
Raman amplification, 251
Rate Automatic adapt DSL (RADSL), 50
Reconfigurable cloud-RoF architecture with WDM techniques, 226–228
Reference points (RPs), 140
Reference signal generator, 347
Reference Signal Received Power (RSRP), 10, 34
Reflective modulation, 243
Reflective semiconductor optical amplifier (RSOA), 342
Remote access unit (RAU), 102, 103f, 123, 224–225, 341
Remote heterodyning detection (RHD), 107
Remote Interrogation of Terminal Network (RITENET) architecture, 243
Remote radio heads (RRHs), 81, 203
REPORT message, 256, 259
Representational State Transfer (REST), 376
Resource cloudification, challenges on virtualization implementation, 302–304
Resource sharing, 83–84
RF-over-Fiber, 103
RP3-01 insight, 142–145
S
Same frequency network (SFN) technology, 304
Scalable video coding, 14f
Second-generation (2G) systems, 63–64
Selected IP traffic offload (SIPTO), 327
Self-organized network (SoN), 31
Self-organizing HetNets, 6, 30
defining the CRE region, 35–37
definition and terminologies, 30–31
eICIC with CA, 37
Enhanced Inter-cell Interference Coordination (eICIC), 34
Inter-cell Interference Coordination (ICIC), 31–33
Service orchestration layer (SOL), 368
Service vG (S-vG), 323
Serving Gateway (S-GW), 237
Shannon theoretical limit, 214
Signaling formats, 193–194
Signal-to-Interference-plus-Noise Ratio (SINR), 18
Single-Carrier FDMA (SC-FDMA), 12–13
Single-Frequency Network (SFN), 18
multiple macrocell Interferers for, 36–37
Single-mode fiber-28 (SMF-28), 163
Small cell, 217
application scenarios, 217f
backhaul overview, 219f
eNBs, 6
ICIC, 33
Soft C-RAN, prototype verification of, 308–310
Soft frequency reuse (SFR), 33
Software-defined networking (SDN), 68, 189, 300, 320, 361, 368f
-based control plane, 196–201, 199f
recent progress in, 201–206
system-level fiber wireless network challenges, 192, 193f
network densification, 194–195, 195f
network topology, 195–196
signaling formats, 193–194
Sorbas digital baseband unit, 347
Space division multiple access (SDMA), 19
Spatial diversity and multiplexing, 6–9
Spatially distributed CoMP Coordinated multipoint (CoMP), 191, 204. See also Coordinated multipoint (CoMP)
Spatial multiplexing, 18–19, 20f
Standards development organization (SDO), 64
Standard single-mode fiber (SSMF), 227
optical fronthaul network, 193
Static frequency reuse scheme, 33
Structural convergence, 321
Subcarrier multiplexing (SCM), 86, 112–114, 345
Super HD (SHD) video cameras, 158
Super-PON (SPON), 244
Synchronized eNBs, 6f
System-level fiber wireless network challenges, 192, 193f
network densification, 194–195, 195f
network topology, 195–196
signaling formats, 193–194

T
TDM-over-WDM, 277–278
TDM-PONs, 49–50, 239–241
10G EPON, 48, 49, 241, 247–248
10G-PON, 247
Thin-film filter (TFF)-based filters, 342
Third Generation Partnership Project (3GPP), 64–65
 3GPP LTE, 3
 3GPP LTE-Advanced (LTE-A), 9
Three-dimensional MIMO (3D MIMO), 24
Time division duplexing (TDD) systems, 22
Time Division Long-Term Evolution (TD-LTE) system, 299
Time-division multiple access (TDMA), 47
 arbitration scheme, 256
Time-division-multiplexed passive optical network architectures, 240f, 245f
Time-division multiplexing (TDM) technique, 217, 277
Time Shared Optical Networks (TSON), 362
Time/wavelength division multiplexing (TWDM), 247
 TWDM-PON, 249
Total cost of ownership (TCO) reduction, 299
Transmission diversity, 6
 and spatial multiplexing, 18
 applications, 25–26
 coordinated multipoint (CoMP) transmission, 19–24
 definition and terminologies, 18
 MIMO and spatial multiplexing, 18–19
 3D beamforming, 24–25
Transmission of microwave signals on optical fibers, 104
 external modulation and direct detection (EM-DD), 106–107
 intensity modulation and direct detection (IM-DD), 105–106
 photo-detector-based heterodyning (HE) with direct detection (HE-DD), 107–109
Transmission point (cell) selection (TPS), 338
Transport networks for centralization, challenges on, 299–300
Triple play, 45
Turbo encoding, 307
Twisted pair technology, 53

U
Ultra dense network (UDN), 295
8K ultra high definition (UHD), 43
 evolution scenarios, 249
NG-PON2, 248–249
Ultra-high-speed fiber-wireless transmission, 70–71
Universal access gateway (UAG), 331–332
Universal filtered multi-carrier (UFMC), 86
Universal Mobile Telecommunication System (UMTS), 64, 236
Unlicensed LTE (LTE-U), 27
Uplink CA, 12
Upstream traffic flows rerouting and sharing, 256
User-centric radio network, 5G design of, 294–296

V
Vectoring, 52
Vertical-polarization (V-polarization) state, 175
Very-high-bit-rate DSL (VDSL), 50, 51–53
Virtual infrastructure control layer (VICL), 367, 373
 cross-domain connectivity, provisioning of, 376–377
Virtual infrastructures (VIs), 364
Virtualization implementation, challenges on, 302–304
Virtualization of optical networks, 364
Virtual machines (VMs), 296
Virtual optical networks (VONs), 364
Virtual PONs (VPOs), 203
Virtual residential gateway (vRGW) approach, 322, 322f
 implementing virtual gateway with physical BNG, 323–324
Visual Networking Index (VNI), 44
Viterbi-Viterbi algorithm, 168

W
Wavelength assignment/sharing for downstream traffic, 257
Wavelength division multiplexing (WDM), 49, 50, 114–117, 192, 196, 206, 248, 277, 293, 345
 WDM PON, 85, 239, 241–244, 251–253, 301
Wavelength selective switch (WSS), 175
Wide area networks (WAN), 197
Wideband-CDMA (WCDMA), 64
Wi-Fi-LTE interference management, 28
 unlicensed LTE, 27
 CA of LTE-Licensed and LTE-U CCs, 28–30
definition and terminologies, 27–28
Wi-Fi technologies
 evolution of, 61f
 market status, 60–63
WiMAX IEEE 803.16a WLANs,
 characteristics of, 119f
Wireless access network, 370f
Wireless delivery of mm-wave signal in
 W-band, 157
 advance algorithms based on DSP, 184
 approaches for realization of large capacity
 fiber wireless integration system, 160
 advanced multi-level modulation, 166–169
 antenna polarization multiplexing, 175–178
 electrical multi-carrier modulation, 173–174
 multi-band multiplexing, 178–182
 optical multi-carrier modulation, 169–172
 optical PDM combined with MIMO
 reception, 161–165
 wireless multi-path effects due to different
 wireless transmission distances, 182–184
Wireless local area network (WLAN), 229
Wireless Metropolitan Area Networks
 (WMANs), 60
Wireless Personal Area Networks (WPANs), 60, 229
Wireless physical infrastructure, 370
Wireless side, advanced modulation format in, 392
Wireless technologies solutions, state of the art
 in, 363
X
 xDSL Technology, 45, 50–53, 55