Index

A
Abdomen
\(^{18}\)F-FDG PET/CT
- stomach and bowel, 176
- urinary tract, 176–177
IF (see also Incidental findings (IFs))
 - adnexal findings, 109–110
 - adrenal mass, 108–109
 - cystic renal masses, 107–108
 - liver mass, 108
Abdominal aortic aneurysm (AAA), 155–156, 198
Adnexal cysts, 110
Adnexal lesions, 156–157
 - cysts and teratomas, 157–159
 - uterus, 159–160
Adrenal gland, 121
Adrenal lesions, non-\(^{18}\)F-FDG PET/CT, 187–188, 190–191
Adrenal mass
 - CT characteristics, 143–144
 - extra-adrenal malignancy, 146
 - frequency, 143
 - IF, 108–109
 - management, 145
 - shape and size, 145
 - young patients with, 146
Appendix, 155

B
Biliary tree, 150–151
Body imaging, 117–118
Bone, \(^{18}\)F-FDG PET/CT, 179
Brain imaging, 115–117
Breast, \(^{18}\)F-FDG PET/CT, 182–186
Brown adipose tissue, \(^{18}\)F-FDG PET/CT, 182

C
Carotid Doppler ultrasound image, 74
Cholelithiasis, 200–201
Colonography, 129–131
Computed tomography (CT)
 - characteristics, adrenal mass, 143–144
 - incidentalomas, 26
 - population-based imaging, 39
SCAPIS, 93–94
Coronary Artery Calcium Score (CACS), 94
Coronary artery disease (CAD), 174
Coronary artery stenosis (CAS)
 - challenges with calcifications, 97
 - guidelines, 96–97
 - handling, 97–98
Coronary CT angiography (CCTA), 94
Cystic renal masses, 107–108

D
Diffusion-weighted imaging (DWI), 189
Disclosure
 - design, 14
 - false-negative results, 11, 12
 - plans, 18–20
 - positive outcomes, 12
Dual-energy X-ray absorptiometry (DXA), 74

E
e-Medicine, potential impact of, 164
Esophagus, \(^{18}\)F-FDG PET/CT, 175–176

F
Female reproductive system, \(^{18}\)F-FDG PET/CT, 177–178
\(^{18}\)F-FDG PET/CT
 - abdomen
 - stomach and bowel, 176
 - urinary tract, 176–177
 - bone, 179
 - breast, 182–186
 - brown adipose tissue, 182
 - head and neck, 170
 - larynx, 173
 - salivary glands, 171
 - thyroid, 171–173
 - Waldeyer's ring, 171
 - immunological responses, 179–180
 - inflammatory lesions, 179–180
 - nonattenuation-corrected images, 186
A

18F-FDG PET/CT (cont.)
and PET/MR
advantages, 189–191
disadvantages, 191
skin and subcutaneous fat, 180–182
small pelvis
prostate and testes, 178–179
uterus and ovaries, 177–178
thorax
esophagus, 175–176
gastroesophageal junction, 175–176
heart, 174–175
lung, 173
thymus, 173–174

18F-FDG PET/MR, and PET/CT, 188
advantages, 189–191
disadvantages, 191

G
Gallbladder, 150–151
Gallstones, 200–201
Gastroesophageal junction, 18F-FDG PET/CT, 175–176
Gastrointestinal tract
appendix, 155
IF, 153–154
large bowel, 154–155
small bowel, 154
stomach, 154
G-CSF. See Granulocyte colony-stimulating factor (G-CSF)
German National Cohort (GNC)
design of MRI study within, 59
goal, 58
IF
clinically relevant, 62–65
clinical work-up outside, 62
concept, 68–69
ethical framework, 60
false positives, disproportionate increase of, 61–62
limited clinical context, 61
problems, 60–62
quality assurance, 67–68
radiologists, training and certification of, 67
reliability, reproducibility, and consistency, 62
scientific imaging sequences, 61
technical translation, 65–67
imaging, 58
MR sequences within, 58
Granulocyte colony-stimulating factor (G-CSF), 179, 180

H
Head and neck, 18F-FDG PET/CT, 170
larynx, 173
salivary glands, 171
thyroid, 171–173
Waldeyer's ring, 171
Healing process, 18F-FDG tracer uptake, 179
Heart, 18F-FDG PET/CT, 174–175
Hemangiomas, 198–199
Hibernoma, 182, 184
Hidradenitis suppurativa, 181, 183
Hormone replacement therapy, 178, 182–183

I
IFs. See Incidental findings (IFs)
Imaging-derived phenotypes (IDP), 73
Imaging modalities
CT, 39
MRI, 38–39
properties, 38
US, 39–40
Immune response, 18F-FDG PET/CT, 179–180
Incidental findings (IFs)
abdominal CT
adnexal findings, 109–110
adnexal and uterine lesions, 156–160
adrenal masses, 108–109, 143–146
in clinical work, 161–162
colonography, 129–131
cystic renal masses, 107–108
description, 128–129
detection, 131
e-Medicine, potential impact of, 164
examinations, 128
gallbladder and biliary tree, 150–151
gastrointestinal tract, 153–155
kidneys, 132–141
liver, 146–150
liver mass, 108
lymph nodes, 151
pancreas, 152–153
patients need, 162–163
prostate, 160–161
radiologists report, 162
refer physician, 163–164
retrospective study, 129
skeletal lesions, 161
spleen, 151
technical factors affecting, 131–132
urinary bladder and upper urinary tract tumors, 141–143
vascular structures, 155–156
in broad sense, 4–5
classification
clinical setting, 118–124
research setting, 114–118
clinical studies, 7
concept, 4
diagnostic findings, 4
ethical aspects
challenges, 9–10
classification, 19
disclosure algorithms, 18
disclosure and non-disclosure, 12–13, 18–21
discovery findings, 10
frequency of occurrence, 10–11
inform, 21
medical practice and research, 22–23
positive and negative effects, 13–14
possible consequences, 14
potential outcome, 11
prerequisites, 14–17
principles, 14–17
recommendations, 17–22
study protocol design, 21–22
typical fields, 11
whole-body scans, 10
GNC
clinical work-up outside, 62
cancer, 68–69
ethical framework, 60, 62–68
false positives, disproportionate increase of, 61–62
limited clinical context, 61
problems, 60–62
quality assurance, 67–68
radiologists, training and certification of, 67
reliability, reproducibility, and consistency, 62
scientific imaging sequences, 61
technical translation, 65–67
indicative dignity, 6
medical fundamental research, 7
MESA
aortic valve calcification, 88
CACS, 87–88
electron-beam CT, 88
four-detector row CT, 88
pericardial effusion, 88, 89
pleural thickening, 88, 89
prevalence, 88
pulmonary nodule, 88, 89
significant alerts, 89–90
in narrow sense, 5
neuroscientific fundamental research, 7
occurrence, 6–7
PFN, 107
population-based screening study, 113
Rotterdam study
on brain MRI, 85
detection and management protocol, 81–82
feedback, 85
frequency, 82–85
participants’ expectations and experience, 85–86
review of scans, 82
SCAPIS
aim, 92–93
asymptomatic coronary artery stenosis, 96–98
CT, 93–94
ethics, 98–99
imaging, 92
information collect, 92, 93
pulmonary nodules, 94–96
SHIP
assessment and handling, 49–51
distribution, 51–52
impact, 52–53
signal abnormality, 5–6
small pulmonary nodules, 106
subsolid pulmonary nodules, 106–107
UK Biobank
consent processes, 74–75
development, 74
evaluating participants, 75–76
feedback, 75
identification, 75
ongoing evaluation, 76–77
qualitative work, 76
with radiologists, 76
ultrasound
AAA, 198
cholelithiasis, 200–201
hemangiomas, 198–199
liver cysts, 199–200
preliminary remarks, 197–198
renal cell carcinoma, 201–202
renal cysts, 201
Incidentalomas
author’s advice, 32
CT, 26
definition, 26
incidence, 27
radiologists, 31–32
Informed consent
SHIP, 46–49
types, 31
Interatrial septum, lipomatous hypertrophy, 175

K
Kidney, 120
benign renal lesions, 135–136
Bosniak classification, 139
cystic renal lesions, 137
false-positive renal masses, 140
hydronephrosis, 141
normal variants and malformations, 141
renal calcifications, 140
renal size, 140
simple cysts, 137–138
small lesions, 136–137
solid renal tumors, 132–135

L
Larynx, 18F-FDG PET/CT, 173
Lipomatous hypertrophy, interatrial septum, 175
Liver, 189–190
ACR recommendations, 122
CT colonography, 146
cystic lesions, 146–147
cysts, ultrasound, 199–200
hemangioma, 147–148
incidental liver mass detected, 149–150
mass, 108
non-cystic benign liver lesions, 148–149
non-18F-FDG PET/CT, 186–187
steatosis, 150
Lung, 119–120, 173
Lung nodules, 186, 191
Lymph nodes, 151

M
Magnetic resonance imaging (MRI)
population-based imaging, 38–39
Rotterdam study, 85
Male reproductive system, 18F-FDG PET/CT, 178–179
Medicolegal aspects
duty of researchers, 30
exposure to radiation, 30–31
frequency engenders dilemma, 26–27
incidentaloma, in American courtroom, 29–30
incidentalomas
author’s advice, 32
CT, 26
definition, 26
incidence, 27
radiologists, 31–32
informed consent (see Informed consent)
radiology literature, 26
standard of care, 27–29
unnecessary imaging, 30–31
Metformin, 176
Multiethnic Study of Atherosclerosis (MESA) Study
aortic valve calcification, 88
CAC, 87–88
electron-beam CT, 88
four-detector row CT, 88
pericardial effusion, 88, 89
pleural thickening, 88, 89
prevalence, 88
pulmonary nodule, 88, 89
significant alerts, 89–90

N
Non-18F-FDG PET/CT
adrenal lesions, 187–188
liver lesions, 186–187
lung nodules, 186

O
Ovary, 18F-FDG PET/CT, 177–178

P
Pancreas
cystic lesions, 152–153
solid tumors, 152
Papillary muscles, focal tracer uptake in, 174
Pelvis, 18F-FDG PET/CT
prostate and testes, 178–179
uterus and ovaries, 177–178
Population-based imaging
data
post-processing and analysis, 40–41
storage and distribution, 40
general requirements, 37–38
imaging modalities
CT, 39
MRI, 38–39
properties, 38
US, 39–40
Positron emission tomography/computed tomography (PET/CT), 169–170
18F-FDG (see 18F-FDG PET/CT) and PET/MR, 188–191
and squamous cell carcinoma, 175
Positron emission tomography/magnetic resonance (PET/MR), 170
and PET/CT, 188–191
protocols, 189
Presidential Commission for Study of Bioethical Issues, 10
Prostate, 160–161, 178–179
Pulmonary nodules
guidelines, 94–95
handle
in main trial, 96
in pilot trial, 95–96
Pulmonary perifissural nodules (PFN), 107

R
Radiofrequency coils, gamma-quant attenuation, 188
Renal cell carcinoma, 201–202
Renal cysts, 201
Rotterdam study
hardware and imaging protocol, 80–81
IF
on brain MRI, 85
detection and management protocol, 81–82
feedback, 85
frequency, 82–85
participants’ expectations and experience, 85–86
review of scans, 82
neuroimaging, 80
setup, 79–80

S
Salivary glands, 18F-FDG PET/CT, 171
Sarcoidosis, 179–181
SCAPIS. See Swedish CArdioPulmonary bioImage Study (SCAPIS)
SHIP. See Study of Health in Pomerania (SHIP)
Signal abnormality, 5–6
Skeletal lesions, 161
Skin, 18F-FDG PET/CT, 180–182
Small pulmonary nodules, 106
Spine, 122–124
Spleen, 151
Squamous cell carcinoma, PET/CT, 175
Standardized uptake value (SUV), 170, 180, 182
Standard of care (SOC), 27–29
Study of Health in Pomerania (SHIP)
cohort study, 45
comprehensive examination programs, 45
Index

incidental findings
 assessment and handling, 49–51
 distribution, 51–52
 impact, 52–53
informed consent, 46–49
perception of study, 46–49
WB-MRI, 46
Subcutaneous fat, "F-FDG PET/CT, 180–182
Subsolid pulmonary nodules, 106–107
SUV. See standardized uptake value (SUV)
Swedish CArdioPulmonary bioImage Study (SCAPIS)
 aim, 92–93
 asymptomatic coronary artery stenosis, 96–98
 CT, 93–94
 ethics, 98–99
 imaging, 92
 information collect, 92, 93
 pulmonary nodules, 94–96
Testes, "F-FDG PET/CT, 178–179
Thorax, "F-FDG PET/CT
 esophagus, 175–176
 gastroesophageal junction, 175–176
 heart, 174–175
 lung, 173
 thymus, 173–174
3D gradient echo sequences, 189, 191
Thymus, "F-FDG PET/CT, 173–174
Thyroid, "F-FDG PET/CT, 171–173

UK Biobank
 carotid Doppler ultrasound, 74
 DXA, 74
generates IDP, 73
IF protocol
 consent processes, 74–75
 development, 74
 evaluating participants, 75–76
 feedback, 75
 identification, 75
 ongoing evaluation, 76–77
 qualitative work, 76
 with radiologists, 76
 imaging study, 72–74
 non-contrast cardiac MRI, 73
 research imaging, 72
Ultrasound
 AAA, 198
 cholelithiasis, 200–201
 hemangiomas, 198–199
 liver cysts, 199–200
 population-based imaging, 39–40
 preliminary remarks, 197–198
 renal cell carcinoma, 201–202
 renal cysts, 201
 Upper urinary tract tumors, 141–143
 Urinary bladder, 141–143
 Urinary tract, "F-FDG PET/CT, 176–177
 Uterine lesions, 156–157
 cysts and teratomas, 157–159
 uterus, 159–160
 Uterus, "F-FDG PET/CT, 177–178

Waldeyer’s ring, "F-FDG PET/CT, 171
Warburg effect, 170
White adipose tissue, 182
Whole body-MRI (WB-MRI), 15, 41, 46