References

58. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5&6), 555–581 (1992)

References

References

References

Graph notation

We try to use as much as possible graph notation compatible with the textbook of Diestel [138]. Here we recall the most basic definitions.

An undirected graph is a pair \(G = (V, E) \), where \(V \) is some set and \(E \) is a family of 2-element subsets of \(V \). The elements of \(V \) are the vertices of \(G \), and the elements of \(E \) are the edges of \(G \). The vertex set of a graph \(G \) is denoted by \(V(G) \) and the edge set of \(G \) is denoted by \(E(G) \). In this book all the graphs are finite, i.e., the sets \(V(G) \) and \(E(G) \) are finite. We use shorthands \(n = |V(G)| \) and \(m = |E(G)| \) whenever their use is not ambiguous. An edge of an undirected graph with endpoints \(u \) and \(v \) is denoted by \(uv \); the endpoints \(u \) and \(v \) are said to be adjacent, and one is said to be a neighbor of the other. We also say that vertices \(u \) and \(v \) are incident to edge \(uv \).

Unless specified otherwise, all the graphs are simple, which means that no two elements of \(E(G) \) are equal, and that all edges from \(E(G) \) have two different endpoints. If we allow multiple edges with the same endpoints (allowing \(E(G) \) to be a multiset), or edges having both endpoints at the same vertex (allowing elements of \(E(G) \) to be multisets of size 2 over \(E(G) \), called loops), then we arrive at the notion of a multigraph. Whenever we use multigraphs, we state it explicitly, making clear whether multiple edges or loops are allowed.

Similarly, a directed graph is a pair \(G = (V, E) \), where \(V \) is the set of vertices of \(G \), and \(E \) is the set of edges of \(G \), which this time are ordered pairs of two different vertices from \(V \). Edges in directed graphs are often also called arcs. For an edge \((u, v) \in E(G) \), we say that it is directed from \(u \) to \(v \), or simply that it goes from \(u \) to \(v \). Then \(v \) is an outneighbor of \(u \) and \(u \) is an inneighbor of \(v \). For an arc \(a = (u, v) \), \(u \) is the tail and \(v \) is the head of \(a \). Again, we can allow multiple edges with the same endpoints, as well as edges with the same head as tail (loops). Thus we arrive at the notion of a directed multigraph.
For an undirected graph G and edge $uv \in E(G)$, by contracting edge uv we mean the following operation. We remove u and v from the graph, introduce a new vertex w_{uv}, and connect it to all the vertices u or v were adjacent to. Note that the operation, as we defined it here, transforms a simple graph into a simple graph; in other words, if u and v had a common neighbor x, then the new vertex w_{uv} will be connected to x only via one edge. We may also view the operation of contraction as an operation on multigraphs: every edge ux and vx for some $x \in V(G)$ gives rise to one new edge $w_{uv}x$, and in particular every copy of the edge uv apart from the contracted one gives rise to a new loop at w_{uv}. For us the default type of contraction is the one defined on simple graphs, and whenever we use the multigraph version, we state it explicitly.

Graph H is a subgraph of graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Similarly, graph H is a supergraph of graph G if $V(H) \supseteq V(G)$ and $E(H) \supseteq E(G)$. For a subset $S \subseteq V(G)$, the subgraph of G induced by S is denoted by $G[S]$; its vertex set is S and its edge set consists of all the edges of $E(G)$ that have both endpoints in S. For $S \subseteq V(G)$, we use $G - S$ to denote the graph $G[V\setminus S]$, and for $F \subseteq E(G)$ by $G - F$ we denote the graph $(V(G),E(G)\setminus F)$. We also write $G - v$ instead of $G - \{v\}$. The neighborhood of a vertex v in G is $N_G(v) = \{u \in V : uv \in E(G)\}$ and the closed neighborhood of v is $N_G[v] = N_G(v) \cup \{v\}$. For a vertex set $S \subseteq V$, we define $N_G[S] = \bigcup_{v \in S}N[v]$ and $N_G(S) = N_G[S] \setminus S$. We denote by $d_G(v)$ the degree of a vertex v in graph G, which is just the number of edges incident to v. We may omit indices if the graph under consideration is clear from the context. A graph G is called r-regular if all vertices of G have degree r. For directed graphs, the notions of inneighborhood, outneighborhood, indegree, and outdegree are defined analogously.

In an undirected graph G, a walk of length k is a nonempty sequence of vertices v_0, \ldots, v_k such that for every $i = 0, \ldots, k - 1$ we have $v_iv_{i+1} \in E(G)$. If $v_0 = v_k$, then the walk is closed. A path is a walk where no two vertices appear twice, and a cycle is a closed walk where no two vertices appear twice, apart from the vertex that appears at the beginning and at the end. We often think of paths and cycles as graphs induced by vertices and edges traversed by them. Then a path is a graph P of the form

\[V(P) = \{v_0, v_1, \ldots, v_k\} \quad E(P) = \{v_0v_1, v_1v_2, \ldots, v_{k-1}v_k\}. \]

If $P = v_0v_1 \ldots v_k$ is a path, then the graph obtained from P by adding edge x_kx_0 is a cycle. Again, the length of a path or cycle is equal to the cardinality of its edge set. We denote by $\text{dist}(u,v)$ the distance between u and v in a graph G, which is the shortest length of a path between u and v. The notions of walks, paths, and cycles can be naturally generalized to directed graphs by requesting compliance with the edge directions.

The girth of a graph G is the shortest length of a cycle in G. A Hamiltonian path (cycle) in a graph G is a path (cycle) passing through all the vertices of
A G graph is bipartite if $V(G)$ can be partitioned into two subsets (A, B) such that every edge of $E(G)$ has one endpoint in A and the second in B. Partition (A, B) is also called a bipartition of G. Equivalently, G is bipartite if and only if G does not have any cycle of odd length.

An undirected graph G is connected if for every pair u, v of its vertices there is a path between u and v. A vertex set $X \subseteq V(G)$ is connected if the subgraph $G[X]$ is connected.

A tree T is a connected undirected graph without cycles. A vertex set $X \subseteq V(T)$ is connected if the subgraph $G[X]$ is connected. A tree T can be rooted at a vertex $r \in V(T)$, which imposes on $V(T)$ natural parent-child and ancestor-descendant relations. A forest F is an undirected graph without cycles; thus all the connected components of F are trees. A spanning tree T of a graph G is a tree such that $V(T) = V(G)$ and $E(T) \subseteq E(G)$. A directed graph G is acyclic, or a DAG, if it does not contain any directed cycles.

A matching M in a graph G is a set of edges that pairwise do not share endpoints. A vertex of G is saturated if it is incident to an edge in the matching. Otherwise the vertex is unsaturated. For a given matching M, an alternating path is a path in which the edges alternately belong to the matching and do not belong to the matching. An augmenting path is an alternating path that starts from and ends at an unsaturated vertex. A perfect matching is a matching M that saturates all the vertices of the graph, i.e., every vertex of the graph is an endpoint of an edge in M.

An independent set I in a graph G is a subset of the vertex set $V(G)$ such that the vertices of I are pairwise nonadjacent. A clique C in a graph G is a subset of the vertex set $V(G)$ such that the vertices of C are pairwise adjacent. A vertex cover X of a graph G is a subset of the vertex set $V(G)$ such that X covers the edge set $E(G)$, i.e., every edge of G has at least one endpoint in X. A dominating set D of a graph G is a subset of the vertex set $V(G)$ such that every vertex of $V(G) \setminus D$ has a neighbor in D. A proper coloring of a graph G assigns a color to each vertex of G in such a manner that adjacent vertices receive distinct colors. The chromatic number of G is the minimum χ such that there is a proper coloring of G using χ colors.

We now define the notion of a planar graph and an embedding of a graph into the plane. First, instead of embedding into the plane we will equivalently embed our graphs into a sphere: in this manner, we do not distinguish unnecessarily the outer face of the embedding. Formally, an embedding of a graph G into a sphere is a mapping that maps (a) injectively each vertex of G into a point of the sphere, and (b) each edge uv of G into a Jordan curve connecting the images of u and v, such that the curves are pairwise disjoint (except for the endpoints) and do not pass through any other image of a vertex. A face is a connected component of the complement of the image of G in the sphere; if G is connected, each face is homeomorphic to an open disc. A planar graph is a graph that admits an embedding into a sphere, and a plane graph is a planar graph together with one fixed embedding.

The classic theorems of Kuratowski and Wagner state that a graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor (equivalently, as
a topological minor). In Chapters 6 and 7 we briefly mention graphs embed-
dable into more complicated surfaces than plane or sphere. We refer to the
bibliographic notes at the end of Chapter 6 for pointers to the literature on
this topic.

SAT notation

Let $\text{Vars} = \{x_1, x_2, \ldots, x_n\}$ be a set of Boolean variables. A variable x or
a negated variable $\neg x$ is called a literal. A propositional formula φ is in
conjunctive normal form, or is a CNF formula, if it is of the form:

$$\varphi = C_1 \land C_2 \land \ldots \land C_m.$$

Here, each C_i is a clause of the form

$$C_i = \ell_1^i \lor \ell_2^i \lor \ldots \lor \ell_{r_i}^i,$$

where ℓ_j^i are literals of some variables of Vars. The number of literals r_i in
a clause C_i is called the length of the clause, and is denoted by $|C_i|$. The size of
formula φ is defined as $|\varphi| = \sum_{i=1}^{m} |C_i|$. The set of clauses of a CNF formula
is usually denoted by Cls.

For $q \geq 2$, a CNF formula φ is in q-CNF if every clause from φ has at
most q literals. If φ is a formula and X a set of variables, then we denote
by $\varphi - X$ the formula obtained from φ after removing all the clauses that
contain a literal of a variable from X.

For a CNF formula φ on variables Vars, a truth assignment is a mapping
$\psi: \text{Vars} \to \{\bot, \top\}$. Here, we denote the false value as \bot, and the truth
value as \top. This assignment can be naturally extended to literals by taking
$\psi(\neg x) = \neg \psi(x)$ for each $x \in \text{Vars}$. A truth assignment ψ satisfies a clause
C of φ if and only if C contains some literal ℓ with $\psi(\ell) = \top$; ψ satisfies
formula φ if it satisfies all the clauses of φ. A formula is satisfiable if it is
satisfied by some truth assignment; otherwise it is unsatisfiable.

The notion of a truth assignment can be naturally generalized to partial
assignments that valuate only some subset $X \subseteq \text{Vars}$; i.e., ψ is a mapping
from X to $\{\bot, \top\}$. Here, a clause C is satisfied by ψ if and only if C
contains some literal ℓ whose variable belongs to X, and which moreover satisfies
$\psi(\ell) = \top$.

Notation
Problem definitions

Problem definitions

(p,q)-Cluster

Input: A graph G, a vertex $v \in V(G)$ and integers p and q.

Question: Does there exist a (p,q)-cluster containing v, that is, a set $C \subseteq V(G)$ such that $v \in C$, $|C| \leq p$, and $d(C) \leq q$?

(p,q)-Partition

Input: A graph G and integers p and q.

Question: Does there exist a partition of $V(G)$ into (p,q)-clusters? Here, a set $C \subseteq V(G)$ is a (p,q)-cluster if $|C| \leq p$ and $d(C) \leq q$.

2-Matroid Intersection

Input: A universe U, two matrices representing matroids M_1, M_2 over U, and an integer k.

Question: Does there exist a set $S \subseteq U$ of size at least k that is independent both in M_1 and M_2?

2-SAT

Input: A CNF formula φ, where every clause consists of at most two literals.

Question: Does there exist a satisfying assignment for φ?

2-degenerate Vertex Deletion

Input: A graph G and an integer k.

Question: Does there exist a set X of at most k vertices of G such that $G - X$ is 2-degenerate?

2k × 2k Bipartite Permutation Independent Set

Input: An integer k and a graph G with the vertex set $[2k] \times [2k]$, where every edge is between $I_1 = [k] \times [k]$ and $I_2 = ([2k] \setminus [k]) \times ([2k] \setminus [k])$.

Question: Does there exist an independent set $X \subseteq I_1 \cup I_2$ in G that induces a permutation of $[2k]$?

3-Coloring

Input: A graph G.

Question: Does there exist a coloring $c : V(G) \to \{1, 2, 3\}$ such that $c(u) \neq c(v)$ for every $uv \in E(G)$?

3-Hitting Set

Input: A universe U, a family \mathcal{A} of sets over U, where each set in \mathcal{A} is of size at most 3, and an integer k.

Question: Does there exist a set $X \subseteq U$ of size at most k that has a nonempty intersection with every element of \mathcal{A}?
Problem definitions

3-Matroid Intersection

Input:
A universe U, three matrices representing matroids M_1, M_2, M_3 over U, and an integer k.

Question:
Does there exist a set $S \subseteq U$ of size at least k that is independent in every matroid M_i, $i = 1, 2, 3$?

3-SAT

Input:
A CNF formula φ, where every clause consists of at most three literals.

Question:
Does there exist a satisfying assignment for φ?

\mathcal{G} Vertex Deletion

Input:
A graph G, an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X \in \mathcal{G}$? Here, \mathcal{G} denotes any graph class that is a part of the problem definition.

ℓ-Matroid Intersection

Input:
A universe U, ℓ matrices representing matroids M_1, M_2, \ldots, M_ℓ over U, and an integer k.

Question:
Does there exist a set $S \subseteq U$ of size at least k that is independent in every matroid M_i, $1 \leq i \leq \ell$?

ϕ-Maximization

Input:
A graph G and an integer k.

Question:
Does there exist a set S of at least k vertices of G such that $\phi(G, S)$ is true? Here, ϕ denotes any computable Boolean predicate that is a part of the problem definition.

ϕ-Minimization

Input:
A graph G and an integer k.

Question:
Does there exist a set S of at most k vertices of G such that $\phi(G, S)$ is true? Here, ϕ denotes any computable Boolean predicate that is a part of the problem definition.

d-Bounded-Degree Deletion

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that the maximum degree of $G - X$ is at most d?

d-Clustering

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that the maximum degree of $G - X$ is at most d?

d-Hitting Set

Input:
A universe U, a family \mathcal{A} of sets over U, where each set in \mathcal{A} is of size at most d, and an integer k.

Question:
Does there exist a set $X \subseteq U$ of size at most k that has a nonempty intersection with every element of \mathcal{A}?

d-Set Packing

Input:
A universe U, a family \mathcal{A} of sets over U, where each set in \mathcal{A} is of size at most d, and an integer k.

Question:
Does there exist a family $\mathcal{A}' \subseteq \mathcal{A}$ of k pairwise disjoint sets?

k-Tree

A synonym for Tree Subgraph Isomorphism.

$k \times k$ Clique

Input:
An integer k and a graph G with a vertex set $[k] \times [k]$.

Question:
Does there exist a set $X \subseteq V(G)$ that is a clique in G and that contains exactly one element in each row $\{i\} \times [k]$, $1 \leq i \leq k$?
<table>
<thead>
<tr>
<th>Problem definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \times k$ Hitting Set</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>

| **$k \times k$ Permutation Hitting Set with thin sets** |
| **Input:** | An integer k and a family \mathcal{A} of subsets of $[k] \times [k]$, where every element of \mathcal{A} contains at most one element in each row $\{i\} \times [k]$, $1 \leq i \leq k$. |
| **Question:** | Does there exist a set $X \subseteq [k] \times [k]$ that has a nonempty intersection with every element of \mathcal{A} and that contains exactly one element in each row $\{i\} \times [k]$, $1 \leq i \leq k$? |

| **$k \times k$ Permutation Clique** |
| **Input:** | An integer k and a graph G with a vertex set $[k] \times [k]$. |
| **Question:** | Does there exist a set $X \subseteq V(G)$ that is a clique in G and that induces a permutation of $[k]$? |

| **$k \times k$ Permutation Hitting Set** |
| **Input:** | An integer k and a family \mathcal{A} of subsets of $[k] \times [k]$. |
| **Question:** | Does there exist a set $X \subseteq [k] \times [k]$ that has a nonempty intersection with every element of \mathcal{A} and that induces a permutation of $[k]$? |

| **$k \times k$ Permutation Hitting Set with thin sets** |
| **Input:** | An integer k and a family \mathcal{A} of subsets of $[k] \times [k]$, where every element of \mathcal{A} contains at most one element in each row $\{i\} \times [k]$, $1 \leq i \leq k$. |
| **Question:** | Does there exist a set $X \subseteq [k] \times [k]$ that has a nonempty intersection with every element of \mathcal{A} and that induces a permutation of $[k]$? |

| **q-Coloring** |
| **Input:** | A graph G. |
| **Question:** | Does there exist a coloring $c : V(G) \rightarrow [q]$ such that $c(u) \neq c(v)$ for every $uv \in E(G)$? |

| **q-SAT** |
| **Input:** | A CNF formula φ, where every clause consists of at most q literals. |
| **Question:** | Does there exist a satisfying assignment for φ? |

| **q-Set Cover** |
| **Input:** | A universe U, a family \mathcal{F} over U, where every element of \mathcal{F} is of size at most q, and an integer k. |
| **Question:** | Does there exist a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ of size at most k such that $\bigcup \mathcal{F}' = U$? |

| **r-Center** |
| **Input:** | A graph G and an integer k. |
| **Question:** | Does there exist a set X of at most k vertices of G such that every vertex of G is within distance at most r from at least one vertex of X? |

| **s-Way Cut** |
| **Input:** | A graph G and integers s and k. |
| **Question:** | Does there exist a set X of at most k edges of G such that $G - X$ has at least s connected components? |
Almost 2-SAT

Input:
A CNF formula \(\varphi \), where every clause consists of at most two literals, and an integer \(k \).

Question:
Is it possible to make \(\varphi \) satisfiable by deleting at most \(k \) clauses?

Annotated Bipartite Coloring

Input:
A bipartite graph \(G \), two sets \(B_1, B_2 \subseteq V(G) \), and an integer \(k \).

Question:
Does there exist a set \(X \) of at most \(k \) vertices of \(G \) such that \(G - X \) has a proper 2-coloring \(c : V(G) \setminus X \to \{1, 2\} \) (i.e., \(c(u) \neq c(v) \) for every edge \(uv \)) that agrees with the sets \(B_1 \) and \(B_2 \), that is, \(f(v) = i \) whenever \(v \in B_i \setminus X \) and \(i = 1, 2 \)?

Annotated Satisfiable Almost 2-SAT

Input:
A satisfiable formula \(\varphi \) in CNF form, where every clause of \(\varphi \) consists of at most two literals, two sets of variables \(V^\top \) and \(V^\perp \), and an integer \(k \).

Question:
Does there exist a set \(X \) of at most \(k \) variables of \(\varphi \) and a satisfying assignment \(\psi \) of \(\varphi - X \) such that \(\psi(x) = \top \) for every \(x \in V^\top \setminus X \) and \(\psi(x) = \bot \) for every \(x \in V^\perp \setminus X \)? Here, \(\varphi - X \) denotes the formula \(\varphi \) with every clause containing at least one variable of \(X \) deleted.

Bar Fight Prevention

Input:
A bar, a list of \(n \) potential guests, for every pair of guests a prediction whether they will fight if they are admitted together to the bar, and an integer \(k \).

Question:
Can you identify a set of at most \(k \) troublemakers, so that if you admit to the bar everybody except for the troublemakers, no fight breaks out among the admitted guests?

Bipartite Matching

Input:
A bipartite graph \(G \) and an integer \(k \).

Question:
Does there exist an edge set \(S \subseteq E(G) \) of size at least \(k \) such that no two edges in \(S \) share an endpoint?

CNF-SAT

Input:
A formula \(\varphi \) in conjunctive normal form (CNF).

Question:
Does there exist a satisfying assignment for \(\varphi \)?

Chordal Completion

Input:
A graph \(G \) and an integer \(k \).

Question:
Can one add at most \(k \) edges to \(G \) to turn it into a chordal graph?

Chromatic Number

Input:
A graph \(G \).

Question:
What is the minimum integer \(q \), such that there exists a coloring \(c : V(G) \to [q] \) satisfying \(c(u) \neq c(v) \) for every edge \(uv \in E(G) \)?

Clique

Input:
A graph \(G \) and an integer \(k \).

Question:
Does there exist a set of \(k \) vertices of \(G \) that is a clique in \(G \)?

CliqueLog

Input:
A graph \(G \) and an integer \(k \) such that \(k \leq \log_2 |V(G)| \).

Question:
Does there exist a set of \(k \) vertices of \(G \) that is a clique in \(G \)?
Closest String

Input:
A set of k strings x_1, \ldots, x_k, each string over an alphabet Σ and of length L, and an integer d.

Question:
Does there exist string y of length L over Σ such that $d_H(y, x_i) \leq d$ for every $1 \leq i \leq k$? Here, $d_H(x, y)$ is the Hamming distance between strings x and y, that is, the number of positions where x and y differ.

Closest Substring

Input:
A set of k strings x_1, \ldots, x_k over an alphabet Σ, and integers L and d

Question:
Does there exist a string s of length L such that, for every $1 \leq i \leq k$, x_i has a substring x_i' of length L with $d_H(s, x_i) \leq d$. Here, $d_H(x, y)$ is the Hamming distance between strings x and y, that is, the number of positions where x and y differ.

Cluster Editing

Input:
A graph G and an integer k.

Question:
Does there exist a string s of length L such that every connected component of $G - X$ contains at most k vertices? Here, a cluster graph is a graph where every connected component is a clique.

Cluster Vertex Deletion

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X$ is a cluster graph? Here, a cluster graph is a graph where every connected component is a clique.

Cochromatic Number

Input:
A graph G.

Question:
What is the minimum integer q, such that there exists a coloring $c : V(G) \to [q]$ satisfying $c(u) \neq c(v)$ for every pair of nonadjacent vertices u, v?

Colored Red-Blue Dominating Set

Input:
A bipartite graph G with bipartition classes $R \uplus B = V(G)$, an integer ℓ and a partition of R into ℓ sets R^1, R^2, \ldots, R^ℓ.

Question:
Does there exist a set $X \subseteq R$ that contains exactly one element of every set R^i, $1 \leq i \leq \ell$ and such that $N_G(X) = B$?

Colorful Graph Motif

Input:
A graph G, an integer k and a coloring $c : V(G) \to [k]$.

Question:
Does there exist a connected subgraph of G that contains exactly one vertex of each color?

Component Order Integrity

Input:
A graph G and two integers k and ℓ.

Question:
Does there exist a set X of at most k vertices of G such that every connected component of $G - X$ contains at most ℓ vertices?

Connected Bull Hitting

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G[X]$ is connected and $G - X$ does not contain a bull as an induced subgraph? Here, a bull is a 5-vertex graph H with $V(H) = \{a, b, c, d, e\}$ and $E(H) = \{ab, bc, ac, bd, ce\}$.

Connected Dominating Set

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G[X]$ is connected and $N_G[X] = V(G)$?

Connected Feedback Vertex Set

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G[X]$ is connected and $G - X$ is a forest?
Connected Vertex Cover

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G[X]$ is connected and $G - X$ is edgeless?

Cycle Packing

Input:
A graph G and an integer k.

Question:
Does there exist in G a family of k pairwise vertex-disjoint cycles?

Digraph Pair Cut

Input:
A directed graph G, a designated vertex $s \in V(G)$, a family of pairs of vertices $F \subseteq (V(G))^2$, and an integer k.

Question:
Does there exist a set X of at most k edges of G, such that for each pair $\{u,v\} \in F$, either u or v is not reachable from s in the graph $G - X$?

Directed Edge Multicut

Input:
A directed graph G, a set of pairs $(s_i,t_i)_{i=1}^{\ell}$ of vertices of G, and an integer k.

Question:
Does there exist a set X of at most k edges of G such that for every $1 \leq i \leq \ell$, vertex t_i is not reachable from vertex s_i in the graph $G - X$?

Directed Edge Multiway Cut

Input:
A directed graph G, a set $T \subseteq V(G)$, and an integer k.

Question:
Does there exist a set $X \subseteq V(G) \setminus T$ of size at most k such that for every two distinct vertices $t_1,t_2 \in T$, vertex t_2 is not reachable from vertex t_1 in the graph $G - X$?

Directed Feedback Arc Set

Input:
A directed graph G and an integer k.

Question:
Does there exist a set X of at most k edges of G such that $G - X$ is acyclic?

Directed Feedback Arc Set Compression

Input:
A directed graph G, a set $W \subseteq V(G)$ such that $G - W$ is acyclic, and an integer k.

Question:
Does there exist a set X of at most k edges of G such that $G - X$ is acyclic?

Directed Feedback Vertex Set

Input:
A directed graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X$ is acyclic?

Directed Max Leaf

Input:
A directed graph G and an integer k.

Question:
Does there exist an out-tree in G with at least k leaves? Here, an out-tree is a directed graph whose underlying undirected graph is a tree, and every vertex of the out-tree, except for one, has indegree exactly one; a leaf of an out-tree is a vertex with outdegree zero.

Directed Steiner Tree

Input:
A directed graph G, a designated root vertex r, a set $T \subseteq V(G)$, and an integer ℓ.

Question:
Does there exist a subgraph H of G with at most ℓ edges, such that every vertex $t \in T$ is reachable from r in H?

Directed Vertex Multiway Cut

Input:
A directed graph G, a set $T \subseteq V(G)$, and an integer k.

Question:
Does there exist a set $X \subseteq V(G) \setminus T$ of size at most k such that for every two distinct vertices $t_1,t_2 \in T$, vertex t_2 is not reachable from vertex t_1 in the graph $G - X$?
Disjoint Factors

Input:
A word w over an alphabet $\Gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_s\}$.

Question:
Does there exist pairwise disjoint subwords u_1, u_2, \ldots, u_s of w such that each u_i is of length at least two and begins and ends with γ_i?

Disjoint Feedback Vertex Set

Input:
A graph G, a set $W \subseteq V(G)$ such that $G - W$ is a forest, and an integer k.

Question:
Does there exist a set $X \subseteq V(G) \setminus W$ of size at most k such that $G - X$ is a forest?

Disjoint Feedback Vertex Set in Tournaments

Input:
A tournament G, a set $W \subseteq V(G)$ such that $G - W$ is acyclic, and an integer k.

Question:
Does there exist a set $X \subseteq V(G) \setminus W$ of size at most k such that $G - X$ is acyclic?

Disjoint Odd Cycle Transversal

Input:
A graph G, a set $W \subseteq V(G)$ such that $G - W$ is bipartite, and an integer k.

Question:
Does there exist a set $X \subseteq V(G) \setminus W$ of size at most k such that $G - X$ is bipartite?

Disjoint Planar Vertex Deletion

Input:
A graph G, a set $W \subseteq V(G)$ such that $G - W$ is planar, and an integer k.

Question:
Does there exist a set $X \subseteq V(G) \setminus W$ of size at most k such that $G - X$ is planar?

Disjoint Vertex Cover

Input:
A graph G, a set $W \subseteq V(G)$ such that $G - W$ is edgeless, and an integer k.

Question:
Does there exist a set $X \subseteq V(G) \setminus W$ of size at most k such that $G - X$ is edgeless?

Distortion

Input:
A graph G and an integer d.

Question:
Does there exist an embedding $\eta : V(G) \to \mathbb{Z}$ such that for every $u, v \in V(G)$ we have $\text{dist}_G(u, v) \leq |\eta(u) - \eta(v)| \leq d \cdot \text{dist}_G(u, v)$?

Dominating Set

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $N_G[X] = V(G)$?

Dominating Set on Tournaments

Input:
A tournament G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that for every $v \in V(G) \setminus X$ there exists $u \in X$ with $(u, v) \in E(G)$?

Dominating Set with Pattern

Input:
An integer k, and a graph H on vertex set $[k]$.

Question:
Does there exist a tuple (v_1, v_2, \ldots , v_k) of distinct vertices of G such that $N_G[[v_1, v_2, \ldots , v_k]] = V(G)$ and $v_i, v_j \in E(G)$ if and only if $ij \in E(H)$?

Dual-Coloring

Input:
A graph G, an integer k, and a graph H on vertex set $[k]$.

Question:
Does there exist a coloring $c : V(G) \to [n - k]$ such that $c(u) \neq c(v)$ for every edge uv?

Ed-Hitting Set

Input:
A universe U, a family \mathcal{A} of sets over U, where each set in \mathcal{A} is of size exactly d, and an integer k.

Question:
Does there exist a set $X \subseteq U$ of size at most k that has a nonempty intersection with every element of \mathcal{A}?
<table>
<thead>
<tr>
<th>Problem</th>
<th>Input</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed-Set Packing</td>
<td>A universe U, a family A of sets over U, where each set in A is of size exactly d, and an integer k.</td>
<td>Does there exist a family $A' \subseteq A$ of k pairwise disjoint sets?</td>
</tr>
<tr>
<td>Edge Bipartization</td>
<td>A graph G and an integer k.</td>
<td>Does there exist a set X of at most k edges of G such that $G - X$ is bipartite?</td>
</tr>
<tr>
<td>Edge Clique Cover</td>
<td>A graph G and an integer k.</td>
<td>Does there exist k subgraphs H_1, H_2, \ldots, H_k of G, such that each H_i is a clique and $E(G) = \bigcup_{i=1}^{k} E(H_i)$?</td>
</tr>
<tr>
<td>Edge Disjoint Cycle Packing</td>
<td>A graph G and an integer k.</td>
<td>Does there exist in G a family of k pairwise edge-disjoint cycles?</td>
</tr>
<tr>
<td>Edge Dominating Set</td>
<td>A graph G and an integer k.</td>
<td>Does there exist a set X of at most k edges of G such that $G - V(X)$ is edgeless?</td>
</tr>
<tr>
<td>Edge MultiCut</td>
<td>A graph G, a set $T \subseteq V(G)$, and an integer k.</td>
<td>Does there exist a set X of at most k edges of G such that every element of T lies in a different connected component of $G - X$?</td>
</tr>
<tr>
<td>Exact CNF-SAT</td>
<td>A formula φ in CNF and an integer k.</td>
<td>Does there exist an assignment ψ that satisfies φ and sets to true exactly k variables?</td>
</tr>
<tr>
<td>Exact Even Set</td>
<td>A universe U, a set F of subsets of U, and an integer k.</td>
<td>Does there exist a nonempty set $X \subseteq U$ of size exactly k such that $</td>
</tr>
</tbody>
</table>
Problem definitions

Exact Odd Set

Input:
A universe U, a set F of subsets of U, and an integer k.

Question:
Does there exist a nonempty set $X \subseteq U$ of size exactly k such that $|A \cap X|$ is odd for every $A \in F$?

Exact Unique Hitting Set

Input:
A universe U, a set A of subsets of U, and an integer k.

Question:
Does there exist a set $X \subseteq U$ of size exactly k such that $|A \cap X| = 1$ for every $A \in A$?

FAST
An abbreviation for Feedback Arc Set in Tournaments.

FVST
An abbreviation for Feedback Vertex Set in Tournaments.

Face Cover

Input:
A graph G embedded on a plane and an integer k.

Question:
Does there exist a set X of at most k faces of the embedding of G such that every vertex of G lies on at least one face of X?

Feedback Arc Set in Tournaments

Input:
A tournament G and an integer k.

Question:
Does there exist a set X of at most k edges of G such that $G - X$ is acyclic?

Feedback Vertex Set

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X$ is a forest?

Feedback Vertex Set in Tournaments

Input:
A tournament G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X$ is acyclic?

Feedback Vertex Set in Tournaments Compression

Input:
A tournament G, a set $W \subseteq V(G)$ such that $G - W$ is acyclic, and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X$ is acyclic?

Graph Genus

Input:
A graph G and an integer g.

Question:
Can G be embedded on a surface of Euler genus g?

Graph Isomorphism

Input:
Two graphs G and H.

Question:
Are G and H isomorphic?

Graph Motif

Input:
A graph G, an integer k, a coloring $c : V(G) \to [k]$, and a multiset M with elements from $[k]$.

Question:
Does there exist a set $X \subseteq V(G)$ such that $G[X]$ is connected and the multiset $\{c(u) : u \in X\}$ equals M?

Grid Tiling

Input:
An integer k, an integer n, and a collection S of k^2 nonempty sets $S_{i,j} \subseteq [n] \times [n] (1 \leq i,j \leq k)$.

Question:
Can one choose for each $1 \leq i,j \leq k$ a pair $s_{i,j} \in S_{i,j}$ such that
- If $s_{i,j} = (a,b)$ and $s_{i,j+1} = (a',b')$, then $a = a'$.
- If $s_{i,j} = (a,b)$ and $s_{i,j+1} = (a',b')$, then $b = b'$.
Problem definitions

GRID TILING with \(\leq \)

Input:
An integer \(k \), an integer \(n \), and a collection \(S \) of \(k^2 \) nonempty sets \(S_{i,j} \subseteq [n] \times [n] \) (\(1 \leq i,j \leq k \)).

Question:
Can one choose for each \(1 \leq i,j \leq k \) a pair \(s_{i,j} \in S_{i,j} \) such that
- If \(s_{i,j} = (a,b) \) and \(s_{i+1,j} = (a',b') \), then \(a \leq a' \).
- If \(s_{i,j} = (a,b) \) and \(s_{i,j+1} = (a',b') \), then \(b \leq b' \).

HALL SET

Input:
A bipartite graph \(G \) with bipartition classes \(A \cup B = V(G) \) and an integer \(k \).

Question:
Does there exist a set \(X \subseteq A \) of size at most \(k \) such that \(|N_G(X)| < |X| \)?

HALTING

Input:
A description of a deterministic Turing machine \(M \), an input word \(x \).

Question:
Does \(M \) halt on \(x \)?

HAMILTONIAN CYCLE

Input:
A graph \(G \).

Question:
Does there exist a simple cycle \(C \) in \(G \) such that \(V(C) = V(G) \)?

HAMILTONIAN PATH

Input:
A graph \(G \).

Question:
Does there exist a simple path \(P \) in \(G \) such that \(V(P) = V(G) \)?

HITTING SET

Input:
A universe \(U \), a family \(\mathcal{A} \) of sets over \(U \), and an integer \(k \).

Question:
Does there exist a set \(X \subseteq U \) of size at most \(k \) that has a nonempty intersection with every element of \(\mathcal{A} \)?

IMBALANCE

Input:
A graph \(G \) and an integer \(k \).

Question:
Does there exist a bijective function \(\pi : V(G) \to \{ 1, 2, \ldots, |V(G)| \} \) (called an ordering) whose imbalance is at most \(k \)?

Here, the imbalance of a vertex \(v \in V(G) \) in an ordering \(\pi \) is defined as

\[
\iota_{\pi}(v) = |\{ u \in N_G(v) : \pi(u) < \pi(v) \}| - |\{ u \in N_G(v) : \pi(u) > \pi(v) \}|,
\]

and the imbalance of an ordering \(\pi \) is defined as

\[
\iota(\pi) = \sum_{v \in V(G)} \iota_{\pi}(v).
\]

INDUENT DOMINATING SET

Input:
A graph \(G \) and an integer \(k \).

Question:
Does there exist a set \(X \) of at most \(k \) vertices of \(G \) such that \(G[X] \) is edgeless and \(N_G[X] = V(G) \)?

INDEPENDENT FEEDBACK VERTEX SET

Input:
A graph \(G \) and an integer \(k \).

Question:
Does there exist a set \(X \) of at most \(k \) vertices of \(G \) such that \(G[X] \) is edgeless and \(G - X \) is a forest?

INDEPENDENT SET

Input:
A graph \(G \) and an integer \(k \).

Question:
Does there exist a set \(X \) of at most \(k \) vertices of \(G \) such that \(G[X] \) is edgeless?

INDUCED MATCHING

Input:
A graph \(G \) and an integer \(k \).

Question:
Does there exist a set \(X \) of exactly \(2k \) vertices of \(G \) such that \(G[X] \) is a matching consisting of \(k \) edges?
Problem definitions

Integer Linear Programming

Input:
Integers m and p, a matrix $A \in \mathbb{Z}^{m \times p}$, and vectors $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^p$.

Question:
Find a vector $x \in \mathbb{Z}^p$ that satisfies $Ax \leq b$ and that minimizes the value of the scalar product $c \cdot x$.

Integer Linear Programming Feasibility

Input:
Integers m and p, a matrix $A \in \mathbb{Z}^{m \times p}$, and a vector $b \in \mathbb{Z}^m$.

Question:
Does there exist a vector $x \in \mathbb{Z}^p$ such that $Ax \leq b$?

Linear Programming

Input:
Integers m and p, a matrix $A \in \mathbb{R}^{m \times p}$, and vectors $b \in \mathbb{R}^m$, $c \in \mathbb{R}^p$.

Question:
Find a vector $x \in \mathbb{R}^p$ that satisfies $Ax \leq b$ and that minimizes the value of the scalar product $c \cdot x$.

Linkless Embedding

Input:
A graph G and an integer k.

Question:
Does there exist an embedding of G into \mathbb{R}^3 such that any pairwise linked family of cycles in G has size at most k? Here, we say that two vertex-disjoint cycles of G are linked if they cannot be separated by a continuous deformation (i.e., they look like two consecutive links of a chain).

List Coloring

Input:
A graph G and a set $L(v)$ for every $v \in V(G)$.

Question:
Can one choose a color $c(v) \in L(v)$ for every $v \in V(G)$ such that $c(u) \neq c(v)$ for every $uv \in E(G)$?

Long Induced Path

Input:
A graph G and an integer k.

Question:
Does there exist an induced subgraph of G that is isomorphic to a path on k vertices?

Longest Common Subsequence

Input:
Two strings a and b.

Question:
What is the length of the longest common subsequence of a and b? That is, we ask for the largest possible integer n for which there exist indices $1 \leq i_1 < i_2 < \ldots < i_n \leq |a|$ and $1 \leq j_1 < j_2 < \ldots < j_n \leq |b|$ such that $a[i_r] = b[j_r]$ for every $1 \leq r \leq n$.

Longest Cycle

Input:
A graph G and an integer k.

Question:
Does there exist a cycle in G of length at least k?

Longest Path

Input:
A graph G and an integer k.

Question:
Does there exist a path in G consisting of k vertices?

Matroid Ed-Set Packing

Input:
An integer k and a matrix M representing a matroid \mathcal{M} of rank $d \cdot k$ over a universe U, and a family \mathcal{A} of sets over U, where each set in \mathcal{A} is of size exactly d.

Question:
Does there exist a family $\mathcal{A}' \subseteq \mathcal{A}$ of k pairwise disjoint sets, such that $\bigcup_{A \in \mathcal{A}'} A$ is independent in \mathcal{M}?

Matroid Parity

Input:
A matrix A representing a matroid \mathcal{M} over a universe U of size $2n$, a partition of U into n pairs P_1, P_2, \ldots, P_n, and an integer k.

Question:
Does there exist an independent set X in \mathcal{M} of size $2k$ that is a union of k pairs P_i?
<table>
<thead>
<tr>
<th>Problem definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Leaf Spanning Tree</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Max Leaf Subtree</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Max-r-SAT</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Max-Er-SAT</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Max-Internal Spanning Tree</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>MaxCut</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Maximum Bisection</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Maximum Cycle Cover</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Maximum Flow</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Maximum Matching</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Maximum Satisfiability</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Min-2-SAT</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>
Min-Ones-2-SAT

Input:
A CNF formula φ, where every clause consists of at most two literals, and an integer k.

Question:
Does there exist an assignment ψ that satisfies φ and sets at most k variables to true?

Min-Ones-r-SAT

Input:
A CNF formula φ, where every clause consists of at most r literals, and an integer k.

Question:
Does there exist an assignment ψ that satisfies φ and sets at most k variables to true?

Minimum Bisection

Input:
A graph G and an integer k.

Question:
Does there exist a partition $A \uplus B$ of $V(G)$ such that $|A| - |B| \leq 1$ and at most k edges of G have one endpoint in A and the second endpoint in B?

Minimum Maximal Matching

Input:
A graph G and an integer k.

Question:
Does there exist an inclusion-wise maximal matching in G that consists of at most k edges?

Multicolored Biclique

Input:
A bipartite graph G with bipartition classes $A \uplus B = V(G)$, an integer k, a partition of A into k sets A_1, A_2, \ldots, A_k, and a partition of B into k sets B_1, B_2, \ldots, B_k.

Question:
Does there exist a set $X \subseteq A \cup B$ that contains exactly one element of every set A_i and B_i, $1 \leq i \leq \ell$ and that induces a complete bipartite graph $K_{k,k}$ in G?

Multicolored Clique

Input:
A graph G, an integer k, and a partition of $V(G)$ into k sets V_1, V_2, \ldots, V_k.

Question:
Does there exist a set $X \subseteq V(G)$ that contains exactly one element of every set V_i and that is a clique in G?

Multicolored Independent Set

Input:
A graph G, an integer k, and a partition of $V(G)$ into k sets V_1, V_2, \ldots, V_k.

Question:
Does there exist a set $X \subseteq V(G)$ that contains exactly one element of every set V_i and that is an independent set in G?

Multicut

A synonym for Vertex Multicut.

NAE-SAT

Input:
A CNF formula φ.

Question:
Does there exist an assignment ψ such that for every clause C in φ, at least one literal of C is evaluated to true and at least one literal is evaluated to false by ψ?

Odd Cycle Transversal

Input:
A graph G and an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X$ is bipartite?

Odd Set

Input:
A universe U, a set F of subsets of U, and an integer k.

Question:
Does there exist a nonempty set $X \subseteq U$ of size at most k such that $|A \cap X|$ is odd for every $A \in F$?

Partial Dominating Set

Input:
A graph G and integers k and r.

Question:
Does there exist a set X of at most k vertices of G such that $|N_G[X]| \geq r$?
<table>
<thead>
<tr>
<th>Problem definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Vertex Cover</td>
</tr>
<tr>
<td>Input: A graph G and integers k and r.</td>
</tr>
<tr>
<td>Question: Does there exist a set X of at most k vertices of G such that at least r edges of G are incident to at least one vertex of X?</td>
</tr>
<tr>
<td>Partitioned Clique</td>
</tr>
<tr>
<td>A synonym for Multicolored Clique.</td>
</tr>
<tr>
<td>Perfect d-Set Matching</td>
</tr>
<tr>
<td>Input: A universe U, a family A of sets over U, where each set in A is of size exactly d, and an integer k.</td>
</tr>
<tr>
<td>Question: Does there exist a family $A' \subseteq A$ of k pairwise disjoint sets such that $\bigcup A' = U$?</td>
</tr>
<tr>
<td>Perfect Code</td>
</tr>
<tr>
<td>Input: A graph G and an integer k.</td>
</tr>
<tr>
<td>Question: Does there exist a set X of at most k vertices of G such that for every $u \in V(G)$ there exists exactly one vertex $v \in X$ for which $u \in N_G[v]$?</td>
</tr>
<tr>
<td>Permutation Composition</td>
</tr>
<tr>
<td>Input: A family P of permutations of a universe U, additional permutation π of U, and an integer k.</td>
</tr>
<tr>
<td>Question: Does there exist a sequence $\pi_1, \pi_2, \ldots, \pi_k \in P$ such that $\pi = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$?</td>
</tr>
<tr>
<td>Planar 3-Coloring</td>
</tr>
<tr>
<td>Input: A planar graph G.</td>
</tr>
<tr>
<td>Question: Does there exist a coloring $c : V(G) \to {1, 2, 3}$ such that $c(u) \neq c(v)$ for every $uv \in E(G)$?</td>
</tr>
<tr>
<td>Planar 3-SAT</td>
</tr>
<tr>
<td>Input: A CNF formula φ, such that every clause of φ consists of at most three literals and the incidence graph of φ is planar. Here, an incidence graph of a formula φ is a bipartite graph with vertex sets consisting of all variables and clauses of φ where a variable is adjacent to all clauses it appears in.</td>
</tr>
<tr>
<td>Question: Does there exist a satisfying assignment for φ?</td>
</tr>
<tr>
<td>Planar Vertex Deletion</td>
</tr>
<tr>
<td>Input: A graph G and an integer k.</td>
</tr>
<tr>
<td>Question: Does there exist a set X of at most k vertices of G such that $G - X$ is planar?</td>
</tr>
<tr>
<td>Planar Deletion Compression</td>
</tr>
<tr>
<td>Input: A graph G, a set $W \subseteq V(G)$ such that $G - W$ is planar, and an integer k.</td>
</tr>
<tr>
<td>Question: Does there exist a set X of at most k vertices of G such that $G - X$ is planar?</td>
</tr>
<tr>
<td>Planar Diameter Improvement</td>
</tr>
<tr>
<td>Input: A planar graph G and an integer d.</td>
</tr>
<tr>
<td>Question: Does there exist a supergraph of G that is planar and has diameter at most d?</td>
</tr>
<tr>
<td>Planar Feedback Vertex Set</td>
</tr>
<tr>
<td>Input: A planar graph G and an integer k.</td>
</tr>
<tr>
<td>Question: Does there exist a set X of at most k vertices of G such that $G - X$ is a forest?</td>
</tr>
<tr>
<td>Planar Hamiltonian Cycle</td>
</tr>
<tr>
<td>Input: A planar graph G.</td>
</tr>
<tr>
<td>Question: Does there exist a simple cycle C in G such that $V(C) = V(G)$?</td>
</tr>
</tbody>
</table>
Planar Longest Cycle

Input:
A planar graph G and an integer k.

Question:
Does there exist a cycle in G of length at least k?

Planar Longest Path

Input:
A planar graph G and an integer k.

Question:
Does there exist a path in G consisting of k vertices?

Planar Vertex Cover

Input:
A planar graph G, an integer k.

Question:
Does there exist a set X of at most k vertices of G such that $G - X$ is edgeless?

Point Line Cover

Input:
A set P of points in the plane and an integer k.

Question:
Does there exist a family L of at most k lines on the plane such that every point in P lies on some line from L?

Polynomial Identity Testing

Input:
Two polynomials f and g over a field F, given as arithmetic circuits with addition, subtraction and multiplication gates.

Question:
Is it true that $f(x) = g(x)$ for every $x \in F$?

Pseudo Achromatic Number

Input:
A graph G and an integer k.

Question:
Does there exist a partition of $V(G)$ into k sets V_1, V_2, \ldots, V_k such that for every $1 \leq i < j \leq k$ there exists at least one edge of G with one endpoint in V_i and the second endpoint in V_j?

Ramsey

Input:
A graph G and an integer k.

Question:
Does there exist a set X of exactly k vertices of G such that $G[X]$ is a clique or $G[X]$ is edgeless?

Red-Blue Dominating Set

Input:
A bipartite graph G with bipartition classes $R \uplus B = V(G)$ and an integer k.

Question:
Does there exist a set $X \subseteq R$ of size at most k such that $N_G(X) = B$?

Satellite Problem

Input:
A graph G, integers p and q, a vertex $v \in V(G)$, and a partition V_0, V_1, \ldots, V_r of $V(G)$ such that $v \in V_0$ and there is no edge between V_i and V_j for any $1 \leq i < j \leq r$.

Question:
Does there exist a (p,q)-cluster C satisfying $V_0 \subseteq C$ such that for every $1 \leq i \leq r$, either $C \cap V_i = \emptyset$ or $V_i \subseteq C$? Here, a set $C \subseteq V(G)$ is a (p,q)-cluster if $|C| \leq p$ and $d(C) \leq q$.

Scattered Set

Input:
A graph G and integers r and k.

Question:
Does there exist a set X of at least k vertices of G such that $\text{dist}_{G}(u,v) > r$ for every distinct $u,v \in X$?

Set Cover

Input:
A universe U, a family \mathcal{F} over U, and an integer k.

Question:
Does there exist a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ of size at most k such that $\bigcup \mathcal{F}' = U$?

Set Packing

Input:
A universe U, a family \mathcal{A} of sets over U, and an integer k.

Question:
Does there exist a family $\mathcal{A}' \subseteq \mathcal{A}$ of k pairwise disjoint sets?

Set Splitting

Input:
A universe U and a family \mathcal{F} of sets over U.

Question:
Does there exist a set $X \subseteq U$ such that $A \cap X \neq \emptyset$ and $A \setminus X \neq \emptyset$ for every $A \in \mathcal{F}$?
<table>
<thead>
<tr>
<th>Problem definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Turing Machine Acceptance</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A description of a nondeterministic Turing machine M, a string x, and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a computation path of M that accepts x on at most k steps?</td>
</tr>
<tr>
<td>Skew Edge Multicut</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A directed graph G, a set of pairs $(s_i, t_i)_{i=1}^{\ell}$ of vertices of G, and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a set X of at most k edges of G such that for every $1 \leq i \leq j \leq \ell$, vertex t_j is not reachable from vertex s_i in the graph $G - X$?</td>
</tr>
<tr>
<td>Special Disjoint FVS</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A graph G, a set $W \subseteq V(G)$ such that $G - W$ is edgeless and every vertex of $V(G) \setminus W$ is of degree at most three in G, and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a set $X \subseteq V(G) \setminus W$ of size at most k such that $G - X$ is a forest?</td>
</tr>
<tr>
<td>Split Edge Deletion</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A graph G and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a set X of at most k edges of G such that $G - X$ is a split graph? Here, a split graph is a graph whose vertex set can be partitioned into two parts, one inducing a clique and one inducing an independent set.</td>
</tr>
<tr>
<td>Split Vertex Deletion</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A graph G and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a set X of at most k vertices of G such that $G - X$ is a split graph? Here, a split graph is a graph whose vertex set can be partitioned into two parts, one being a clique and one being an independent set.</td>
</tr>
<tr>
<td>Steiner Tree</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A graph G, a set $K \subseteq V(G)$, and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a connected subgraph of G that contains at most k edges and contains all vertices of K?</td>
</tr>
<tr>
<td>Strongly Connected Steiner Subgraph</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A directed graph G, a set $K \subseteq V(G)$, and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a strongly connected subgraph of G that contains at most k edges and contains all vertices of K?</td>
</tr>
<tr>
<td>Subgraph Isomorphism</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Two graphs G and H.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a subgraph of G that is isomorphic to H?</td>
</tr>
<tr>
<td>Subset Sum</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A set S of integers and integers k and m.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a subset $X \subseteq S$ of size at most k whose elements sum up to m?</td>
</tr>
<tr>
<td>TSP</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A graph G with edge weights $w : E(G) \to \mathbb{R}_{>0}$.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Find a closed walk of minimum possible total weight that visits all vertices of G.</td>
</tr>
<tr>
<td>Total Dominating Set</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>A graph G and an integer k.</td>
</tr>
<tr>
<td>Question:</td>
</tr>
<tr>
<td>Does there exist a set X of at most k vertices of G such that for every $u \in V(G)$ there exists $v \in X$ with $uv \in E(G)$?</td>
</tr>
<tr>
<td>Problem Definition</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Tree Spanner</td>
</tr>
<tr>
<td>Tree Subgraph Isomorphism</td>
</tr>
<tr>
<td>Treewidth</td>
</tr>
<tr>
<td>Treewidth-η Modulator</td>
</tr>
<tr>
<td>Triangle Packing</td>
</tr>
<tr>
<td>Unique Hitting Set</td>
</tr>
<tr>
<td>Unit Disk Independent Set</td>
</tr>
<tr>
<td>Unit Square Independent Set</td>
</tr>
<tr>
<td>Variable Deletion Almost 2-SAT</td>
</tr>
<tr>
<td>Vertex k-Way Cut</td>
</tr>
<tr>
<td>Vertex Coloring</td>
</tr>
<tr>
<td>Vertex Cover</td>
</tr>
<tr>
<td>Vertex Cover Above Matching</td>
</tr>
</tbody>
</table>
Problem definitions

<table>
<thead>
<tr>
<th>Vertex Cover Above LP</th>
<th>Weighted Independent Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph G and an integer k.</td>
<td>Input: A graph G with vertex weights $w : V(G) \rightarrow \mathbb{R}_{\geq 0}$.</td>
</tr>
<tr>
<td>Question: Does there exist a set X of at most k vertices of G such that $G - X$ is edgeless? Note that this is the same problem as Vertex Cover, but the name Vertex Cover Above LP is usually used in the context of above guarantee parameterization with an optimum solution to a linear programming relaxation as a lower bound.</td>
<td>Question: Find an independent set in G of the maximum possible total weight.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex Disjoint Paths</th>
<th>Weighted Longest Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph G and k pairs of vertices $(s_i, t_i)_{i=1}^k$.</td>
<td>Input: A graph G with vertex weights $w : V(G) \rightarrow \mathbb{N}$ and an integer k.</td>
</tr>
<tr>
<td>Question: Do there exist k pairwise vertex-disjoint paths P_1, P_2, \ldots, P_k such that P_i starts in s_i and ends in t_i?</td>
<td>Question: Find a simple path in G on k vertices of the minimum possible total weight.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex Multicut</th>
<th>Weighted Circuit Satisfiability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph G, a set of pairs $(s_i, t_i)_{i=1}^\ell$ of vertices of G, and an integer k.</td>
<td>Input: A Boolean circuit C and an integer k.</td>
</tr>
<tr>
<td>Question: Does there exist a set X of at most k vertices of G, not containing any vertex s_i or t_i, such that for every $1 \leq i \leq \ell$, vertices s_i and t_i lie in different connected components of $G - X$?</td>
<td>Question: Does there exist an assignment to the input gates of C that satisfies C and that sets exactly k input gates to true?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex Multiway Cut</th>
<th>Weighted Independent Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph G, a set $T \subseteq V(G)$, and an integer k.</td>
<td>Input: A graph G with vertex weights $w : V(G) \rightarrow \mathbb{R}_{\geq 0}$.</td>
</tr>
<tr>
<td>Question: Does there exist a set $X \subseteq V(G) \setminus T$ of size at most k such that every element of T lies in a different connected component of $G - X$?</td>
<td>Question: Find an independent set in G of the maximum possible total weight.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weighted Longest Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph G with vertex weights $w : V(G) \rightarrow \mathbb{N}$ and an integer k.</td>
</tr>
</tbody>
</table>
Index

C-bridge, 217
#P-complete problem, 358
AND-conjecture, 555
O*-notation, 14, 467
\(\Xi_t \), see grid
GF\((q)\), 337
\(\leq_m \), 140
f-width, 229
k-path, see path
k-wise independent sample space, 100, 119, 121
q-CNF, 469, 580
LPVC\((G)\), 60
 Linear Program for Vertex Cover of \(G \), 34
above guarantee parameterization, 60, 61, 64, 285, 286, 300, 301
apex graph, 210, 216
apex-minor-free graph, 210, 216
arc, 577
assignment, 436
 weight, 436
atomic formula, 181
Baker’s technique, 211, 490
BFS
 breadth-first search, 212
biclique, 459
bidimensional problem, 207
bidimensionality, 207, 203–210, 477, 490
binomial theorem, 322
bipartite tournament, 70
bipartition, 579
bitsize, 286, 531
Bodlaender’s algorithm, 191
Bollobás’ lemma, 393

Boolean circuit, 435
Boolean formula, 437
t-normalized, 437
antimonotone, 438
monotone, 438
border
 of a vertex set, 158
bramble, 189, 234
branch decomposition, 228
branch set, 140
branching number, 56
branching vector, 55, 88
branching walk, 325
branchwidth, 229
brute force, 266, 515
Catalan number, 260
Catalan structure, 374
Cauchy-Schwarz inequality, 303
center string, 68
characteristic (of a field), 337
chordal width, 188
chromatic coding, 99, 113–117, 119–121
chromatic number, 579
circuit, 435
 and-node, 435
 depth, 436
 input node, 435
 large nodes, 437
 negation node, 435
 or-node, 435
 output node, 436
 satisfying assignment, 436
 weft, 437
clause, 468, 580
clique, 579
cliquewidth, 230
Index

outerplanar, 160, 232
perfect, 43, 70, 94, 124
planar, 140, 308, 579
plane, 140, 308, 579
proper interval, 127
regular, 427, 578
split, 42, 94, 124
sub-, 578
super-, 578
trivially perfect, 127
undirected, 577
variable-clause incidence, 29, 474
graph isomorphism, 107
bounded degree, 107
Graph Minors, 140–146, 151, 190, 200, 243
graph searching, 185
grid, 155, 217, 229, 417, 490
t \times t \text{ grid} \mathbb{E}_t, 201
grid minor, 153, 200, 202, 205, 229, 242

Hölder’s inequality, 302
half-integral solution, 61
Hall set, 461
Hall’s theorem, 27
Hamiltonian cycle, 578
Hamiltonian path, 578
Hamming distance, 67
head, 577
Hopcroft-Karp algorithm, 27, 36, 46

imbalance
at vertex, 136
of ordering, 136
important cut, 248, 254, 254–261, 268
directed, 272, 274
important separator, 279, 284
important set, 268
inclusion–exclusion principle, 322, 343
independent feedback vertex set, 94
independent set, 21, 138, 579
induced matching, 460
instance
malformed, 530, 530, 535
well-formed, 530, 530, 535, 548
instance selector, 524, 534–536, 540, 554
interval width, 186
inversion formula, 329
irrelevant vertex, 219
irrelevant vertex technique, 216–228, 243
isolation lemma, 363
iterative compression, 77–98, 217, 248, 276, 278, 467
Iverson bracket, 322

Jordan curve, 140, 579
König’s theorem, 27, 37
kernelization, 285, 467
Kuratowski’s theorem, 150, 201

Laplace expansion, 396
linear recurrence, 56
linear program, 60
literal, 468, 580
local treewidth, 215
longest common subsequence, 85

matching, 26, 64, 579
perfect, 358
saturating, 26
matrix multiplication constant \omega, 395
matroid, 230, 377, 377–418
binary, 379
graphic, 88, 381
linear, 379
representable, 379
transversal, 382
uniform, 379
matroid axioms, 377
matroid basis, 379, 384
matroid circuit, 379, 384
matroid edge, 379
matroid greedy algorithm, 384
matroid independent set, 379
matroid intersection, 388, 401
matroid matching, 388
matroid minor, 386
matroid parity, 88, 388
matroid partition, 383
matroid property
exchange, 377
hereditary, 377
matroid rank, 379, 384
matroids direct sum, 383
maximum, 592
maximum flow, 130, 193, 250, 388
maximum flow and minimum cut, 250
maximum matching, 27, 37, 64, 388
measure, 63, 88, 89
Menger’s theorem, 192
meta-theorem, 152, 241
min-sum semiring, 335, 360
minimal cut, 249
minimal separator, 233
minimum cut, 248, 249, 249–254
minor, 140, 160, 232–234
forbidden, 142
minor model, 140
minor-closed, 142
minor-closed problem, 207
Monadic Second Order logic
\[\text{MSO}_1, \] 180, 231, 243
\[\text{MSO}_2, \] 178, 180
Monte Carlo algorithm, 108, 124, 340, 364, 470
multilinear polynomial, 304

neighbor, 577
neighborhood, 578
closed, 578
in-, 578
out-, 578
Nemhauser-Trotter theorem, 34
node search number, 185
nonuniform fixed-parameter tractability, 144

odd cycle transversal, 64, 91
outbranching, 552

parameterized problem, 12
Pareto efficient, 254
path, 578
k-, 104–105, 120, 337, 413–414
alternating, 579
augmenting, 579
colorful k-path, 104
path decomposition, 157, 513
nice, 159
pathwidth, 158, 508, 534
perfect hash family, 100, 118–121
perfect matching, 64
permanent, 146
planar graph, 140, 308, 579
plane graph, 140, 308, 579
pointwise product, 332
polynomial
multivariate, 338
zero, 338
polynomial compression, 307, 531, 535, 538, 539, 541, 545, 551, 552
polynomial equivalence relation, 529, 535, 542, 545, 555
polynomial parameter transformation, 524, 534, 537, 537–539, 541, 552, 555
posimodular function, 264, 265
problem
\((p,q)\)-Cluster, 266–268, 270, 271, 284, 581
\((p,q)\)-Partition, 247, 264, 266, 271, 581
2-Matroid Intersection, 387, 388, 415, 417, 581
2-SAT, 581
2-degenerate Vertex Deletion, 461, 581
2k \times 2k Bipartite Permutation
Independent Set, 516, 518, 581
3-Coloring, 473, 474, 478, 479, 485, 486, 515, 519, 581
3-Hitting Set, 94, 96, 581
3-Matroid Intersection, 387, 582
3-SAT, 436, 451, 467–478, 485, 515, 518, 519, 582
\(\ell\)-Matroid Intersection, 386, 387, 401, 402, 415, 417, 418, 582
\(G + kv\) Recognition, 144
\(\phi\)-Maximization, 206, 207, 582
\(\phi\)-Minimization, 206, 207, 582
Clique\(\log\), 425, 426, 584
d-Bounded-Degree Deletion, 40, 582
d-Clustering, 99, 113, 115–117, 121, 122, 126, 127, 582
d-Hitting Set, 17, 18, 39, 42, 47–49, 94, 96, 377, 378, 394, 398, 399, 415, 416, 418, 552, 582
d-Set Packing, 42, 48, 49, 377, 378, 399, 400, 418, 582
k-Tree, 582
k \times k Clique, 478–481, 518, 582
k \times k Hitting Set with thin sets, 481, 484, 516, 518, 583
k \times k Hitting Set, 481, 583
k \times k Permutation Clique, 479–481, 516, 583
k \times k Permutation Hitting Set with thin sets, 481, 482, 484, 516, 583
k \times k Permutation Hitting Set, 481, 583
k \times k Permutation Independent Set, 518, 583
q-Coloring, 176, 232, 512, 513, 583
q-SAT, 469–472, 476, 502, 504, 505, 507, 517, 551, 583
q-Set Cover, 507, 583
r-Center, 208, 209, 233, 235, 238, 583
s-Way Cut, 553, 583
\(G\) Vertex Deletion, 144, 145, 216, 582
\((\ast)\)-Compression, 80, 81
Almost 2-SAT, vi, vii, 53, 64, 65, 72, 75, 77, 78, 95, 98, 378, 418, 584
Annotated Bipartite Coloring, 92–95, 584
Annotated Satisfiable Almost 2-SAT, 95, 97, 98, 584
Balanced Vertex Separator, 449, 464, 488
Bar Fight Prevention, 3–6, 9–11, 53, 584
Biclique, 465
Bipartite Matching, 388, 584
Chordal Completion, 41, 70, 71, 76, 584
Chromatic Number, 146, 176, 233, 237, 321, 326–329, 336, 553, 584, 597
Closest String, 51, 53, 67–69, 72, 76, 146, 147, 478, 481–483, 489, 585
Closest Substring, 464, 489, 585
Cluster Editing, 40, 69, 585
Cluster Vertex Deletion, 43, 48, 69, 94, 98, 585
Cochromatic Number, 585
Colored Red-Blue Dominating Set, 541–543, 585
Colorful Graph Motif, 353, 537–540, 554, 585
Component Order Integrity, 516, 585
Connected Bull Hitting, 553, 585
Connected Feedback Vertex Set, 176, 210, 233, 371, 553, 585
Cycle Packing, 147, 176, 199, 202, 203, 207, 208, 210, 233, 235, 238, 372, 375, 484, 519, 586
Digraph Pair Cut, 95, 97, 98, 281, 586
Directed Edge Multicut, 273, 274, 281, 586
Directed Edge Multiway Cut, 272, 273, 281, 284, 553, 586
Directed Feedback Arc Set Compression, 276–278, 586
Directed Feedback Arc Set, 41, 70, 73, 146, 249, 275, 276, 278, 281, 284, 586
Directed Feedback Vertex Set, vi, vii, 41, 70, 77, 78, 81, 98, 247–249, 274, 275, 278, 281, 284, 586
Directed Max Leaf, 71, 319, 552, 586
Directed Steiner Tree, 146, 457, 586
Directed Subset Feedback Vertex Set, 284
Directed Vertex Multiway Cut, 284, 586
Disjoint Factors, 553, 554, 587
Disjoint Feedback Vertex Set in Tournaments, 82–84, 86, 587
Disjoint Feedback Vertex Set, 86–91, 95, 98, 587
Disjoint Odd Cycle Transversal, 92–94, 587
Disjoint Planar Vertex Deletion, 217, 221–223, 228, 587
Disjoint Vertex Cover, 79, 587
Disjoint-(*), 80, 81
Distortion, 483, 520, 587
Dominating Set on Tournaments, 426, 431, 432, 448, 449, 464, 487, 488, 587
Dominating Set with Pattern, 445, 446, 449, 460, 462, 587
Dual-Coloring, 42, 587
Ed-Hitting Set, 42, 47, 398–400, 587
Ed-Set Packing, 42, 399–401, 588
Edge Bipartization, 95, 97, 98, 588
Edge Clique Cover, 17, 25, 49, 285, 484, 485, 516, 518, 520, 553, 588
Edge Disjoint Cycle Packing, 41, 588
Edge Dominating Set, 231, 319, 588
Edge Multicut, viii, 263, 281, 284, 520, 588
Edge Multiway Cut for Sets, 263, 588
Edge Multiway Cut, vi, 247–249, 261–263, 272, 280, 281, 284, 588
Eulerian Deletion, 553, 588
Even Set, 385, 386, 455, 456, 588
Exact CNF-SAT, 461, 588
Exact Even Set, 455, 456, 460, 462, 588
Exact Odd Set, 455, 456, 460, 462, 589
Exact Unique Hitting Set, 456, 460, 463, 589
Face Cover, 147, 589
Turing kernelization, 313
Turing Machine
 non-deterministic, 440
 single-tape, 440
Turing machine, 423, 440
Turing reduction, 446
 parameterized, 446
Tutte-Berge formula, 292
uncrossing, 264, 265
undeletable vertex, 279
universal set, 100, 119–121, 415, 416

Vandermonde matrix, 380
Vapnik-Chervonenkis dimension, 464
variable, 179
 Boolean, 580
 free, 179, 180, 184
 monadic, 180
VC-dimension, 464
vertex cover, 21, 137, 308, 579
vertex separation number, 234
W-hierarchy, 435
Wagner’s conjecture, 142
Wagner’s theorem, 142
walk, 324, 578
 closed, 324, 578
weft-t circuits, 437
well-linked set, 199, 200
well-quasi-ordering, 142
win/win, 199
XP, 13
Author index

Abrahamson, Karl R. 15
Abu-Khzam, Faisal N. 49
Adler, Isolde 145, 243
Aigner, Martin 354
Alber, Jochen 241, 499, 520
Alon, Noga 76, 118, 119, 127, 319
Amini, Omid 127
Amir, Eyal 242
Arnborg, Stefan 184, 241
Arora, Sanjeev 243, 555
Austrin, Per 242
Babai, László 119
Baker, Brenda S. 211, 243
Balasubramanian, R. 49
Bar-Yehuda, Reuven 126
Barak, Boaz 555
Baste, Julien 375
Bateni, MohammadHossein 177
Bax, Eric T. 354
Becker, Ann 126
Ben-Ari, Mordechai 244
Bertelé, Umberto 241
Bessy, Stéphane 49
Bienstock, Daniel 150
Binkele-Raible, Daniel 149, 319, 555
Björklund, Andreas 149, 354, 355
Bliznets, Ivan 127
Bodlaender, Hans L. 126, 191, 241–244, 319, 374, 397, 555
Bollobás, Béla 418
Bonsma, Paul 241
Borie, Richard B. 241
Bousquet, Nicolas 263, 280, 284
Brioschi, Francesco 241
Bui-Xuan, Binh-Minh 284

Burrage, Kevin 319
Buss, Jonathan F. 49

Cai, Leizhen 76, 127, 464
Cai, Liming 49, 464, 519
Calinescu, Gruia 284
Cao, Yixin 98, 417
Cesati, Marco 464
Chambers, John 150
Chan, Siu Man 127
Chan, Siu On 127
Chekuri, Chandra 201, 202, 242, 284
Chen, Jianer 49, 76, 98, 127, 284, 319, 417, 464, 520
Cheung, Ho Yee 417
Chimani, Markus 241
Chitnis, Rajesh Hemant 273, 284, 465, 520
Chlebik, Miroslav 49
Chlebíková, Janka 49
Chor, Benny 49, 520
Chuzhoy, Julia 201, 202, 242
Clarkson, Kenneth L. 150
Cohen, Nathann 127
Collins, Rebecca L. 49
Cormen, Thomas H. 284
Corneil, Derek G. 241
Courcelle, Bruno 178, 183, 241, 243
Crowston, Robert 76, 319
Cunningham, William H. 237, 388
Cygan, Marek 49, 76, 98, 149, 243, 273, 284, 374, 375, 397, 418, 464, 484, 485, 507, 513, 514, 519–521, 555
Dahlhaus, Elias 261, 284
Daligault, Jean 263, 280, 284
Davis, Martin 76

© Springer International Publishing Switzerland 2015
M. Cygan et al., Parameterized Algorithms,
DOI 10.1007/978-3-319-21275-3
Dehne, Frank K. H. A. 98
Dell, Holger 149, 507, 520, 551, 555
Demaine, Erik D. 210, 216, 242, 243
DeMillo, Richard A. 355
Dendris, Nick D. 241
Di Battista, Giuseppe 243
Diestel, Reinhard 150, 242, 243, 577
Dirac, Gabriel A. 242
Dom, Michael 49, 98, 555
Dorn, Frederic 242, 243, 374
Downey, Rodney G. v, vi, 14, 15, 49, 437, 438, 464, 555
Dragan, Feodor F. 243
Drange, Pål Grønås 127, 242, 520
Dregi, Markus Sortland 242, 520
Dreyfus, Stuart E. 149
Drucker, Andrew 533, 555

Eades, Peter 243
Edmonds, Jack 237, 388, 417
Egerváry, Jenő 49
Egri, László 284
Eisenbrand, Friedrich 521
Ellis, Jonathan A. 242
Ene, Alina 284
Engelfriet, Joost 243
Eppstein, David 216, 243
Erdős, Paul 49, 464
Erickson, Ranel E. 149
Estivill-Castro, Vladimir 319

Fafianie, Stefan 374
Feige, Uriel 127, 242
Feldman, Jon 520
Fellows, Michael R. v, vi, 14, 15, 49, 98, 143, 145, 150, 319, 437, 438, 464, 483, 520, 555
Feng, Qilong 49
Fernandes, Cristina G. 284
Fernau, Henning 127, 149, 241, 319, 555
Fiala, Jiří 499, 520
Flum, Jörg vi, 15, 49, 243, 319, 352
Fomin, Fedor V. 49, 76, 98, 127, 149, 242, 243, 319, 354, 374, 375, 418, 464, 483, 520, 555
Ford Jr., Lester R. 198, 250, 283
Fortnow, Lance 555
Frank, András 283
Freedman, Michael L. 127
Freedman, Michael 374, 375
Frick, Markus 241
Fuchs, Bernhard 149
Fulkerson, Delbert R. 198, 250, 283, 417

Gabow, Harold N 418
Gagarin, Andrei 150
Gallai, Tibor 289, 319
Garey, Michael R. 242, 385, 387
Garg, Naveen 284
Gaspers, Serge 49
Geelen, Jim 386, 417
Geiger, Dan 126
Gerards, Bert 386, 417
Gerhard, Jürgen 355
Ghosh, Esha 49, 127
Godlin, Benny 375
Goldsmith, Judy 49
Golovach, Petr A. 242, 243
Golumbic, Martin Charles 242
Gotoh, Shin’ya 417
Gottlieb, Allan 354
Gottlob, Georg 244
Graham, Ronald L. 76, 464
Gramm, Jens 49, 76, 98
Grandoni, Fabrizio 76, 521
Grigni, Michelangelo 243
Grohe, Martin vi, 15, 49, 145, 241, 243, 319, 352
Gu, Qian-Ping 202, 229, 242
Guo, Jiong 49, 98, 149, 284, 319, 465
Gupta, Anupam 520
Gutin, Gregory 49, 76, 127, 319
Gutner, Shai 127

Hajiaghayi, MohammadTaghi 177, 210, 216, 242, 243, 273, 284, 465, 520
Hakimi, S. Louis 242
Halin, Rudolf 241
Hall, Philip 26, 27, 49, 354
Halmos, Paul R. 49
Heghernes, Pinar 49
Hermelin, Danny 319, 464, 555
Hertli, Timon 519
Hlíněný, Petr 386, 417
Hochbaum, Dorit S. 243
Hodges, Wilfrid 244
Höie, Kjartan 233
Hopcroft, John E. 27, 36, 440
Horn, Roger A. 380
Huang, Xiuzhen 520
Hüffner, Falk 49, 98
Husfeldt, Thore 149, 354, 355

Impagliazzo, Russell 355, 471, 519
Itai, Alon 119

Jansen, Bart M. P. 150, 222, 243, 319, 555
Jensen, Per M. 388
Jia, Weijia 49
Johnson, Charles R. 380
Johnson, David S. 242, 261, 284, 385, 387
Jones, Mark 76, 319
Jones, Nick S. 284
Juedes, David W. 49, 519, 520

Kabanets, Valentine 355
Kajitani, Yoji 417
Kanj, Iyad A. 49, 76, 520
Kannan, Ravi 135, 149
Karger, David R. 243
Karp, Richard M. 27, 36, 354
Karpinski, Marek 127
Kaski, Petteri 149, 354, 355
Kawarabayashi, Ken-ichi 150, 242, 243
Kern, Walter 149
Khachiyan, Leonid 150
Khuller, Samir 49
Kim, Eun Jung 76, 127, 319
Klazar, Roman 354
Kloks, Ton 241, 242, 244
Kneis, Joachim 76, 127
Knuth, Donald E. 76
Kobayashi, Yusuke 242
Kociumaka, Tomasz 98, 417
Kohn, Meryle 354
Kohn, Samuel 354
Koivisto, Mikko 149, 354, 355
Kolay, Sudeshna 49, 127
Kolliopoulos, Stavros G. 243
Komlós, János 127
Kopczyński, Wojciech 354
Koucký, Pavel 49
Kowalik, Łukasz 319
Kratsch, Dieter 76, 149, 354
Kratsch, Stefan 49, 98, 127, 273, 284, 319, 374, 375, 378, 397, 398, 418, 513, 521, 555
Krause, Philipp Klaus 243
Kreutzer, Stephan 145, 150, 241
Kumar, Mrinal 49, 127
Kuratowski, Kazimierz 150, 201

Lagergren, Jens 184, 241
Lampis, Michael 319
Langer, Alexander 76
Lau, Lap Chi 417
Lay, David C. 378
Leaf, Alexander 242
Lee, James R. 242
Leiserson, Charles E. 284
Lengauer, Thomas 242
Lenstra Jr, Hendrik W. 130
Leung, Kai Man 417
Lichtenstein, David 474, 519
Lidl, Rudolf 355
Lin, Bingkai 465
Lipton, Richard J. 355
Liu, D. 242
Liu, Yang 98, 284, 417
Logemann, George 76
Losievskaja, Elena 483, 520
Lovász, László 49, 292, 374, 375, 388, 417, 418
Loveland, Donald 76
Lu, Songjian 98, 127, 284
Luks, Eugene M. 127
Ma, Bin 76
Maass, Wolfgang 243
Mac, Shev 319
Mahajan, Meena 76, 319
Makowsky, Johann A. 243, 375
Manlove, David 149
Marx, Dániel 263, 280, 284, 555
Mathieson, Luke 465
Mazoit, Frédéric 240
Megiddo, Nimrod 242
Mehlhorn, Kurt 76
Misra, Neele 150, 242
Misra, Pranabendu 49, 127
Mitsou, Valia 319
Mnich, Matthias 49, 76, 127, 319, 464
Mohar, Bojan 145, 150
Mölle, Daniel 127, 149
Monien, Burkhard 126, 418
Monma, Clyde L. 149
Moser, Hannes 49, 98
Motwani, Rajeev 440
Muciaccia, Gabriele 76, 319
Mulmuley, Ketan 375
Murota, Kazuo 396
Mutzel, Petra 241
Myrvold, Wendy J. 150

Naor, Moni 118, 119, 127

Narayanaswamy, N. S. 65, 76, 98
Nederlof, Jesper 98, 149, 354, 374, 375, 397, 418, 484, 507, 513, 514, 519–521
Nemhauser, George L. 34, 49
Newman, Ilan 520
Nie, Shuxin 418
Niedermeier, Rolf vi, 15, 49, 76, 98, 149, 241, 284, 319, 465
Niederreiter, Harald 355
Ning, Dan 49

Okamotyo, Yoshio 149, 507, 520
Oriau, Stephan 243
O’Sullivan, Barry 98, 284
Oum, Sang-il 231, 243, 244
Oxley, James G. 417

Panolan, Fahad 49, 127, 375, 418
Papadimitriou, Christos H. 127, 241, 242, 261, 284, 440
Parker, R. Gary 241
Patashnik, Oren 76
Paturi, Ramamohan 149, 471, 507, 519, 520
Paul, Christophe 49
Paulusma, Daniël 243
Penninkx, Eelko 243, 374
Perez, Anthony 49
Philip, Geevarghese 49, 76, 127, 319, 464
Pietrzak, Krzysztof 464
Pilipczuk, Michał 555
Pitassi, Toniann 242
Plehn, Jürgen 418
Plummer, Michael D. 49, 292
Porkolab, Lorant 150
Prieto, Elena 49
Proskurowski, Andrzej 241
Pătrașcu, Mihai 521
Pudlák, Pavel 519
Putnam, Hilary 76
Quine, Willard V. 49
Rabinovich, Yuri 520
Rado, Richard 38, 49
Rai, Ashutosh 49, 76, 127, 319
Raman, Venkatesh 49, 65, 76, 98, 127, 242, 243, 319
Ramanujan, M. S. 49, 65, 76, 98, 127, 284
Rao, B. V. Raghavendra 127
Ray, Saurabh 49
Razgon, Igor 98, 263, 280, 284
Reed, Bruce A. 77, 98, 242, 243, 284
Richter, Stefan 127, 149
Rivest, Ronald L. 284
Robertson, Neil v, 130, 142, 150, 190, 191, 201, 202, 211, 216, 241–243
Rosamond, Frances A. 49, 98, 150, 319, 464, 483, 520
Rosen, Kenneth 76
Rossmanith, Peter 76, 127, 149, 374
Rotics, Udi 243
Rué, Juanjo 374
Ruhl, Matthias 520
Ruzsa, Imre Z. 76, 319
Ryser, Herbert J. 354

Saks, Michael E. 374, 519
Santhanam, Rahul 555
Sau, Ignasi 374, 375
Schlote, Ildikó 555
Schönhage, Arnold 336, 355
Schrijver, Alexander 283, 319, 374, 375, 387, 388, 417
Schudy, Warren 127
Schulman, Leonard J. 118, 119, 127
Schwartz, Jacob T. 355
Seese, Detlef 184, 241, 244
Seymour, Paul D. v, 130, 142, 150, 189–191, 201, 202, 211, 216, 241–243, 261, 284
Shachnai, Hadas 418
Shamir, Ron 49, 76
Sidiroopoulos, Anastasios 520
Sikdar, Somnath 49, 76, 319
Sinclair, Alistair 520
Sipser, Michael 440
Sloper, Christian 49
Smith, Kaleigh 77, 98
Soltys, Karolina 319
Spencer, Joel H. 464
Srinivasan, Aravind 118, 119, 127
Stallmann, Matthias 417
Stanley, Richard P. 354
Stein, Clifford 284
Stevens, Kim 98
Stockmeyer, Larry 519
Strassen, Volker 336, 355