References


Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing & testable design, 1st edn. Wiley-IEEE, Hoboken NJ


References


Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing: probability models


Bernstein AV, Tomfield YL, Schagaev IV (1992) Storage unit with high reliability characteristics. I. Avtomat i Telemekh 145–152

Bernstein AV, Tomfield YL, Schagaev IV(1993) RAM of high reliability properties. II. Avtomat. i Telemekh 169–179

Bose RC, Ray-Chaudhuri DK (1960) On a class of error correcting binary group codes. Inf Control 3:68–79
Caldwell DW (1998) DSIGDE/PwrAnomaly Day300: analysis and resolution
Department of Electrical Engineering (1952) Whirlwind I master drawing list and general rack layout of computer. MIT, Cambridge, MA
Dhillon BS (2006) Maintainability, maintenance, and reliability for engineers. CRC, Boca Raton, FL
Dijkstra EW (1965) Solution of a problem in concurrent programming control. Commun ACM 8:569


Dunn M (1991) Designer fault models for VLSI. Presented at the IEE colloquium on design for testability, pp 4/1–4/5


ECSS (2007) Space engineering: methods for the calculation of radiation received and its effects, and a policy for design margins—ECSS-E-10–12 Draft 0.5


EIA/JEDEC Standard (1996) Test procedures for the measurement of single-event effects in semiconductor devices from heavy ion irradiation. EIA/JEDEC Standard


References


IBM (2007) IBM Power6 microprocessor and IBM System p 570


ITRS (2011) International technology roadmap for semiconductors


Kulkarni GV, Nicola FV, Trivedi SK (1987) Effects of checkpointing and queueing on program performance. Duke University, Durham, NC, USA
Laprie J-C (2008) From dependability to resilience 8, G8–G9

References


NASNGSFC Landsat-7 Project Office. Private communication, 1995


Northcliffe L, Schilling R (1970) Range and stopping-power tables for heavy ions. At Data Nucl Data Tables 7:233–463


References


Pierce WH (1965) Failure-tolerant computer design. Academic, New York, NY


Power 6 Specs: IBM Power6 Microprocessor and IBM System p 570, 2007


Ravishankar K, Iyer ZK (2003) Hardware and software error detection


References

Schagaev I (1986a) Detecting the defective computer in two-unit, fault tolerant system having a sliding stand- by units. Automatic and Remote Control 5:143–150
Schagaev I (1986b) Algorithms of computation recovery, Automatic and remote control 7. Plenum, New York, NY
Schagaev I (2008) Reliability of malfunction tolerance. In: International multiconference on computer science and information technology (IMCSIT), Wisla, Poland, pp. 733–737
Schagaev I (2009) ERA: embedded reconfigurable architecture – past present and future
Shirvani PP, McCluskey EJ (1998) Fault-tolerant systems in a space environment: The CRC ARGOS project. Stanford University, Stanford, CA
Smith M (1997) Application-specific integrated circuits, 1st edn. Addison-Wesley Professional, Boston, MA
Sogomonian E, Schagaev I (1988) Hardware and software fault tolerance of computer systems. Avtomatika i Telemekhanika 3–39
Wirth N (1992) Project Oberon: the design of an operating system and compiler. Addison-Wesley, Boston, MA

References
Index

A
Active zone (AZ), 5, 146–151, 153, 157, 158, 162, 172, 209, 215, 235
Availability, 1, 9, 20, 25, 27, 29–33, 35–37, 59, 108, 114, 166, 167, 207, 225

B
Boundaries of fault, 29, 123

C
Classification of redundancy, 42, 44
Comparison of processor architectures, 6, 149, 189–193

D
Damage and temporary effects, 81–82, 86, 111, 208

E
Electronics, 1–5, 8, 10, 57, 79–111, 117, 121, 208, 211, 236
Embedded recoverable reduced instruction computer, 147–152, 189, 191, 192, 199, 203, 209, 232, 234, 235

F
Fault avoidance, 2, 20, 39–41, 49, 77
Fault handling, 28, 39–40, 58, 114, 137, 162, 228, 230
Functions of run-time system for support of hardware reconfiguration, 153, 181, 212, 217–220, 222, 227, 228, 230, 237, 238

G
Generalized algorithm of fault tolerance (GAFT), 6, 56, 136–142, 147, 149, 156, 158, 172, 181, 208, 230
Graceful degradation, 29, 33–35, 58, 142, 165–169, 178, 209, 210, 228

H
Hardware design, 5, 20, 57, 156, 180, 184, 213–215, 219, 222, 232
Hardware redundant system design, 23, 42, 45, 46

I
Information redundancy, 42, 43, 59–69, 76
Instruction execution, 139, 140, 148–150, 158, 159, 168, 183–185, 187, 205, 216, 222
Instruction set, 147, 172, 184–187, 189, 191, 205, 209, 218, 222, 232
Interfacing zone (IZ), 5, 146–147, 151–152, 170–172, 209, 215

M
Models of fault, 6, 72, 82, 113–143, 171, 208

O
Origins of fault, 42, 117–123

P
Passive zone (PZ), 5, 146, 147, 150–151, 157, 162–165, 172, 209, 215
Performance, 9, 33, 35–37, 207
Performance and power consumption constraints, 3–5, 10, 12, 78, 113, 133, 134, 136, 138, 159, 172, 213, 215, 218, 233
Processor testing, 6, 11, 209

R
Reconfiguration mechanisms and control, 142, 146, 158, 181, 228
Recoverability, 26, 27, 32–33, 35–37, 65, 95, 111, 128–134, 140, 142, 172, 208, 227
Reliability of redundant systems, 22–24
Resilience, 4–37, 41, 80, 128, 131, 145–172, 207, 208, 210, 228, 231

S
Security, 1, 9, 25–33, 35, 37
Simulation and tools, 183–205, 209, 210
Single event upsets, 96, 101
Software testing of hardware against malfunctions, 2, 57, 58, 172, 175–177, 180, 227, 228, 232
Software testing of hardware permanent faults, 4, 57, 58, 70, 71, 79, 96, 113, 115, 139, 145, 152, 166, 173, 174, 177, 180, 227, 228, 231, 232, 235
Structural redundancy, 5, 42–59, 69, 72, 75–78, 135
System life cycle, 7–9, 16, 39, 40, 114, 116, 214, 215, 220
System modeling with fault tolerance, 134–142

T
Time redundancy (TR), 23, 42, 43, 69–76, 78, 114, 116, 134, 181