Appendix A: Derivation for M/G/1 Queue

In this appendix, we apply the method of z-transform or generating functions to find the waiting time of the M/G/1 model.

The probability of having k arrivals during the service time t is

$$p_k = \int_0^\infty p(k) dH(t) = \int_0^\infty \frac{(\lambda t)^k}{k!} e^{-\lambda t} dH(t) \quad (A.1)$$

where $H(t)$ is the service time distribution.

Let N be the number of customers present in the system and Q be the number of customers in the queue. Let the probability that an arriving customer finds j other customers present be

$$\Pi_j = \text{Prob}(N = j), \quad j = 0, 1, 2, \cdots \quad (A.2)$$

It can be shown using the theorem of total probability and the equilibrium imbedded-Markov-chain that

$$\Pi_j = p_j \Pi_0 + \sum_{i=1}^{j+1} p_{j-i+1} \Pi_i, \quad j = 0, 1, 2, \cdots \quad (A.3)$$

We define the probability-generating functions

$$g(z) = \sum_{j=0}^\infty \Pi_j z^j \quad (A.4a)$$

$$h(z) = \sum_{j=0}^\infty p_j z^j \quad (A.4b)$$
Substituting (Eq. A.4a) into (Eq. A.3) results in

\[g(z) = \frac{(z - 1)h(z)}{z - h(z)} \pi_0 \]
(E.5)

The normalization equation

\[\sum_{j=0}^{\infty} \pi_j = 1 \]
(E.6)

implies that \(g(1) = 1 \). With a single application of L’Hopital’s rule, we find

\[\pi_0 = 1 - \rho \]
(E.7)

where \(\rho = \lambda/\mu = \lambda \tau \). If we define \(\eta(s) \) as the Laplace-Stieltjes transform of the service-time distribution function \(H(t) \),

\[\eta(s) = \int_0^\infty e^{-st}dH(t) \]
(E.8)

Substitution of (Eq. A.1) into (Eq. A.4b) yields

\[h(z) = \eta(\lambda - \lambda z) \]
(E.9)

and substitution of (Eq. A.7) and (Eq. A.9) into (Eq. A.5) leads to

\[g(z) = \frac{(z - 1)\eta(\lambda - \lambda z)}{z - \eta(\lambda - \lambda z)} (1 - \rho) \]
(E.10)

Differentiating this and applying L’Hopital rule twice, we obtain

\[g'(1) = \frac{\rho^2}{2(1 - \rho)} \left(1 + \frac{\sigma^2}{\tau^2} \right) + \rho \]
(E.11)

The mean values of the number of customers in the system and queue are respectively given by

\[E(N) = \sum_{j=0}^{\infty} j\pi_j = g'(1) \]
(E.12a)

\[E(Q) = E(N) - \rho \]
(E.12b)
By applying Little’s theorem, the mean value of the response time is

\[
E(T) = \frac{E(N)}{\lambda} = \frac{\rho \tau}{2(1 - \rho)} \left(1 + \frac{\sigma^2}{\tau^2}\right) + \tau
\]

(A.13)

Thus we obtain the mean waiting time as

\[
E(W) = \frac{E(Q)}{\lambda} = \frac{\rho \tau}{2(1 - \rho)} \left(1 + \frac{\sigma^2}{\tau^2}\right)
\]

which is Pollaczek-Khintchine formula.
Appendix B: Useful Formulas

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

\[\sum_{i=1}^{n} i^3 = \left[\sum_{i=1}^{n} i \right]^2 = \frac{n^2}{4} (n+1)^2 \]

\[\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}, \quad |x| < 1 \]

\[\sum_{n=k}^{\infty} x^n = \frac{x^k}{1-x}, \quad |x| < 1 \]

\[\sum_{n=1}^{k} x^n = \frac{x - x^{k+1}}{1-x}, \quad x \neq 1 \]

\[\sum_{n=0}^{k} x^n = \frac{1 - x^{k+1}}{1-x}, \quad x \neq 1 \]

\[\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}, \quad |x| < 1 \]

\[\sum_{n=1}^{k} nx^n = x \left(\frac{1-x^k}{(1-x)^2} - kx^k(1-x) \right), \quad x \neq 1 \]
\[
\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}, \quad |x| < 1
\]

\[
\sum_{n=1}^{\infty} n(n+1)x^n = \frac{2x}{(1-x)^3}, \quad |x| < 1
\]

\[
\sum_{n=0}^{\infty} \frac{(n+k)!}{n!} x^n = \frac{k!}{(1-x)^{k+1}}, \quad |x| < 1, k \geq 0
\]

\[
\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \quad -\infty < x < \infty
\]

\[
\sum_{n=0}^{\infty} \frac{x^n}{(n+1)!} = \frac{e^x - 1}{x}, \quad -\infty < x < \infty
\]

\[
\sum_{n=1}^{\infty} \frac{x^n}{n} = \ln \left(\frac{1}{1-x} \right), \quad |x| < 1
\]

\[
\sum_{n=1}^{\infty} \frac{x^{(2n-1)}}{(2n-1)!} = \frac{e^x - e^{-x}}{2}, \quad -\infty < x < \infty
\]

\[
\sum_{n=0}^{\infty} \binom{N+n-1}{n} x^{-n} = \left(\frac{x}{x-1} \right)^N, \quad |x| < 1
\]

\[
\sum_{k=1}^{n} \binom{n}{k} x^k = (1+x)^n
\]
Bibliography

Index

A
Access control, 169, 203
ALOHA, 184, 229–232, 248
Analytic modeling, 2, 3
Application layer, 168, 204, 220–221
ATM, 2–3, 220, 249
Autocorrelation, 67–71, 74, 80, 84–86, 254, 255
Autocovariance, 67, 68, 70
Average delay, 94, 178
Average queue length, 93, 95, 100, 102, 134–138
Average response time, 94, 104

B
Balance equation, 92, 97–99, 103, 107, 247
Baseband/broadband signaling, 169
Bayes’ theorem, 9, 16
Bernoulli distribution, 28–29
Binomial distribution, 29–31, 33, 45, 48, 49, 52, 56, 207
BISDN. See Broadband integrated services
digital network (BISDN)
Blocking probability, 100, 247
Bridge, 198–211, 213–215, 233, 235
Broadband, 169, 227
Broadband integrated services digital network
(BISDN), 2, 219, 227, 228
Bulk, 96–98, 110
Bus topology, 180, 233

C
C++, 120, 143, 156, 159, 163
Call dropping probability, 247
Capacity, 3, 88, 178, 184, 203, 241, 245, 246, 248, 263
Carrier sense, 144, 184
Carrier sense multiple access (CSMA), 184, 238, 244
Carrier sense multiple access with collision
avoidance (CSMA/CA), 145, 235, 237, 238
Carrier sense multiple access with collision
detection (CSMA-CD), 184, 185, 190–193
CDF. See Cumulative distribution function
(CDF)
Cell splitting, 245, 246
Cellular communications, 229, 243–248
Central limit theorem, 37, 45–46, 52, 139, 140
Code division multiple access (CDMA), 240–241, 244, 248
Conditional probability, 8–9, 16, 77
Continuous, 11, 12, 14–16, 18, 21, 22, 25, 28, 33, 37, 42, 48, 51, 63, 117, 254
Continuous-time random process, 63, 64, 83
Controlled access protocol, 183, 184
Correlation, 20, 23–28, 74, 253
Correlation coefficient, 24, 47, 67
Covariance, 20, 23–28, 67, 254
Crosscovariance, 73
CSMA. See Carrier sense multiple access
(CSMA)
CSMA/CA. See Carrier sense multiple
access with collision avoidance
(CSMA/CA)
CSMA-CD. See Carrier sense multiple
access with collision detection
(CSMA-CD)
CSMA/CD protocol, 169
Cumulative distribution function (CDF), 12–13, 15–20, 28, 38, 40, 48, 50, 51, 65–67, 256

D
Data link layer, 168–169, 199, 201
Decomposition, 78, 79, 175
Deterministic random process, 63, 64
Direct sequence spread spectrum (DSSS), 234–236
Discrete, 12–14, 17, 21, 22, 28, 31–33, 48, 51, 52, 62, 63, 76, 82, 117, 119, 156, 162, 163, 263
Discrete-time random process, 63
Disjoint events, 7
Distributed queue dual bus (DQDB), 198
Documentation, 120, 122
Drunkard’s walk, 75

E
Encapsulation, 222
Ergodic process, 63–65, 71–73, 83
Erlang distribution, 35, 38, 52, 106
Error function, 38, 40, 41, 51, 140
Ethernet, 2, 145, 184, 185, 203, 221, 233, 237, 251, 262, 263
European Telecommunications Standards Institute (ETSI), 235, 237
Event, 5–16, 33, 34, 51, 77, 78, 118–120, 127–129, 131, 132, 134, 144, 156, 162
Exhaustive service, 172, 173, 175, 177, 179, 183, 213
Expectations, 21–23, 139
Experiment, 3, 5–7, 11, 14, 28, 31, 48, 51, 52, 61, 115, 136, 251
Exponential distribution, 34–36, 52, 57, 76, 79, 100, 104, 126, 247

F
Fiber distributed data interface (FDDI), 2, 198, 203, 205, 206
Filtering, 201
First-come first-serve (FCFS), 89, 91, 97
First-in first-out (FIFO), 88, 89, 103, 127
First-in random-out (FIRO), 89
Forgetfulness property, 34
Forwarding, 4, 201
Frequency division multiple access (FDMA), 239–244, 248
Frequency hopping spread spectrum (FHSS), 234, 235
Frequency reuse, 229, 236, 245–248

G
Gated service, 172–175, 177, 179, 183
Gateway, 198, 199, 203–204, 215, 224
Gaussian distribution, 12, 33, 36–41, 43, 45, 49–52, 59, 80, 140, 258
Geometric distribution, 30–31, 44, 52, 93, 126

H
Hand-off, 245–248
Higher-level protocols, 199
Hyperexponential distribution, 33, 36, 38, 52

I
Idle, 102, 128, 134, 145, 184, 185, 192, 231, 238
IEEE 802.2, 235
IEEE 802.6, 198
IEEE 802.11, 144, 150, 235, 236, 238
IEEE 802.11b, 233
IEEE LAN, 168
IEEE Standard 802.4, 180
IEEE Standard 802.5, 171
IID. See Independent identical distributed (IID)
Independent, 9, 10, 16, 19, 20, 23, 24, 29, 31, 35, 37, 45, 52, 66, 72–74, 76–78, 80, 89, 109, 110, 139, 168, 176, 205, 238, 256, 258
Independent identical distributed (IID), 35, 66, 78, 80, 256
Infrared (IR), 229, 232, 235, 248
Input process, 88, 103, 260
Integrated services digital network (ISDN), 227, 228
International Standards Organization (ISO), 167, 199
Internet, 2, 4, 219–227
Internet protocol (IP), 203, 220–226
ISDN. See Integrated services digital network (ISDN)
ISO. See International Standards Organization (ISO)
Index

J
Jackson network, 109–110
Jackson theorem, 110
Jitter, 4
Joint cumulative distribution function, 15, 20, 52
Joint distribution, 14–20, 66
Joint probability, 8, 9, 110
Joint probability density function, 15, 19, 26, 27, 46, 50, 52, 72, 73

L
Lack of memory property, 34
Last in first-out (LIFO), 89
Limited service, 172–175, 177–179, 183
Little’s theorem, 89–90, 95, 102, 103, 269
Logical link, 169
Logical link control (LLC), 235
Logical ring, 180
Loss probability, 3, 227

M
MAC. See Media access control (MAC);
Medium access control (MAC)
MANs. See Metropolitan area networks (MANs)
Marginal cumulative distribution functions, 15
Marginal probability density functions, 16
Markov, 34, 62, 75–77, 80, 83, 88, 185, 238
Markovian, 76, 251, 255
Markov process, 62, 75–77, 80, 83
M/D/1 queue, 104, 105, 134, 136, 137
Mean transfer delay, 170, 177, 187, 205, 207
Measurement, 2–4, 6, 205
Media access control (MAC), 169, 235
Medium access, 145
Medium access control (MAC), 144, 145, 150, 200, 201, 235–238
M/E_κ/1 queue, 110
Metropolitan area networks (MANs), 2, 197–215, 227, 229
M/G/1, 103–106, 110, 173, 193
M/G/n queue, 89
M/G/1 queue, 185, 189, 242, 267–269
M/M/∞, 102, 110
M/M/k, 100–102, 110
M/M/1/k queue, 101
M/M^Y/1, 98
Mobility, 229, 232, 233, 245, 246
and roaming, 245, 246
Model analysis, 120, 122
Model validation, 122
Model verification, 120, 121
Moments, 20–23, 25, 32, 43, 44, 64, 67, 68, 72, 90, 173, 174, 186, 190, 206, 210, 238, 260
Monte Carlo method, 115
Multiple access, 145, 183, 184, 230, 235, 237, 239–243, 248
Multivariate expectations, 22–23
Mutually exclusive, 7, 8, 10

N
Network layer, 168, 199, 202, 204, 221–223
Network simulator version 2 (NS2), 121, 144, 156–161, 163
Nondeterministic random process, 63
Nonstationary random process, 63–64
Normal distribution, 36, 37, 45, 80, 140, 141
Normalized distribution function, 36
Number generator, 80, 122–123

O
Object-oriented extension of tool command language (OTcl), 156, 159
On-off model, 257–260
Open system interconnection (OSI), 167–169, 199, 202–204, 235
OPNET, 121, 144–156, 163, 263
Orthogonal, 24, 26, 28, 73
OTcl. See Object-oriented extension of Tool command language (OTcl)
Outcomes, 5–12, 14, 28, 29, 48, 51, 61, 156, 160

P
Packetization delay, 226
Pareto distribution, 252, 255–257, 259, 263
PDF. See Probability density function (PDF)
PDMA. See Polarization division multiple access (PDMA)
Physical layer, 169, 192, 199, 200, 233, 235, 236
Poisson distribution, 31–34, 78, 79, 91, 207
Poisson process, 62, 78–80, 83, 95, 97, 109, 173, 186, 189, 207, 247
Polarization division multiple access (PDMA), 240
Pollaczek–Khintchine formula, 104–106, 110, 269
Presentation layer, 168
Probability density function (PDF), 13–19, 21, 25–40, 42, 45, 46, 48–50, 52, 63, 65–67, 69, 72, 73, 80, 125, 256
Program synthesis, 120–121
Propagation delay, 3, 170, 176–178, 180–183, 185–187, 190, 208, 226
Pseudorandom number, 33, 124
Public switched telephone network (PSTN), 219
Queue discipline, 88, 91, 127
Queueing delay, 170, 181, 189, 190, 226
Queue length (QL), 3, 89, 95, 100, 102, 109, 110, 134–138
Random binary process, 81
Random experiment, 6, 11, 47–48, 51, 61
Random process, 5, 61–81, 83, 230
Random quantity, 5
Random walk, 62, 63, 75–76, 80, 83
Realizations functions, 61
Relaxation frequency, 6, 21, 51
Reliability, 2, 189, 192
Renewal process, 62, 80, 83
Repeater, 199–201, 215, 233
Ring topology, 171, 188, 233
Router, 198, 199, 202–204, 215, 221, 226, 233
R-S analysis, 259–260
Sample functions, 61, 63–65, 71, 72, 81–83
Sample space, 6, 11, 12, 15, 51, 83
Sample standard deviation, 139, 211
Satellite communications, 219, 229
Scalability, 232
Self-similarity, 251–263
Service mechanism, 88
Session layer, 168
Sierpinski triangle, 252
Simulation, 1–3, 33, 34, 37, 107, 115–163, 205, 211–213, 229
Simulator, 119, 122, 128, 131, 134, 156, 158, 163
Single queue, 88–90, 129, 260–262
SMDA. See Switched multisegment data service (SMDA)
SNA. See System Network Architecture (SNA)
SONET, 203
Space division multiple access (SDMA), 240
Spectral efficiency, 241, 245–247
Splitting, 78, 241, 245, 246
Spread spectrum (SS), 233, 234, 236, 237, 241
Standard deviation, 22, 47, 52, 81, 139–141, 211, 258
Star topology, 188, 233
State transition diagram, 77, 78, 97, 99–102
Stationary, 63–64, 66, 68–73, 83, 92, 229, 254
Stationary random process, 63, 83
Statistically independent, 9
Stochastic process, 61–83, 253, 254
Strict-sense stationary (SSS), 68, 69
Superposition, 78, 79, 258
Switched multisegment data service (SMDA), 2, 198
System Network Architecture (SNA), 203
Throughput, 1, 3, 93, 94, 155, 169, 189, 190, 192, 193, 226, 227, 230–232, 236, 238, 239
Time autocorrelation, 71
Token-passing bus, 180–183
Traffic generation, 147–148, 259, 263

T
TCP/IP. See Transmission Control Protocol/Internet Protocol (TCP/IP)
TDMA. See Time division multiple access (TDMA)
Throughput, 1, 3, 93, 94, 155, 169, 189, 190, 192, 193, 226, 227, 230–232, 236, 238, 239
Time autocorrelation, 71
Time division multiple access (TDMA), 230, 239–244, 248
Token-passing bus, 180–183
Traffic generation, 147–148, 259, 263
Transmission Control Protocol/Internet Protocol (TCP/IP), 203, 220, 222, 224, 227
Transmission medium, 169, 185, 226
Transport layer, 168, 204, 221
Tree topology, 170

U
Uncorrelated, 24, 26, 73
Uniform distribution, 33–34, 69, 125, 181
Uniformly distributed, 34, 47, 64, 69, 74, 80, 81, 123, 124, 238
Utilization, 93, 100, 103, 110, 169, 173

V
Venn diagram, 5, 6

W
Wide area networks (WANs), 2, 167, 197, 203, 219–228
Wide-sense stationary (WSS), 68, 69, 72, 254
Wireless local loop (WLL), 229
Wireless network, 146, 158, 161, 219, 229–248, 252, 262–263
Wireless nodes, 147, 233, 234
Wireless personal area network (WPAN), 229
Wireless personal communications services (PCS), 229
Wireless private branch exchanges (WPBXs), 229

Z
Z-transform, 43, 97, 104, 267