Conclusion

In a 2006 article,¹ provocatively entitled, “Beware, Psychosurgery is back!” the father of deep brain stimulation, Alim-Louis Benabid, addressed all those “who will have the grave responsibility of redeveloping therapeutic methods able to bring certain relief to patients suffering from diseases which lead to their exclusion from society, their family and their own dignity.” The celebrated neurosurgeon from Genoble warned that, “the renaissance of psychosurgery gives us, patients as well as physicians and scientists, a second chance, and it is our duty to use it as best we can and to positive effect. We will be responsible if once again because of our errors and lack of judgement we let it fail and give rise to a new era of darkness.” The path forward for psychosurgery will not be easy. It is burdened with a history of past controversies that are hard to escape. Some authors have therefore suggested renaming psychosurgery “neuromodulation” but such a semantic trick is of little value. Quite the contrary, it invalidates efforts to educate the public about the difference between lobotomies practiced in the 1950s and current interventions, which are no longer synonymous with mutilations of patients’ personality. Going forward, there is a risk of abuses if this intervention is practiced without heeding fundamental ethical principles. The future of psychosurgery, caught between past errors and the threat of being condemned for ideological reasons or because of technophobia, is uncertain. Nonetheless, this discipline seems the offer a way to improve the lives of tens of thousands of patients who today face a lack of treatments and are condemned to suffer from mental illness. In order for it to flourish, the future of psychosurgery must be strictly supervised. It therefore seems essential to end this book with a reminder of the safeguards without which the continued development of “deep brain stimulation for psychiatric pathologies may be doomed”² as Marwan Hariz warns.

First, these techniques must be used exclusively for patients suffering from serious debilitating disorders for whom less invasive therapies have failed.

Secondly, these treatments must be discussed by multidisciplinary teams with the proper authority and the indications approved in a collegial manner.

Thirdly, independent ethics bodies must ensure that fundamental principles of bioethics are respected. The issues of free and informed consent and conflicts of interest require the utmost vigilance.

Only democracies are capable of guaranteeing the requisite independence of these ethics bodies. Psychosurgery is inseparable from the political order.³ For example, the press can be both a tool for emancipation in democracies as well as a tool for manipulation in dictatorships. Psychosurgery can likewise be used for good or evil: as a treatment or a tool for control. To counter this danger our societies must be kept informed, with utmost transparency, of the advances being made in this field and of its applications throughout the world.

We are at the beginning of an era of renewed interest in neurosurgery for psychiatric illness. The keyword of this new era of psychosurgery is “neuromodulation,” as opposed to the neuro-ablation of the past. Neuromodulation makes use of a surgical technique called Deep Brain Stimulation (DBS). This new technique is promoted, and perceived, as being non-destructive, adaptable, and especially “reversible.” Psychosurgery, including stereotactic psychosurgical ablative procedures—which had been thrown out through the door, sometimes reminding of the idiomatic expression of throwing the baby with the bath water—is now re-entering through the window of “neuromodulation,” a disguise meant to reassure the public of the innocuous and leniency of this “modern” procedure.

The great contribution of this book by neurosurgeon Marc Lévêque is to put this new emerging era of non-ablative surgery into a historical, scientific, and ethical context. Reading this book is like reading an anthology, or rather an encyclopaedia of the field of psychiatric surgery, spanning more than a century. This is a work with an unprecedented degree of erudition and knowledge, and the subject is presented in a didactic, scholar, and scientific manner, and is extensively referenced and illustrated. If only one book is to be read by anybody interested in this field, regardless of specialty, this is The Book to read.

Where is the field now going? One may reflect upon the fact that, as described in the book, modern DBS for psychiatric illness was pioneered already in 1999 with DBS for obsessive compulsive disorder (OCD) and DBS for Tourette syndrome. A few years later, DBS for major depression was introduced. Today, there are about eight published brain targets for DBS in OCD, ten published brain targets for DBS in Tourette, and nine published brain targets for DBS in depression. Some of these brain targets overlap each other, and none of the brain targets and indeed none of the psychiatric indications for DBS is yet “established,” despite the plethora of scientific papers published in the last 14 years of activity in the field. Despite this lack of consensus about DBS in these three major psychiatric illnesses, DBS is now trialled or advertised as a potential treatment for drug addiction, anorexia nervosa, post-traumatic stress disorder, and dementias. Lately, an alarming qualitative jump has occurred in that DBS is being considered as a tool, not for diseases and illnesses, but for enhancement of
cognition in normal people. Finally, that alarming jump has now approached an abyss as illustrated in a recent article published in the prestigious Journal BRAIN, in which “scientists” suggested the theoretical use of DBS to treat “antisocial behaviour” and to improve “morality”!

All this shows that the prophecy of Dr. Joseph H. Friedman from Rhode Island in 2004 is being confirmed. Friedman wrote then: “Now that DBS means that psychosurgery is reversible, we no longer have to worry about permanent harm. On the other hand, now that psychosurgery could be readily available, potentially for a large number of conditions, we have a lot more to worry about.”

Indeed if the field continues in this direction we will have a lot more to worry about, and we may witness then another setback for surgery for psychiatric illness. The tragedy of the past is well illustrated in this book in relation to old times DBS as practiced in Tulane University in the 1950s through the 1970s, and that had been condemned by Beaumeister in 2000 as being unethical “by yesterday’s standards”). This tragedy of the past may well become the farce of the future.

Neuromodulation should not be allowed to become neuro-manipulation, and the DBS technique as such is neither always “reversible,” nor is it per se necessarily more “ethical” than well-performed stereotactic lesions such as anterior capsulotomy or cingulotomy, in the treatment of refractory psychiatric illness. The “second chance” of psychosurgery—as Benabid put it in 2006—and that is permitted by DBS, should not be allowed to degenerate into a farce. One should bear in mind the famous quote attributed to the Great Swedish neurosurgeon Lars Leksell: “a fool with a tool is still a fool.” This book of Marc Lévêque will invite those who read it to a profound reflection about the field of psychiatric surgery, and about the moral and ethical guardrails (garde-fous) needed, if real severely ill patients who suffer from real diseases of the mind that are refractory to all other non-surgical treatments, are to benefit from a justified, well-performed, well-evaluated stereotactic procedure, be it stereotactic DBS surgery, or stereotactic ablative surgery.

November 2013

Professor Marwan Hariz
Chair of Functional Neurosurgery,
UCL Institute of Neurology,
Queen Square, London, UK
Adjunct Professor of Stereotactic Surgery,
Umeå University, Umeå, Sweden
London and Umeå
This book is the product of a reflection on psychiatry, neurosurgery, and ethics. I would like to thank Monique Carton, who through her humanity and talent taught me to love psychiatry. My thanks to Patrice Simon, who guided me during my internship at the Charles Perrens Hospital and showed me the richness of psychoanalytic discourse. Jean Guérin, Dominique Liguoro in Bordeaux and Thierry Gustin and Claude Gilliard at the UCL helped me with their generosity and talents take my first steps in surgery of the nervous system. Thank you. My two years as a fellow in Montreal alongside Michel Bojanowski were incredibly fruitful. He is an exceptional neurosurgeon and a peerless teacher. Our discussions on neuroanatomy, ethics… the French language nourished me as much as the smoked-meat sandwiches at Schwartz’s we would eat after those interminable interventions. My thanks to Danielle Laudy at the Université de Montréal who awakened me to the field of medical ethics and then made it possible for me to teach alongside her. With all their talent, Jean-Claude Péragut and Jean Régis at the Timone trained me in functional neurosurgery. I am grateful to them and to Jean-Philippe Azulay who encouraged me to learn more about the fascinating and promising field of psychosurgery. My thanks to Marwan Hariz and Bart Nuttin, two eminent specialists in psychosurgery, who welcomed me into their department and took the time to answer my numerous questions.

This book would not have been possible without the astute comments and eye for detail of Emmanuel Ly-Batallan, Fabrice Bartholomei, Michel W. Bojanowski, Romain Carron, Monique Carton, C. Rees Cosgrove, Edgar Durand, Alexandre Eusebio, Denys Fontaine, Anne Jilger, Marie-Pierre Fournier-Gosselin, Björn Meyerson, Grégoire Moutel, Mircea Polosan, Raphaëlle Richieri, Napoléon Torres, who all generously contributed their time to rereading parts or the whole of this text. I am indebted to Philippe Cornu, who agreed to preface this work. I thank from the bottom of my heart my friend, Laurent Alexandre, for his advice and our fascinating conversations about technomedecine. I had the privilege of being immediately understood by Nathalie L’Horset-Poulain, who welcomed my book.
into her collection. I express my immense gratitude as a young author. I thank Charlotte Porcheron, whose brush strokes reflected my thoughts perfectly. This book would never have seen the light of day without the encouragement of Philippe and the tender support of Sophie. I dedicate it to our daughter, Marie.
Bibliography

History

El-Hai J (2005) The lobotomist: a maverick medical genius and his tragic quest to rid the world of mental illness. Wiley & Hoboken
Freeman W (1942) Psychosurgery. Charles C. Thomas, Baltimore
Fulton JF (1951) Frontal Lobotomy and affective behavior: a neurophysiological analysis. Norton

Techniques

Kellner CH (2012) Brain stimulation in psychiatry: ECT, DBS. Cambridge University Press, TMS and Other Modalities

Ethics

M. Lévêque, Psychosurgery, DOI: 10.1007/978-3-319-01144-8, © Springer International Publishing Switzerland 2014

327
Marc Lévêque is a neurorsurgeon at the Pitié-Salpêtrière hospital in Paris, France. After beginning his residency in psychiatry, he was appointed physician at the French Embassy in China before joining neurosurgery. Trained at the University of Leuven and the Université de Montréal, he is a former fellow of the functional neurosurgery and stereotaxy department at the Timone hospital in Marseille. Marc Lévêque has contributed to several research protocols in deep brain stimulation for the treatment of OCD and has participated in the elaboration of a study on cortical stimulation for the treatment of treatment-refractory depression.

The latest scientific findings, testimonies, public domain elements of the bibliography as well as illustrations and videos on psychosurgery are available on the author’s blog:

www.psychochirurgie.info
With a controversial past, psychosurgery, or the surgical treatment of mental disorders, has undergone a spectacular revival over the past 10 years as new brain stimulation techniques have become available. Neuromodulation offers new possibilities for the treatment of psychiatric disorders such as depression, obsessive-compulsive disorders (OCD), addiction, and eating disorders. This work presents the history of this singular specialty and investigates current techniques and ethical challenges. With a wealth of illustrations and accessible anatomical diagrams, this book aims to inform and entertain medical practitioners as well as anyone interested in the fascinating advances being made in neuroscience today.
Name Index

A
Agid, Yves, 235, 297
Alexander, Garrett, 87, 114
Aouizerate, Bruno, 55, 146, 224
Apuzzo, Michael, L. J., 315
Arsonval, Arsène, 156

B
Babinski, Joseph (1857-1932), 16
Babtchin, Isaak (1895-1989), 17
Baertschi, Bernard, 291
Bailey, Percival (1892-1973), 20
Balasubramaniam, V, 121, 242, 286, 288
Ballantine, H. Thomas (1912-1996), 38, 118, 120, 196
Bartlett, John, 123
Baruk, Henri (1897-1999), 8, 29
Baxter, Warner, 21
Beauchamp, Tom L., 284
Benabid, Alim-Louis, 38, 39, 130, 132, 149, 250
Berkay, Feyyaz (1915-1993), 17
Bewernick, Bettina H, 146, 147, 226
Bioulac, Bernard, 91
Bosch, Hieronymus (1460-1516), 2
Breggin, Peter R, 35, 36
Brickner, Richard M, 10
Bridges, Paul, 123
Broca, Paul (1824-1880), 4, 50, 53, 86
Brodemann, Korbinian (1868-1918), 52
Broggi, Giovanni, 235, 236, 291
Bucy, Paul, 58, 232
Burckhardt, Gottlieb (1836-1907), 6, 38
Burton, Robert (1577-1640), 3

C
Cairns, Hugh (1896-1952), 25, 38, 118
Cannon, Walter, 60, 84
Cerletti, Ugo (1877-1963), 8
Chabardes, Stéphan, 149, 250
Choucha, Walid, 217
Christmas, David M, 116, 221
Cooper, Ray, 27
Corcos, Maurice, 309
Corkin, Suzanne, 36
Cosgrove, G. Rees, 120, 121, 123, 207, 222
Cosyns, Paul, 132
Coubes, Philippe, 131, 237
Crisp, Arthur H, 253
Crow, Harry J, 27
Cuny, Emmanuel, 146, 224
Cushing, Harvey (1869-1939), 4

D
Damasio, Antonio, 50, 56, 64
David, Marcel (1898-1986), 16, 25, 287, 301
De Salles, Antonio A.F, 250
Dejerine, Jules (1847-1917), 16
Delay, Jean (1907-1987), 30, 38
Delgado, José (1915-2011), 26, 35, 38, 130, 222, 233
Deniker, Pierre (1917-1998), 30, 38
Denys, Damiaan, 200, 225
Deutsch, Albert, 17
Diederich, Nico J, 207
Dougherty, Darin, 120, 144, 160, 196
Doyen, Eugène (1859-1916), 6
Egorov, Boris (1892-1972), 17
Ervin, Frank R, 35, 233

Ferdière, Gaston (1907-1990), 16
Fiamberti, Amarro, 17, 18
Fins, Denys, 131, 312
Forman, Milos, 31
Fossati, Philippe, 217
Franzini, Angelo, 235, 236, 291
Freeman, Walter (1895-1972), 12, 13, 15–18, 20, 22, 28, 29, 38, 283
Friehs, Gerhard, 132
Fulton, John (1899-1960), 9, 10, 12, 13, 16, 18, 35, 38, 117, 118

Gabriels, Loes, 132
Gaches, Jean, 33
Gage, Phineas (1823-1860), 5, 55
Galen (129-201), 2
Gao, Guodong, 289
George, Mark, 164, 228
Gilles de Gilles de la Tourette, Georges, 202
Goodman, Wayne K., 139, 199
Grant, Francis C. (1891-1967), 17
Gratiolet, Louis-Pierre (1815-1865), 12
Greenberg, Benjamin, 132, 143–145, 199

Hall, Wayne, 247
Hamani, Clément, 151
Hariz, Marwan, 130, 148
Heath, Robert G. (1915-1999), 34, 38, 74, 130, 288
Hernando, Virgilio, 235, 291
Hess, Walter, 21
Hippocrate (460-377), 2, 49, 297
Hoffman, Jay, 29
Hollander, Bernard (1864-1934), 8
Hori, Tomokatsu, 237
Horsley, Victor (1857-1916), 4
Huff, Wolfgang, 147, 199

Jacobsen, Carlyle F. (1902-1974), 9, 38
Jiang, Jiyao, 245
Jiménez, Fiacro, 156, 201, 223, 226
Kaimowitz, Gabe, 35, 286
Kanaka, Thanjavur S., 288
Kelly, Desmond, 38, 123, 197, 222
Kennedy, Rosemary(1918-2005), 20
Kesey, Ken, 30, 38
Klüver, Heinrich, 58, 232
Knight, Geoffrey (1907-1994), 38, 122, 197, 222
Kondziolka, Douglas, 160
Kopell, Brian H., 159–161
Kuhn, Jens, 245, 291

Laborit, Henri (1914-1995), 30, 38
Laitinen, Lauri (1928-2005), 35
Lazorthes, Guy, 28, 300
Le Beau, Jacques (1908-1998), 16, 24, 25, 30, 38
Lehmann, Heinz (1911-1999), 30
Leksell, Lars (1907-1986), 26, 32, 38, 39, 113, 115, 125, 143
Lesch, Michael, 236
Lewis, Nolan D., 29
Lima, Almeida (1903-1985), 10, 12, 38
Lippitz, Bodo, 115
Love, Grafton (1903-1987), 17
Lozano, Andres, 38, 63, 72, 120, 150, 223, 225, 250, 312
Luys, Jules-Bernard (1828-1887), 78
Lyerly, James G. (1893-1990), 14, 17

Mac Lean, Paul (1913-2007), 25, 50, 86, 87
Mallet, Luc, 131, 149, 198, 312
Malone, Donald, 132, 144, 145
Marie, Pierre (1853-1940), 16
Mark, Vernon H, 35, 233
Mattos Pimenta, Aloysio, 18
Mayberg, Helen S., 38, 150, 215, 223, 224, 229, 310, 312
McKissock, Sir Wyllie (1906-1994), 17
Medvedev, Svyatoslav, 121, 243, 289
Meyerson, Björn A., 132, 146
Milner, Peter, 74
Mindus, Per (1940-1998), 115, 117
Mirskey, Allan, 36
Mishkin, Mortimer, 29
Missia, Jean-Noël, 30, 286
Moniz, Egas (1874-1955), 9, 10, 11, 12, 16, 21, 22, 38
Montgomery, Erwin, 132
Müller, Dieter, 243

N
Nahas, Ziad, 159, 161, 228
Nakata, Mizuho (1893-1975), 17
Narabayashi, Hirotaro, 61, 233
Nicholson, Jack, 31
Nuttin, Bart, 38, 39, 131, 144, 198, 199, 312
Nyhan, William L, 236

O
Olds, James, 74
Orzack, Maressa, 36

P
Paillas, Jean (1909-1992), 25
Papez, James (1883-1958), 25, 50, 62, 70, 76, 83, 192
Parme, Roger of, 2
Pavlov, Ivan (1849-1936), 17
Penfield, William (1891-1976), 8, 52, 129
Perón, Evita, 21
Pollack, Pierre, 130
Polosan, Mircea, 198
Pool, J. Lawrence (1906-2004), 17, 24, 38, 130
Poppen, James L. (1903-1978), 17, 21
Puech, Pierre (1897-1949), 8, 16
Puusepp, Lodovicus (1875-1942), 6, 12

Q
Quaade, Flemming (1923-2007), 69, 249

R
Racine, Eric, 247
Ramamurthi, Balasubramaniam (1922-2003), 235
Rasmussen, Steven, 132
Rauch, Scott L, 215
Rezai, Ali, 132
Richardson, Alan, 123
Rizzatti, Emilio (1904-1948), 12, 17
Rosvold, Enger, 29
Rück, Christian C., 116, 117, 196
Rush, A. John, 164–166, 228, 229
Ryan, Kenneth, 36
Rylander, Gösta (1903-1979), 22

S
Sakel, Manfred (1900-1957), 7
Saltuk, Ertuğrul (1914-1980), 17
Sano, Keiji, 235, 286
Sartorius, Alexander, 153, 224
Schlaepfer, Thomas, 146, 224, 225
Schrader, Paul, 17
Scoville, William B. (1906-1984), 23, 25, 38, 84, 118, 120, 122, 197
Sedan, Robert, 300
Semelaigne, René (1855-1934), 6
Sem-Jacobsen, Carl Wilhelm, 222
Siegfried, Jean, 300
Sola, Rafael G., 235, 291
Spiegel, Ernest A. (1895-1985), 25, 26, 32, 38, 107, 129
Sturm, Volker, 146, 147, 199, 224, 245, 291

T
Taira, Takaomi, 237
Talairach, Jean (1911-2007), 16, 25, 26, 32, 38, 39, 113, 143
Teuber, Hans-Lukas, 36
Torres, Napoleon, 250
Turner, Eric, 121

V
Valenstein, Elliot, 13, 36
Vandewalle, 207
Velasco, Francisco, 152
Vincent, Clovis (1879-1947), 9, 38
Visser-Vandewalle, Veerle, 38, 39, 131
Von Meduna, Ladislals J. (1896-1964), 8

W
Wagner-Jauregg, Julius (1857-1940), 7
Watts, James (1904-1994), 12, 13, 15, 16, 18, 20, 38
Wernicke, Carl (1848-1905), 4
Wertheimer, Pierre (1892-1982), 9, 16, 24
White Lowell, E, 196, 242
Whitty, C.W.M., 118
Williams, Rose Isabel, 20
Williams, Tennessee, 20, 30, 38
Willis, Thomas (1621-1675), 3
Wycis, Henry T. (1911-1972), 25, 26, 32, 38, 129

Z
Zhou, Hongyu, 245
Index

A
Ablative surgery. See Lesional surgery, 16
ACHT. See Corticotropic hormone
Addiction, 83, 93, 207, 238
anatomical targets, 112
deep brain stimulation, 83
depression, 216
ethical issues, 286
lesional surgery
cingulotomy, 121
new targets, 312
to cocaine, 288
to opiates, 119, 288, 290
Aggressive behavior, 70, 230, 234
lesional surgery, 235
amygdalotomy, 235
hypothalamotomy, 235
Agitation
cingulotomy, 25
Altruism, 74
Amygdala, 50, 61, 62, 64, 79, 192, 197, 249
ablation. See Aussi amygdalotomy
addiction, 240, 241
aggressive behavior, 233
anatomy, 59
conditioned fear, 85
emotional information, 61, 256
epilepsy, 162
history, 25
identification of danger, 61
memory, 84, 85
emotion, 84
nuclei
basolateral, 59
central, 60
centromedian, 151
cortico-medial, 59
post-traumatic stress, 255
relationship with
basal ganglia, 59
cholinergic system, 60
cingulate cortex, 56
cortex, 59, 61, 68, 74, 87
hippocampial cortex, 58, 62
insula, 52, 56, 64, 215
orbitofrontal cortex, 55
prefrontal cortex, 65
subgenual cortex, 157
limbic system, 53
locus coeruleus, 95
noradrenergic system, 164
nucleus, accumbens, 82
nucleus, dorsal of the vagus nerve, 60, 162
orbitofrontal cortex, 55
parasympathetic system, 60, 70, 87, 162, 166
septal area, 59
serotoninergic system, 60, 224
striatal terminalis, 59
striatum, 90
subgenual cortex, 150
thalamus, 77
vagus nerve, 66
Amygdalotomy, 34, 232
addiction, 242
aggressive behavior, 242
ethics, 286
Anatomical atlas, 32, 109
Anesthesia
local, 11
Anorexia nervosa, 312
Anterior limb of the internal capsule
lesion, 26
Antipsychiatry, 36
Antipsychotics, 204
Anxiety, 9, 21, 24, 60, 61, 68, 84, 85, 92, 95, 120, 130, 144, 147, 148, 157, 188, 223, 226
depression, 215, 216
Anxiolytics
liberium®, 31
valium, 31
Apathy, 30, 33, 54, 89, 90, 116, 117, 127, 131, 157, 298
capsulotomy, 196
depression, 215
secondary effects of neuroleptics, 205
Appetite, 68, 69, 210
dea brain stimulation, 39
hpalothalamus, 224
Arachnoid, 51
Asylum overpopulation, 13, 16
Attention, 56, 79, 95, 127, 146
Auditory hallucinations, 6
Augmented human, 316
Autostimulation, 35, 74, 82, 92
Awareness, 30, 188, 233
Axon, 52, 56, 133

B
Basal ganglia, 59
Behavior
aggressive, 34, 61, 68, 131, 231–233, 237, 238, 290
amygdala, 61
cingulotomy, 121
Leisch-Nyhan syndrome, 236
lesional surgery, 121
posteriorcingulotomy, 121
secondary effects of deep brain stimulation, 235
side effects of deep brain stimulation, 71
anticipatory, 56
consumption, 69
reproductive, 68
satiety, 69
sexual, 35, 70, 204
social, 74
Benzodiazepine, 60
Bicuculline, 149
Bilateral leucotomy, 22
Bodies mamillary, 70
Brain
limbic, 86, 87
paleo-mammalian, 86
reptilian, 86
visceral, 86
Brain-machine interface, 313, 316
Braintem, 51, 59, 66, 75, 86, 91, 94, 162
Brodman area, 90
n10, n11, n12 and n46
prefrontal orbitofrontal cortex, 55, 56, 76, 81, 157, 197, 201
n17. See Occipital cortex of primary perception
n18. See Occipital cortex occipital of perception
n19. See Occipital cortex of interpretation
n24, n25 and n32
anterior cingulate cortex, 56, 77, 84, 143, 224
n25 (subgenual cortex), 150
anatomy, 150
department, 151
n3, n1 and n2. See Cortex parietal somatosensory
n4 (primary motor cortex), 53
n44 and 45 (Broca area), 53
n6 (pre-motor cortex), 53
n8 (oculomotor coordination center), 53
n9, n10 and n46. See Prefrontal dorsolateral cortex
Bromide, 6–8
Bundle
cortico-striatal, 113
frontothalamic, 15

C
Cachexia, 69
Capsulotomy, 37, 77, 112–114, 126, 196, 198, 290
complications, 116
history, 26, 32
in the treatment
aggressive disorder, 290
anxious disorder, 115
depression, 113, 115, 221, 222
OCD, 120
Carbon nanotub, 317
Cardiazol®, 8
Caution, 238
Cerebral angiography
Egas Moniz, 10, 12, 21
Cerebral mapping, 52
Cerebrospinal fluid, 51, 164
Chlorpromazine, 30
Cinema
A Clockwork Orange, 36
One Flew Over the Cuckoo’s Nest, 36, 38
Suddenly, Last Summer, 30, 38
Cingulectomy, 16, 24, 25, 33, 36, 37, 118

Cingulotomy
 combined with capsulotomy, 121
 complications, 116, 127
 failure, 122, 222
 history, 32, 120
 in the treatment of depression, 221
 OCD, 57
 principle, 117
 results, 120
 subcaudate tractotomy, 123, 124
 treatment of addictions, 123, 288
 anxiety disorders, 120
 aggressive behavior, 121, 291
 depression, 57, 123, 294
 OCD, 195
 schizophrenia, 290
 thermocoagulation, 112
 for treating OCD, 57
 using coldness, 243
 versus capsulotomy, 124

Circuit
cortico-striato-pallido-thalamo-cortical loop, 87
hippocampo-mamillo-thalamo-cortical. See Papez circuit, 84
Papez, 76, 83, 86
reward, 9, 55, 81
Clustering headache, 71
Cognition, 20, 33, 50, 53–56, 58, 63, 65, 78, 87, 89, 92, 197, 206, 284
Cognitive-behavioral therapies, 223
Commissure anterior, 74
Complications
 cerebral hemorrhage, 32
Comportement
 agressif, 232
Compulsive obsessive disorders, 207
Concentration, 54, 82, 93, 148, 164, 210, 224, 314
Conditioning behavior, 62
Conflicts of interest, 301
Conscious surgery, 316
Consciousness, 2, 7, 54
Consent, 197, 231, 301
 conflict of interest, 292
 mental retardation, 238
 of a minor, 286
 treatment of aggressive disorders, 290
 inability, 284
US Senate inquiry commission report, 36

Corpus callosum, 56, 150
beak, 74

Corpus Luys. See Subthalamic nuclei, 78

Cortex, 51, 63
 anterior cingulate cingulate, 23, 33, 50, 54–56, 77, 117, 123, 143, 157, 159, 163, 197, 219, 224
 addiction, 241, 245
 anterior, 56, 90, 118, 225, 226
 medial, 118
dorsolateral, 24, 33, 54, 55, 76, 77, 113, 143, 154, 157–161, 215, 218, 228
 depression, 157
 rTMS, 157, 159
 entorhinal, 62, 63, 84, 90, 316
 frontal, 53
 hippocampus, 63
 occipital, 67
 olfactory, 63, 77
orbitofrontal, 33, 54–56, 59, 76, 77, 81, 89, 90, 113, 123, 143, 146, 147, 157, 192, 195, 197, 215, 223, 226
 depression, 157
 parietal, 66
 pre-motor. See Brodmann area, 53
 somatosensory, 64
 subgenual, 55, 151, 157, 215, 223, 225
 relation with amygdala, 224
 serotoninergic system, 224
temporal, 58

Cortical stimulation, 158
 in the treatment of auditory hallucinations in schizophrenic patients, 155
 OCD, 155
 Parkinson’s disease, 155
 fibromyalgia, 155
tinnitus, 155
 of chronic pains, 155
 of depression, 155, 228
 questions remaining, 161
 results, 160
 rTMS, 155
Cortico-striato-thalamo-cortical loop, 54, 78, 143, 148, 207
anatomy, 87
associative, 54, 89, 114, 150
capsulotomy, 195, 202
dopamine, 251
Gilles de la Tourette syndrome, 204
limbic, 237
motor, 87, 237
physiopathology of OCD, 191
Craving
addiction, 241
Cryo-cingulotomy, 289
Cryoprobe, 146, 224
Cyborg, 317

D
Decision (making of), 55, 197, 198, 284, 285
Decompressive craniectomy, 6
Deep brain stimulation, 109, 127, 143, 159, 197, 198, 206, 219
addiction, 244
alcohol, 246
cocaine, 246
dopamine, 246
heroin, 245, 246
tobacco, 246
alcoholic cessation, 245
amygdala
post-traumatic stress, 255
anterior limb of the internal capsule, 77
anxious disorder, 245
addiction, 247
OCD, 120, 245
cortex entorhinal
memory, 63
drawbacks, 136
fornix
memory, 63, 72, 250
Gille de la Tourette syndrome, 208
anatomical targets, 207
habenula
in the treatment of depression, 227
hypothalamus lateral
morbid obesity, 70
hypothalamus posterior
aggressive behavior, 71
inferior thalamic peduncle
in the treatment of depression, 227
internal capsule
OCD, 131
internal globus pallidus
Lesch-Nyhan syndrome, 237
lateral hypothalamus, 93
morbid obesity, 250
lower peduncle of the thalamus
in treatment of anxiety, 223
nuclei
caudate, anorexia and depression, 130
subthalamic, Parkinson’s disease, 133
nuclei accumbens, 151
addiction, 251
alcoholism, 246
eating disorders, 251
opiate addiction, 147
pallidum
dystonia, 131
posterior hypothalamus
aggressive behavior, 236
cluster headache, 72
septal area
in the treatment of depression, 150
subthalamic nuclei
dopamine dysregulation syndrome, 244
subthalamic nucleus
alcoholique cessation, 245
thalamus
treatment, untreatable chronic pain, 27
esential tremors, 131
Gilles de la Tourette syndrome, 131
Parkinson’s disease, 130
anxious disorder, 130
depression, 83
OCD, 155
ventromedial hypothalamus
morbid obesity, 251
in the treatment of morbid obesity, 72
Delirious melancholia, 8
Dementia, 316
Depression, 113, 115, 116, 120, 131, 143, 144, 200, 203, 210, 224
assessment of severity, 211
bipolar, 166
capsulotomy, 221
cingulate cortex, 57
cingulotomy, 221
clinical aspects, 210
cortical stimulation, 228
criteria inclusion for deep brain stimulation, 220
criteria of DSM-IV, 210
deep brain stimulation, 222
accumbens nuclei, in the treatment of addiction, 83
cortex subgenual, 225
habenula, 74, 227
inferior thalamic peduncle, 226
nuclei accumbens, in the treatment of depression, 83
VC/VS, 226
deep brain stimulation complication, 79
electroconvulsive therapy, 8
epidemiology, 210
functional imaging, 54, 144, 150, 215
limbic leucotomy, 222
norepinephrine, 95
OCD, 188
pain, 215
Parkinson’s disease, 92
physiopathology, 215
rTMS, 218
scale
hetero-assessment, 211
self-assessment, 211
secondary effects of neuroleptics, 205
sleep, 158
sub caudate tractotomy, 222
treatment with
cingulotomy, 221
vagus nerve stimulation, 229
Disease
Alzheimer, 63, 316
bipolar, 198
Huntington’s, 192
Lesch-Nyhan, 238
Parkinson, 98, 107, 130–132, 237, 293, 295, 299, 312
Disgust, 61, 64, 84
Disorder, 34
aggressive behavior. See Aggressive behavior, 34
anxiety, 11, 14, 27, 32, 33, 79, 95, 113, 115, 116, 118, 125, 126, 188, 203, 244
comorbidity in depression, 216
consequence on memory, 85
deep brain stimulation, 148
depression, 120, 216
medication, 60
OCD, 120, 131
Parkinson’s disease, 131
perception of pain, 157, 216
side-effects of deep brain stimulation, 148
topectomy, 24
attention, 54, 56, 89, 95
bipolar, 31
obsessional compulsive, 56
of personality, 197
personality, 30, 33, 79, 90, 188, 198, 203, 216
Docility, 33, 58
Dopamine, 74, 85, 89–93, 153, 204, 236, 314
Dorsolateral cortex, 90
Doulou, 64, 107
Dream, 63
DSM-IV, 209, 210
Dura mater, 51, 159
Dystonia, 39, 107, 131, 204, 206, 207, 236, 237

E
ECT. See Electroconvulsive therapy
Efficiency, 33
Electroconvulsive therapy, 8, 155
shock therapy, 8
transorbital leucotomy, 28
Electroshock. See Electroconvulsive therapy
Electrothermocoagulation, 112, 118
Emotion, 9, 49, 50, 52, 53, 55, 56, 58, 75, 87
anatomy, 83
Endorphins, 74
Epilepsy, 34, 107
Error (detection), 56
Ethics, 12, 124, 194, 230
Executive function, 54, 89, 93, 150

F
Famous patient
Baxter Warner, 21
Evita Perón, 21
Rose Isabel Williams, 20
Rosemary Kennedy, 20
FDA
Food and Drug Administration, 164
Fear, 49, 58, 60–62, 68, 84, 85, 188
Feeding behavior, 69
Fissure, 52
central, 52
lateral. See Formix
Fraud, 3
FSH. See Follicle-stimulating hormone
Functional imaging, 54, 55, 65, 71, 82, 144, 147, 157–159, 163, 191, 196, 223
accumbens nuclei, 145
cortex subgenual, 310
depression, 215
Functional MRI
Gille de la Tourette syndrome, 204
Functions executive, 117, 197
GABA, 88, 149, 208
Gamma-capsulotomy. See Capsulotomy via radiosurgery
Gamma-Knife. See Radiosurgery, 126
Gilles de la Tourette pharmacological treatments, 206 surgery, 206 syndrome clinical aspects, 203 lesion surgery, 205 psychiatric comorbidities, 205
Globus pallidus, 80, 88, 207, 208 internal, 76, 78, 207, 237, 238 ventral, 80
GPe. See External globus pallidus
GPi. See Internal globus pallidus
Gyrus, 52

Habenula, 153, 224, 227 lateral, 74 system dopaminergic, 150 noradrenergic, 150 serotoninergic, 150 HIFU. See High Intensity Focused Ultrasound, 127

I Ice peak. See Transorbital leucotomy
Identification, 109 Imaging functional, 119 Imaging functional, 57, 66 Infection, 32 Inferiorthalamic peduncle, 152 deep brain stimulation
in the treatment of depression, 152
Insula, 52, 56, 64, 205
relation with
amygdala, 65
prefrontal cortex, 65
vagus nerve, 66
Insulin. See Sakel, cure
Intellectual quotient, 29, 33
Intelligence, 51, 87, 316
Internal capsule
anterolimb, 113, 195, 207, 226
deep brain stimulation, 34
history, 32
in the treatment of depression, 145, 221
in the treatment of OCD, 144, 219
of the ventral part, 143, 146
radiosurgery, 126
VC/VS, 199
International Congress on Psychosurgery
Copenhaguen, 32
Lisbon, 32
Interment, 13
IQ. See Intellectual quotient
Irritability, 199

L
Lab-on-a-chip, 317
Language, 53
lateral ventricles, 74
Learning, 54, 63, 94
Lesch-Nyhan syndrome
pharmacological treatment, 237
Lesional surgery
in treatment of
depression, 221
Leucotome, 11, 18
Leucotomy
orbital, 122
prefrontal, 11
transorbital, 17
Libido, 68
Librium, 31
Limbic leucotomy, 37, 122, 197, 205, 222
complications, 123
in the treatment
OCD, 123
in the treatment of depression, 222
Limbic leucotomy in the treatment of
depression, 123
Limbic system of Mac Lean, 86
Lithium, 31
Lithotomy, 3
Lobe
frontal, 37, 52, 53, 107
limbic, 86
occipital, 67
parietal, 52, 66
temporal, 52, 58, 90, 232
Lobotomized personality, 29
Lobotomobile, 20
Locus coeruleus, 60, 68, 95
norepinephrine, 153
relation with
amygdala, 59
Long term memory, 62

M
Malariatherapy, 7
Mammillary bodies, 72, 84, 87
anatomy, 84
memory, 62
projections, 76
Medial forebrain bundle, 74
cerebellum, 92
deep brain stimulation
depression, 227
lateral hypothalamus, 92
link with the anterior limb of the internal
capsule, 92
nucleus accumbens, 92
orbitofrontal cortex, 92
periaqueductal gray matter, 92
Melancholia, 11
frontal leucotomy, 15
history, 3
Memorisation
electromental, 94
Memory, 76
anxiety disorder, 85
cortex
prefrontal, 224
declarative, 62, 72, 84
difficulties
deep brain stimulation, 148
emotional, 63, 70, 85, 92, 197, 224
episodic, 62
increase
during stress, 68
with emotion, 85
long term, 85
semantic, 62
spatial, 54, 63
decrease, 79
working, 89, 150
Meninge, 51
Middle Ages, 2
Moore’s law, 316
Morbid obesity, 69, 70
Motivation, 35, 55, 56, 81, 87, 90, 92, 145, 157, 225, 226, 293

Movie
 One Flew Over the Cuckoo’s Nest, 285
 Shutter Island, 285

MRI
diffusion tensor, 223
 functional, 50

Mutilations of personality, 33

Mutism, 33

N
Nanoscale coating, 317
Nanotechnologies, 312, 315
Nanotubes, 312
Nanowire, 317

Narcolepsy, 34
NBIC, 312, 313

Neuroenhancement. See Augmented human

Neuroleptic, 31, 203
er chlorpromazine, 30
discovery, 28
Gilles de la Tourette syndrome, 205
ehaloperidol, 30
 secondary effects, 205
Neuronavigation, 158
Neuropsychological tests, 22, 33, 36
Neurosurgery
 history, 4
Neurotransmitters, 91
Nigra substantia, 88
Nobel Prize, 7, 12, 21, 29
campaign, 22
Norepinephrine, 95
er locus ceruleus, 153

Nuclei
e accumbens, 82, 83, 90, 93, 144, 146, 199, 207, 224, 226, 296, 299
d addiction, 82
er anatomy, 81
 s autostimulation, 82
dopamine, 81
basal ganglia, 86
caudate, 55, 79, 89, 90, 113, 122
central grey, 50, 51, 54, 63, 87
central clock, 91
d deep brain stimulation
 s complications, 147
d dorsal of vagus nerve, 162
 in the treatment of OCD
 of depression, 145
dopaminergic receptors, 93
 heart (core), 81
 pleasures, 82
radiosurgery, 146
globus pallidus, 81
 cortex prefrontal, 81
 shell, 81
 of the solitary tract, 66
raphe, 60, 94, 153
 relation with
 habenula, 153
 subthalamic, 69, 78, 131, 208, 223
 anatomy, motor area, 148
 thalamus, 81
Nuclei accumbens, 56, 199, 207, 208, 223, 226, 230, 289
 addiction, 240
 amygdala
 s stimulation, addiction opiates, 244
basalis of Meynert, 60
caudate, 79, 192, 197
lenticular, 80
 relation with amygdala, 81
sub-thalamic, 198, 200
 addiction opiates, 244

O
Obesity, 34, 69

OCD
 anatomical targets, 198
capsulotomy, 195
cognitivo-behavioral therapy, 193
criteria of inclusion for a surgery, 198
deep brain stimulation, 78
evaluation of severity, 189
inferior thalamic peduncle, 201
internal capsule, 199
limbic leucotomy, 197
nucleus accumbens, 199
pharmacological treatments, 193
physiopathology, 191
psychiatric comorbidity, 188
quality of life, 188
subcaudate tractotomy, 197
subthalamic nucleus, 200
surgery, 194
Y-BOCS scale, 189

Ocytocin, 72

Olfaction, 63
Index

Optogenetics, 135, 314, 316
Orgasm, 35, 75, 295
Oxytocin, 68

P
Pain, 21, 157
cancer, 21, 74, 119
control, 56
cortical stimulation, 158
deep brain stimulation, 27
depression, 210, 215
emotion, 23, 24
history, 4
lobotomy, 21
moral, 132
neuropathic, 75, 159
responses in Parkinson’s disease, 89
topectomy, 24
Pallidum, 54, 77, 78, 79, 87, 90, 123, 131, 153, 204. See also Globus pallidus
Papez circuit, 62
Parkinson
disease, 39, 78, 92, 208, 222, 223, 244
Pathway
mesocortical, 93, 94
mesolimbic, 92, 94
nigro-striatal, 92
tuberoinfundibular, 93
Peduncle thalamic inferior, 201, 226
Periaqueductal gray matter
septal area, 74
Personality
mutilation, 107
Personality disorders, 220
PET Scan, 114, 163
Pituitary gland, 67, 72
Placebo effect, 229
Plannification, 90
Plasticity, 91
Posterior pituitary, 68, 72
Prefrontal cortex
dorsolateral, 54
orbitofrontal, 122
Prefrontal leucotomy, 24, 27, 205
Primary motor cortex. See Brodmann area no4
Psychic blindness, 58
Psychoanalysis, 8, 49
Psycho-controlled
society, 35
Psychomotor retardation, 54, 158, 224
PTSD. See Stress post-traumatic
Public opinion, 16
Putamen, 79, 88, 89, 90, 113, 204
Pyrotherapy
shock therapy, 8

Q
Quinine, 7

R
Radiosurgery, 125, 126, 195
applications, 32
nuclei
accumbens, 146, 286, 288, 289
Region
ergotropic, 71
Registry, 300
Retardation psychomotor, 210, 215
Reward
circuit, 92, 225
system, 224, 225, 240
Rolando’s fissure. See Central fissure
Route
direct, 88, 89, 192
indirect, 88–90, 192
rTMS, 155, 156
depression, 218

S
Sakel, cure, 7
Schizophrenia, 8, 34, 74, 75, 93, 113, 188, 198, 220, 222
auditory hallucinations, 155
frontal leucotomy, 14, 16
neurobiological hypothesis, 94
prefrontal leucotomy, 12
Sensation
well being, 74, 292, 295
Septal region
sexuality, 87
Septum pellucidum, 74
Serendipity, 72, 312
Serotonin, 74, 94, 95, 153
Sexual delinquents, 35
Sexuality, 87
hyper, 79, 121, 131
Sexual pleasure, 35
Shock therapy, 8, 13
Cardiazol, 8
malaria therapy, 7
pneumoschock, 7
Sakel, cure, 7
Sleep, 67, 92, 95, 166, 224
depression, 158
Solidarity, 74
Somatic markers, 65
Stereotactic
 frame, 39, 126, 136
Stress, 72, 85
 cingulotomy, 118
 Gilles de la Tourette syndrome, 203
 hypothalamus, 68
Stryia terminalis, 144, 151
Striatum, 54, 81, 87–90, 92, 113, 122, 123, 143, 146, 151, 192, 199, 223, 226, 227
 addiction, 240
 dopaminergic receptors, 93
 ventral, 56, 60
Sub caudate tractotomy, 197
 in the treatment of depression, 222
 complications, 123
 limbic leucotomy, 123
Subgenual cortex
 relation with striatum, 151
Substance unnamed, 122
Substantia nigra, 78, 89, 92, 153
Subthalamic nucleus, 200
 attempts, 116
Sulcus, 52
Surgery
 conscious, 52, 72, 223
 lesional, 112, 195
 sham, 124
 stereotactic, 107
Sylvian fissure. See Lateral fissure
Sylvius aqueduct, 56, 71
Syndrome
 Asperger, 74
 Lesch-Nyhan
 clinical aspect, 236
 physiopathology, 236
 deep brain stimulation, 237
System
 autonomic, 50, 57, 59, 60, 65, 68, 87
 cholinergic, 60
 dopaminergic, 79, 92, 93, 95, 153, 224, 227
 addiction, 240
 Gilles de la Tourette syndrome, 204
 glutamatergic, 78
 nervous autonomic, 235
 noradenergic, 60, 85, 91, 95, 150, 164, 193, 224, 227
 memory, 85
 norepinephrin, 74
 parasympathetic, 70, 87, 162, 166
 serotonergic, 60, 94, 150, 193, 205, 224, 257
 serotoninergic, 153
 schizophrenic, 94
 sympathetic, 68, 70, 72, 87, 235
 dopaminergic, 94
T
 Taste, 63, 64
 Tegmental area, 156
 TEP scan, 50
 Tests neuropsychological, 72, 121, 197, 199, 200, 225, 226
 Thalamocortical connexions, 77
 associatives, 77
 Thalamotomy
 Gilles de la Tourette syndrome, 205
 stereotaxy, 25
 Thalamus, 75, 77–79, 81, 83, 86–88, 90, 113, 122, 123, 130, 192, 195, 201, 223
 dorsal medial nucleus, 53
 emotional aspect, 15
 Gilles de la Tourette syndrome, 204
 nuclei, 89, 113
 anterior, 76, 84
 dorsomedial, 54, 56, 60, 77, 107, 113, 143
 intralaminar, 153
 mediadorsal, 25
 ventral anterior, 76, 77, 143
 Parkinson’s, 39
 ventral anterior, 54, 55
 Thirst, 67
 Thorazine®. See Chlorpromazine
 Topectomy, 23–25, 33
 complications, 33
 treatment
 anxiety, 25
 in treatment of pain, 24
 Tractography, 114
 Tractotomy subcaudate, 119, 120, 122
 Tracts
 thalamocortical, 77
 Transcranial magnetic stimulation, 155, 156, 161
 Transorbital leucotomy
 statistics, 29
 Transorbital lobotomy, 18
 famous patients, 20
 Treatment
 antipsychotic, 74
 Tremor, 39
U
Ultramicroelectrodes, 314

V
Vagus nerve
anatomy, 162
dorsal nucleus, 60
Vagus nerve stimulation, 164, 219, 228
complications, 166
in the treatment
of depression, 162, 228
of epilepsy, 162
prospect, 166
Valium, 31, 60
VC/VS, 144, 199, 226, 230
Ventral tegmental area, 92
Ventral tegmental area
dopamine, 85
Ventricle, 51, 56, 110

Ventriculography, 137
thalamotomy, 25
Verbal fluency, 150
decrease, 79
Vigilance, 95

W
Working memory, 56

X
Xemedialforebrainbundle
dorsolateralcortex, 92

Y
Yttrium
grains radioactifs, 122