Glossary

Here, we sum up what has been compiled in this book. Notions and notations presented here will be applied all over the rest of this book.

A. Static Structure

Petri net $N = (P, T, F, W, m_0)$:

- P finite set of places
- T finite set of transitions
- $F \subseteq (P \times T) \cup (T \times P)$ flow relation
- $W : F \rightarrow \mathbb{N}$ arc weight
- $m_0 : P \rightarrow \mathbb{N}$ initial marking

Derived Notions for N:

$$E = \text{def } P \cup T \text{ set of elements}$$

For $e \in E$:

- $e' = \text{def } \{d \mid (d, e) \in F\}$ pre-set of e
- $e'' = \text{def } \{d \mid (e, d) \in F\}$ post-set of e

$W : E \times E \rightarrow \mathbb{N}$ “extended arc weight” with

$$W(d, e) = \begin{cases} W(d, e), & \text{if } (d, e) \in F \\ 0, & \text{otherwise} \end{cases}$$

B. Dynamics

$m : P \rightarrow \mathbb{N}$ marking.

m enables t iff for all $p \in \tau \ W(p, t) \leq m(p)$.

$m \Rightarrow m'$ is a step iff

(a) m enables t, and

(b) for all $p \in P \quad m'(p) = W(p, t) + W(t, p)$.

$\sigma : m_0 \overset{u_1}{\Rightarrow} m_1 \overset{u_2}{\Rightarrow} \ldots \overset{u_n}{\Rightarrow} m_n$ is a computation of N iff $m_{i-1} \overset{u_i}{\Rightarrow} m_i$ are steps ($i = 1, 2, \ldots, n$).
A marking \(m \) is \textit{reachable in} \(N \) iff some computation ends at \(m \).

\(\sigma \) \textit{reproduces} \(m_0 \) if \(m_n = m_0 \).

The \textit{counting vector} \(c : T \rightarrow \mathbb{N} \) of \(\sigma \) assigns each \(t \) the number of occurrences of \(t \) (i.e., of indices \(i \) with \(u_i = t \)) in \(\sigma \).

\section*{C. Linear-Algebraic Representation}

Assume \textit{any} order on \(P \) and on \(T \). Typically: along indices in \(P = \{p_1, \ldots, p_k\} \).

\(T = \{t_1, \ldots, t_l\} \).

For \(m : P \rightarrow T \) and \(t \in T \) let

\[
\begin{pmatrix}
m(p_1)
\vdots
m(p_k)
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
\overline{W}(t, p_1) - \overline{W}(p_1, t)
\vdots
\overline{W}(t, p_k) - \overline{W}(p_k, t)
\end{pmatrix}
\]

If \(t \) is \textit{enabled} at \(m \), then \(m \xrightarrow{t} m + t \) is a step.

\(N : (t_1 \ldots t_k) \) is the \textit{matrix} of \(N \).

\section*{D. Analysis Techniques}

(a) \(i : P \rightarrow \mathbb{Z} \) is a \textit{place invariant} of \(N \) iff \(i \) solves \(x \cdot N = 0 \).

\textit{Theorem 3.1} For each reachable \(m \), \(i \cdot m = i \cdot m_0 \).

(b) \(j : T \rightarrow \mathbb{N} \) is a \textit{transition invariant} of \(N \) iff \(j \) solves \(N \cdot x = 0 \).

\textit{Theorem 3.2} If \(j \) is the counting vector of a step sequence, it reproduces the initial marking.

(c) A set \(Q \) of places is a \textit{trap} iff \(Q^\circ \subseteq Q \).

\textit{Observation} A trap never runs empty.

(d) The \textit{marking graph} of \(N \) has the reachable states and steps as vertices and edges.

\textit{Observation} If finite, this graph decides termination, divergence, liveness, weak liveness, boundedness and reversibility.
References

References

59. Cell Illustrator Online 4.0: http://cionline.hgc.jp/
60. Cell Illustrator Online: http://www.cellillustrator.org
342 References

References

References

219. Lautenbach, K.: Exact liveness conditions of a Petri net class. GMD Report 82, German National Research Center for Information Technology, Sankt Augustin, Germany (1973) (in German)

273. MVSIS. UC Berkeley. http://www-cad.eecs.berkeley.edu/mvsis
References

296. PEP homepage: http://theoretica.informatik.uni-oldenburg.de/~pep
301. Petri nets World: http://www.informatik.uni-hamburg.de/TGI/PetriNets
343. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinform. 8(Suppl. 6), S9 (2007)
345. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinform. 8(Suppl. 6), S9 (2007)
References

393. TINA: TIme petri Net Analyzer, http://www.laas.fr/tina/

418. WormBase: http://www.wormbase.org/db/gene/variation?name=pas40332;class=Variation

Index

A
- Abstract Petri net notation, 264
- Active site, 24
- Activity, 8, 109
- Activity function, 109
- Additional component, 323–325, 328
- Adequateness, 8
- Algebraic equation system, 213
- Allosteric effects, 165
- Alternative splicing, 222
- Amplification, 244
- Amyloplasts, 22
- Anabolism, 23
- Anti-coincidence, 61
- APNN, 264
- Apoptosis, 104, 221
- Arbiter, 86, 90
- Arc, 44, 45, 309
- Arc weights, 44, 309
- ArrayExpress, 11
- ASEL cell, 115
- ASER cell, 115
- Asynchronous Boolean network, 86
- Asynchronous circuit, 86
- Attractor, 162
- Autotrophic cell, 29
- Avogadro number, 156

B
- Berkely Madonna, 174
- Bifan, 226
- Bifurcation, 158
- Bimolecular reaction, 157, 158, 211
- Binary decision diagram, 258, 259
- Binary Decision Tree, BDD, 258
- Binding, 103, 104
- BINDplus, 12
- Biochemical Petri net, 51
- BioLayout, 15
- Biological pathway, 103
- Biological system, 42
- BioPAX, 175
- BIOSPICE, 174
- BioTapestry, 175
- Biotin, 169–172
- BioUML, 175
- Bipartite graph, 223
- Bistable behavior, 238
- Boolean function, 258, 259
- Boolean network, 74, 76, 264
 - example of, 76
 - neighbourhood state, 76
 - synchronous or asynchronous behavior, 76
 - synchronous Petri net model construction, 78
- Boolean regulatory graph, 264
- Boolean variable, 259
- Bounded, 53
- Bounded capacities, 333

C
- C-element, 88, 91
- C. elegans, 114, 116
- CADLIVE, 175
- Calcium3D, 174
- CAMP, 226
- Capacity vector, 333
- Carbohydrate metabolism, 23
- Catabolism, 23
- Catalytic activity, 166
- Catalytic rate, 166
- Catalyzed reactions, 154
Cell biology, 19
Cell Illustrator, 101, 102, 114–116, 119, 174, 288
Cell system markup language, 115, 119
Cell system ontology, 119
CellDesigner, 15, 174
Cellerator, 174
CellML, 175
CellNetAnalyzer, 220
Cellular automata, 165
Cellular organization, 20
CellWare, 174
Central metabolic pathways, 29
Chapman–Kolmogorov equation, 136
Chemesis, 174
Chemical master equation, 124
Chemical reaction, 154
Chemical substance, 38
CIBEX, 11
Circadian rhythms, 282
CKS, 174
Cleavage, 104
Clock genes, 285
Clustering of T-invariants, 216
Collection of interconnected Logical Regulatory Modules, CLRM, 265–267, 269, 271, 277
Combinatorial reconstruction approach, 313
Combined glucose and pentose phosphate pathway, 37
Competitive inhibition, 25, 28, 167, 168
Concurrent, 37, 53, 54
Confidence interval, 143
Conflict, 112
Conflict graph, 333
Conflict resolution, 112
Conformal networks, 319, 323, 334
Conformality, 335
Conservation property, 230
Conservation relation, 217
Conservative component, 230
Conservativity, 218
Continuous Petri net, 165
Continuous place, 106, 113, 286
Continuous timed Petri net, 106
Continuous token, 106
Continuous transition, 106, 113, 117, 285
Continuous-time Markov chain, 124
Cooperative binding, 169, 172
COPASI, 174
Coupled differentiation equations, 154
Covered by P-invariants, CPI, 50, 64
Covered by T-invariants, CTI, 51, 65
CPN-AMI, 219

CSML, 119
CSO, 119
CTPN, 106, 107
Cytoscape, 15, 175

D
DAG, 226
Decision diagram, 258, 259
Defuzzifier, 191
Degradation, 103, 104
Delay, 104
Delay component, 296
Depth-first search, 224
Determinism, 7
Deterministic behavior, 333
Deterministic models, 10
Difference vector, 321
Differential equation, 165
Diffusion, 164
DIP, 12
Disabled transition, 111
Discrete, continuous, and generic places and transitions, 117
Discrete, continuous and generic, 113
Discrete functional levels, 255
Discrete model, 163, 164
Discrete multi-valued functions, 258
Discrete Petri net, 59
Discrete Petri net model, 227, 228
Discrete place, 106
Discrete transition, 106, 112
Discreteness, 7
Dissociation, 103
Dizzy, 174
DNA, 32, 103, 104
DOQCS database, 238
Double negative feedback loop, 114
DREAM challenge, 200
Drosophila, 253, 254, 266, 270, 276
Dually phosphorylated, 230
Dynafit, 174
Dynamic behavior, 9, 45, 153, 227, 247
Dynamic graph, 225, 236, 239, 249
Dynamic pathway modeling, 101
Dynetica, 174

E
EcoCyc, 13
E. coli, 81, 222
nutritional stress response, 81
Edinburgh pathway editor, 175
Educts, 154
EFMTool, 220
Index

Elementary entities, 156
Elementary modes, 213–216, 220
Elementary Petri net, 101
Elementary reaction, 125, 155
Enabled transitions, 45
Encapsulated regulatory network, 266
Endothermic, 154
Endoplasmatic reticulum, 20
Energy metabolism, 23
Enzyme, 23, 24, 39
Enzyme activity, 27
Enzyme concentration, 166
Enzyme kinetics, 27
Enzyme subsets, 220
Enzyme–substrate complex, 165, 166
Enzyme-catalyzed reactions, 165
Equilibrium constant, 159
Equilibrium equation, 155
Equilibrium reaction, 157, 158
Ergodicity, 133
Eukaryotic cell, 19
Exothermic, 154
Experimental time series data, 310, 316
Exponential random variable, 122
External metabolites, 213
Extracellular matrix, 20

F
Fatty acid, 30, 211
Feasibility test, 323, 335
Feedforward loops, 226
Feedforward motif, 244
FEM, 176
Firing, 110, 112, 268
condition, 103
of continuous transition, 113
of discrete transition, 112
of generic transition, 113
order enforcement, 93, 94, 97
speed, 285
First-order reactions, 155
Flux, 218
Flux coupling analysis, 221
FOE, see Firing order enforcement
Functional module, 247
Functional unit, 233
Futile cycle, 214
Fuzzification, 185
Fuzzy implication, 188
Fuzzy logic system, 182, 192–194
Fuzzy sets, 181, 185

G
Gates, 226
Gene expression, 11, 32
Gene regulation, 34, 230
Gene regulatory network, 34, 102
Generic place, 107
Generic transition, 107, 113, 117, 118
GENESIS, 238
Genesis/Kinetikit, 174
Genetic interaction, 285
GenMAPP, 15, 175
GEO, 11
GEPA, 174
GInsim, 264, 276, 277
Glycolysis, 29
Glyoxylate shunt, 212
Golgi apparatus, 20
Graph theory, 210, 223
Graphical representation, 40
GRNs, see Gene regulatory network

H
Heterotrophic organism, 29
HFPNe model, 117, 119
High-level Petri net, HLPN, 253, 264, 265, 267–270, 277
Hill coefficient, 173
constant, 172
equation, 169, 173
function, 170
kinetics, 153, 154, 169
Holistic paradigm, 4
Homogeneous solution, 317–319, 332, 334
Homogeneous system, 317
Hopf bifurcation, 162, 164
Hybrid dynamic net, 107
Hybrid functional Petri net, HFPN, 107, 108, 284
Hybrid functional Petri net with extension, HFPNe, 101, 102, 106–108, 115, 117, 119, 284
Hybrid Petri net, HPN, 102, 107
Hybrid system, 107
Hypergraph, 223

I
INA, 217, 264, 276
Incidence matrix, 63, 219, 311, 317, 329
Indirect interaction, 295
Influence graph, 232, 233, 235, 236, 249
Inhibition, 25, 103
competitive, 25, 28, 167, 168
irreversible, 167
Inhibition (cont.)
 MAPK, 242
 noncompetitive, 25, 28
 reversible, 167
 uncompetitive, 26, 167, 168
Inhibitor arcs, 255
Inhibitory, 108
Inhibitory interaction, 295
Initial concentration, 159
Initial condition, 114
Initial marking, 45, 47, 49–51, 104, 110, 309
Initial state, 261, 274, 310
Input arc, 103, 108
Input place, 103
Input speed, 106
Integer linear programming, 219, 325
Integration function, 271, 275
Interaction graph, 230–232
Interaction network, 273
Interface, 42
Intermediate state, 40
Interval Decision Diagrams, IDD, 256, 259, 262, 263
Invariant, 49, 37, 52
Invariant analysis, 231
Irreversible inhibition, 167
Isoenzymes or isozyme, 24
Isoforms, 24

J
 Jacobian matrix, 162, 163
 Jarnac/JSim, 174
 JSim, 174

K
 KDBI, 176
 KEGG, 13
 Kinetic dynamic, 249
 Kinetic model, 175
 Kinetic rate constant coefficient, 158
 Kinetics, 118
 KINSIM/FITSIM, 174
 Kohn interaction maps, 175
 Krebs cycle, 29

L
 Labeling, optimal, 325
 Labeling, valid, 324
 λ phage, see Phage λ
 LARKIN, 176
 Lifetime, 247
 Limit cycle, 163, 164
 Linear algebra, 47, 48
 Linear algebraic equation system, 219
 Linear equation, 162
 Linear equation system, 312
 Logic minimization, 77, 83
 Logical approach, 255
 Logical formalism, 254, 255
 Logical functions, 257, 258, 259
 Logical modeling, 254
 Logical operator, 60
 conjunction, 60
 disjunction, 60
 implication, 60
 negation, 60
 Logical Regulatory Graph, LRG, 254–256, 259–265, 267, 274
 Logical Regulatory Module, LRM, 265, 266, 268, 269, 272, 274, 277
 Lotka–Volterra model, 159, 160, 162

M
 MACRON, 176
 MAPK, 227, 231, 236, 241–247
 MAPK inhibition, 242
 MAPK response, 248
 MAPK/PKC model, 247
 MAPK/PKC pathway, 225–241
 Marking, 44, 45, 110, 268, 309
 Marking graph, 52
 Marking probability distribution, 132
 Marking-dependence, 127, 128
 Markov process, 156
 Markup language, 264
 Mass action, 114, 154, 155
 kinetics, 165
 reversible, 158
 Mass conservation, 159, 166, 168
 Mass transfer, 218
 Master equation, 163
 MATHML, 175
 MathSBML, 174
 MatLab, 219, 238
 Mauritius maps, 70
 Maximal common transition set, see MCT-set
 MCT-set, 67, 69, 70, 221, 222
 MDD, 258
 Metabolic network, 30, 209, 218
 Metabolic network analysis, 214
 Metabolic pathway, 102
 Metabolic reaction, 104
 Metabolism, 23
 Metabolite, 24
 MetaCyc, 113
 METATOOL, 214, 218, 220
 Michaelis–Menten, 228, 229
Michaelis–Menten (cont.)
 constant, 27, 166
 equation, 27, 167
 kinetics, 106, 114, 153–155, 165
MicroRNA, 103, 114, 117
Microscopic dissociation constant, 170, 171
Minimal T-invariants, 213, 215, 216, 233
MINT, 12
MIRIAM, 175
Mitochondria, 20, 21
Mixotroph organisms, 29
Model, 5
Model checking, 81, 84
Model composition, 9
Model development, 8
Model validation, 84
Module, 264
Mole, 156
Molecular signal, 249
Monostable behavior, 238
Monotone, 319
Monotone data, 312, 319, 322, 323, 326
Monotone experimental time series data, 326
Monotonicity, 320, 322, 329, 332, 335
mRNA, 32, 103, 114–116, 231
Multi-valued decision diagram, 258
Multi-valued function, 259
Multi-valued logical formalism, 253
Multi-valued regulatory Petri net, MRPN, 261
Multigraph, 256
Mutant analysis, 85

N
Negative feedback loop, 227, 240, 242–244
Nested feedforward motif, 245
Net flux, 213
NetBuilder, 175
Network, 309
 asynchronous Boolean, 86
 Boolean, see Boolean network
 conformal, 312, 319, 323, 334
diagram, 13
 encapsulated regulatory, 266
 endothermic, 154
gene regulatory, 34, 74, 81, 102
 interaction, 273
 metabolic, 30, 209, 218
 reconstruction, 334
 reconstruction problem, 307, 312–314, 329, 334
 regulatory, 209, 218, 253–255, 264, 276
 signaling, 225
 strongly conformal, 333
Neutral binding, 169–171
Neutral stable steady-state, 164
Non-minimal T-invariant, 219
Noncompetitive inhibition, 25, 28
Nondeterministic models, 10
Nondeterministically, 332
Nonmonotone data, 331
Nucleus, 20, 103
Null-space, 217, 220

O
ODE model, 233, 236, 238, 240
Operations on fuzzy sets, 186, 187
Ordinary differential equation, ODE, 153, 156, 161, 213, 227, 228, 249
Oscillation, 158, 164
Oscillatory behavior, 159, 260
Output arc, 103, 108
Output place, 103
Output speed, 106

P
P-invariant, 63, 212, 217, 230, 231, 233, 237
P/T net, 261–263, 267
PARKIN, 176
Partial order, 332
Pasadena Twain, 174
PathVision, 175
Pathway, 223
Pathway databases, 12
Pathway modeling, 103
Penicillin, 167
PEP, 74, 80, 81, 83, 84, 100
Periodicity, 7
Perturbation, 162
 continuous, 165
 continuous timed, 106
discrete, 59
discrete model, 227, 228
elementary, 101
formalism, 153–154
 high-level, 253, 264–270, 277
 hybrid, 102, 107
 hybrid functional, HFPN, 107, 284
 hybrid functional with extension, HFPNe, 101–103, 106, 107, 284
library, 269
markup language, 64
model, 38, 42–47, 172, 229–231, 236
modeling application, 197
multi-valued regulatory, 261
Petri net (cont.)
 stochastic, 122
 timed, 104
 theory, 240
 with fuzzy logic, 194, 195
“Petri Nets World” archive, 219, 223

Phage λ, 94
 lysis–lysogeny switch, 94
 lysogenic cycle, 95
 lytic cycle, 95
Phosphorylation, 103
Phosphorylation of MKP1, 242
Photosynthesis, 22
Physarum polycephalum, 310
Pitchfork bifurcation, 163
Place, 40, 43, 45, 103, 108, 113, 309
Place invariant, 49, 50, 55
PLAS, 174
Plastid, 21, 22
PLmaddon, 174
PNFL, 194, 195
PNMA, 197
PNML, 264
Poisson distribution, 139
Positive feedback loop, 226, 227, 240, 245, 246
Posttranslational modification, 226
Potato tuber, 210, 214, 221
Predator prey model, 159
Prediction of network structure, 307, 308
Primary metabolism, 23
Probability distribution, 163
Prokaryotes, 20
ProMoT, 277
ProMoT/ DIVA/Diana, 174
Propensity function, 123, 125
Protein–protein interaction databases, 11
PSI-MI, 175
pSTIING, 12
PyBioS, 174

Q
QSSA, 166, 168
Qualitative modeling, 253, 254
Quantitative analysis, 153
Quantitative methods, 153
Quantitative modeling, 154
Quasi steady-state approximation, 166

R
Race policy, 129
Randomization algorithm, 137
Rate constant, 125
Rate constants coefficients, 157
Reachability, 260, 332
Reachable states, 274
Reachable marking, 46, 47, 52
Reactants, 154
Reaction flow ratio, 237
Reaction rate, 154
Reaction space, 314
Reaction vector, 315, 321, 322
REACTOME, 13
Read arc, 65, 231
Receptor, 36
Reconstruction algorithm, 326, 329
Red blood cells, 38
Reduced ordered multi-valued decision diagram, 258
Reductionist paradigm, 4
Regulation of metabolism, 31
Regulatory component, 256
Regulatory interaction, 255, 257
Regulatory modules, 249
Regulatory motif analysis, 227
Regulatory motif module, 248
Regulatory motif, 236, 242, 247, 248
Regulatory network, 209, 218, 253–255, 264, 276
Repetitive component, 232, 233
Repressilator, 278
Reserved marking, 110
Reversibility, 7
Reversible inhibition, 167
Reversible mass action, 158
Ribosome, 32, 33
RNA, 117, 231
RNA splicing, 222
Robustness, 8, 210
ROMDD, 258

S
Saccharomyces cerevisiae, 222
SB Toolbox, 174
SBRT, 174
SBW, 174
Second-order reactions, 157
Secondary metabolism, 23
Segment-polarity module, 273–275
Self-loop, 257
Self-regulation, 257
Semi-continuous modeling, 197, 198
Semi-discrete modeling, 195, 196
Semi-positive conservation relation, 217
SI circuit, see Speed-independent circuit
Signal propagation, 232
Signal transduction, 34, 230
Index

Signal transition graph, STG, 87, 260, 262, 264
 boundedness, 89
 complete state coding, 90
 consistency, 87, 89
CSC, see complete state coding
OP, see output-persistency
output-persistency, 87, 89, 96
signal, 87
 input signal, 88
 internal signal, 88
 local signal, 88
 output signal, 88
Stable states, 260
State transition graph, 260, 261
Steady-state, 48, 124, 133, 158, 161–163, 211, 220, 223
 concentration, 170, 173
 condition, 170, 171
 flux, 212, 213, 221
STG, see signal transition graph, 260, 262, 264
Substrate, 154
Superconservativity, 218
Switch-off time, 111
Switches, 226
Syphon, 52
System error, 112
System state, 9
Systems biology, 4
Systems Biology Graphical Notation, SBGN, 15
Systems Biology Markup Language, SBML, 175, 228, 229, 238
T
T-cluster, 68, 69, 70, 223
T-invariant, 51, 52, 64, 212, 213, 220–222, 233
 feasible, 65
 support, 65
 trivial, 65
Tanimoto similarity, 216
Terminal state, 322–325, 327, 335
Test arcs, 255
Theoretical model, 153
Thermodynamic parameters, 158
Time series data, 319
Timed bistable switch, 246
Timed Petri net, TPN, 104, 107
Token, 40, 41, 44, 103, 110, 268
Topology, 209, 210
Topological analysis, 209, 210
Transcription, 32, 103
Transcription factor, 34
Transition, 39, 41, 43–48, 51, 52, 55, 103, 108, 262, 309, 312
Transition graph, 255
Transition invariant, 51
Translation, 32, 103, 104
Translocation, 103, 104
TRANS PATH, 119
Uncompetitive inhibition, 26, 167, 168
Unimolecular reaction, 155, 157
Universe of discourse, 185
Unphosphorylated, 230
Update function, 109

Stoichiometric coefficients, 38, 154, 309
Stoichiometry, 215
Stoichiometry matrix, 48, 220
Streptavidin, 169–173
STRING, 12
Strongly conformal, 333, 335
Strongly connected components, 260
Subgraph, 233, 234

U
Uncompetitive inhibition, 26, 167, 168
Unimolecular reaction, 155, 157
Universe of discourse, 185
Unphosphorylated, 230
Update function, 109
Updating function, 260
UPGMA, 222
Urbanczik–Wagner algorithm, 220

V
Valid labeling, 324, 327
VANTED, 15
Velocity of enzymatic reactions, 27
Virtual cell, 174, 238
VisANT, 175
Visualization, 13
Visualization tools, 175
Volterra, 159

W
Weakly live, 53
WebCell, 174
Weight, 103, 106

X
XML based standards, 175
XPP-Aut, 174

Z
Zero-order reactions, 155
Zinc-finger transcription factor, 114