Index

A
Accuracy, 146
Active, 121
Adaptation processes, 129
Adjective word pairs, 63
Adjustment factors, 92
Adjustment values, 92
Adjustment variable, 138
Aesthetic characteristics, 21
Aesthetic factors, 58, 60
Agents, 113
Alternative design candidates, 162
Alternatives, 162, 163, 164
Analytic Hierarchy Process (AHP), 176
Analytical Target Cascading (ATC), 141
Approach, 88
Assembly, 95
Assembly difficulties, 95
Attributes, 23
Availability, 19

B
Barrier, 187
Benefit levels, 51
Bi-Level Integrated System Synthesis method, 140
Binary numbers, 129
Bottlenecks, 14, 91
Bounding objective function method, 125
Bounding operations, 127
Box-type member, 132
Brainstormings, 85
Branch-and-bound method, 105, 126, 128
Branching, 128
Branching operations, 127, 128
Breakdown, 141, 186
Breakthrough alternative design, 187
Breakthrough design solutions, 47
Breakthrough designs, 35

Breakthroughs, 32

C
CALS paradigm (Continuous Acquisition and Life-cycle Support), 6
CAM information, 81
Candidate partners, 50, 52
Career path, 74, 76
Career satisfaction, 80
Casting, 100
CAT (Computer-Aided Testing), 81
Cell production, 17
Chain reaction process, 85
Chromosome, 129
Climate, 189
Cluster analysis, 107
Coding, 129, 163
Coding systems, 96
Collaboration, 36, 46, 47, 50, 55, 76
Collaboration partner, 50, 52
Collaboration project, 187
Collaboration theory, 188, 189
Collaborations, 112
Collaborative circumstances, 181
Collaborative decision-making, 109
Collaborative decisions, 181
Collaborative design, 86
Collaborative design process, 88
Collaborative efforts, 55
Collaborative Optimization (CO), 140
Combinatorial optimization problems, 126
Commerce At Light Speed (CALS), 6
Common databases, 111
Common parts, 112
Component arrangement design division, 143
Compromise, 181
Computer networks, 44, 50
Computer simulation, 83
Computer-Aided Design (CAD), 37
Computer-Aided Engineering (CAE), 83
Computer-Aided Manufacturing (CAM), 37
Computer-Aided Planning (CAP), 37
Computer-Aided Process Planning (CAPP), 37
Computer-aided technologies, 37
Computer-Aided Testing (CAT), 37
Computer-Integrated Manufacturing (CIM), 38, 41
Concave shape, 125
Concavity, 125
Conceptual design stages, 35
Conceptual product design, 37
Concurrent engineering, 15, 36, 37, 40, 81, 90, 96, 106, 112
Concurrent evaluations, 66
Concurrent optimization, 40
Conflicting interrelationships, 146
Conflicting relationship, 148, 186
Consensus decisions, 181
Consistency index, 175
Constraint functions, 26
Consumer products, 4
Contact conditions, 152
Continuous design variables, 126
Contour lines, 119
Conveyor production, 15
Cooperative collaboration, 19
Cooperative project, 49
Creative group activity, 86
Creative process, 88
Criteria, 9, 26
Criteria requirements, 22
Crossover, 129
Crossover operation, 129, 166
CSCW (Computer Support Cooperative Work), 50
Cultural impact, 189
Customer desires, 6
Customer needs, 102, 107
Customer requirements, 11
Customer satisfaction, 107, 109, 190
Customer satisfaction levels, 58, 59
Customer-maker collaborative manufacturing, 6
Customers, 59, 68
Cutthroat competition, 55

D
Damping coefficients, 148, 152, 158, 161
Damping effects, 151, 152, 153
Damping ratio, 150, 152, 153, 155
Data mining, 111
Decision making support system, 172
Decision support system (DSS), 111
Decision supporting system, 172
Decomposition, 127
Deeper understanding of the design problem, 186
Deepest levels, 186
Delay in production, 12
Delivery times, 11
Demand, 12
Demand and supply curves, 12
Demand curve, 12
Demand leading paradigm, 14
Design and manufacturing information, 81
Design for assembly, 41
Design for distribution, 41
Design for environment, 41
Design for lifecycle, 41
Design for maintenance, 41
Design for manufacturing, 41
Design for quality, 41
Design for reliability, 41
Design qualities, 10
Design Structure Matrix (DSM), 134
Design Structure System (DSS), 134
Design variable space, 27, 94
Design variables, 26, 27
Destruction of nature, 55
Die casting, 101
Digital engineering, 81
Digital-mockups, 82
Dimensional constraints, 27
Dimensional variances, 10
Disassembly, 96
Discrete design variable optimization, 126
Discrete design variables, 126, 128, 162
Dissemination of proprietary technologies, 47
Dynamic characteristics, 149
Dynamic rigidity, 122, 123, 150, 151

E
Economically deteriorating business conditions, 177
Economically improving business conditions, 177
Economies of scale, 6
Efficiency, 146
Index

Eigenvalue equation, 174
Energy-efficient products, 59
Enterprise management decision-making, 111
Enterprise Resource Planning (ERP), 110
Enumeration method, 126, 128
Environmental impact, 21, 59
Epsilon-constraint method, 125
Equality constraint, 27
Ergonomic factors, 59
Ergonomics, 60, 69, 70
Evaluation map, 64, 65, 66
Evaluative criteria, 172, 176
Evolutionary mechanisms, 129
Excess inventory, 13
Existing technologies, 47
Expected utility, 177
Expert abilities, 74
Experts, 46
Extraction of simpler characteristics, 146
Extraction procedures, 186

F
Failure rate, 18
Feasible design region, 27
Feasible design variable space, 118, 119
Feasible direction method, 161
Finite element method (FEM), 83
Five physical senses, 60
Flat business conditions, 177
Flexible joint, 157
Flexible manufacturing, 15
Flexible Manufacturing Cell (FMC), 15, 104, 127
Flexible Manufacturing System (FMS), 15
Ford paradigm, 5
Forging, 100, 101
Forward problems, 27
Functional quality, 108

G
Game theory, 188
Gantt chart, 105
Gene, 166
Gene position, 129, 166
General rules, 149
Generative approach, 102
Genetic algorithms (GAs), 129, 162
Genetic types, 129
Global characteristics, 148
Global optimal solution, 40
Global optimization, 29, 134
Global optimum solution, 32, 122, 130, 131, 149, 162, 186
Globally optimum, 46
Globally optimum solution, 118, 119, 122, 128, 146, 149
Grinding, 100, 105
Group analysis, 108
Group decision-making, 181
Group satisfaction level, 182, 183
Group technology (GT), 96
Groupware, 50

H
Hierarchical Genetic algorithms (HGAs), 162
Hierarchical genotype, 167
Hierarchical optimization methodologies, 162
Hierarchical optimization procedures, 152, 153, 162, 186
Hierarchical optimization strategies, 154
Hierarchical structural model, 166
Hierarchical structure, 141, 176
Hierarchical weighting procedures, 177
Histogram, 17
Human abilities, 58
Human body, 69
Human judgment, 58
Human logic, 57
Human relationships, 75, 76
Human resource (HR), 76
Human scale, 3

I
Ideal consistency, 175
Ideal point, 124
Idealized models, 131
Implementation, 134
Implementation phase, 132
Importance levels, 176
Improvement procedures, 28
Incentive, 188
Industrial machines, 3
Industrial robot, 127, 146
Inequality constraint, 27
Information and material flow, 38
Inherent abilities, 58
Initial design variables, 118, 144, 157, 158
Injection molding machine, 146
Injection-molding, 146
Innovation, 35
Inspiration, 85
Integrated preference function, 68
Intercommunication, 86
Intermediate personal preference, 180
Inventory, 13
Inventory control, 12
Inventory levels, 13
Inventory shortages, 13
Inverse problems, 27

J
Job shop manufacturing, 15
Job shop paradigm, 101
Job shop production, 11, 12, 17, 96
Job shop type of production, 6
Job shop type production, 130
Joint contact surfaces, 148
Joint damping coefficient, 152
Joint design variables, 152
Joint rigidity, 152
Joints, 152, 153
Just in time (JIT), 6, 13

K
Kanban, 14
Kansei, 60
Kansei attributes, 67
Kansei characteristics, 21
Kansei engineering, 60
Kansei evaluation, 61
Kansei feelings, 63
Kansei impressions, 64
Kansei preference levels, 66
Karush-Kuhn-Tucker condition (KKT condition), 120
KJ-method, 85
Knowledge sharing, 48, 50

L
Laborious hand honing, 100
Lagrangian function, 121
Lagrangian multiplier, 121
Lagrangian multiplier coefficient, 121
Lead time, 11
Lean production, 6
LifeCycle Assessment (LCA), 21
LifeCycle Costing (LCC), 20
Lifecycle design, 41
Lifestyles, 21
Line production, 15
Linear optimization problems, 27
Linear planning problems, 27
Linear programming, 118
Linear programming methods, 118
Link-structure, 88
Local characteristics, 148
Local optimality, 120
Local optimum solution, 118, 119, 120, 134, 149, 152
Locally optimum solution, 118
Long-term economic benefits, 20
Loss, 92
Loss function, 92
Lot size, 14
Lower bound, 127
Lowest level of the hierarchy, 186

M
Machine elements, 147
Machine product, 148
Machine product design optimizations, 149
Machine tool, 127, 146, 155
Machining, 100
Machining accuracy, 99, 100, 148
Machining cost, 98, 148, 153, 157
Maintainability, 20
Maintenance, 45
Makespan, 104, 127
Making products to order, 6
Management information system (MIS), 111
Management of the enterprise, 110
Manipulator, 61
Manufacturing cost, 10, 11, 81, 92, 95, 96, 100, 103, 104
Manufacturing flexibility, 15
Manufacturing losses, 14
Manufacturing paradigm, 59, 96, 97
Manufacturing qualities, 10
Market demands, 186
Market research, 4
Market share, 31
Marketplace competition, 32
Mass production, 6, 14, 17, 20
Mass production paradigm, 97
Mass-produced items, 6
Material cost, 147, 155
Material Requirements Planning (MRP), 104
Mathematical programming methods, 117
Matrix tables, 108
Maximum receptance value, 150
Max-max criterion, 180
Max-mean criterion, 179
Max-min criterion, 179
Mean time between failures (MTBF), 20
Mean time to failure (MTTF), 20
Mean time to repair (MTTR), 20
Mental abilities, 57
Mental and emotional satisfaction, 60
Mental factors, 21, 58
Milling, 157
Mobile agents, 113
Modal flexibility, 151
Mode shape, 152
Modular parts, 102
Module technology, 102, 103
Modules, 102
Mold clamping unit, 83
Mold press, 101
Monotonous relationship, 122
Motions of the limbs, 71
Motivation, 60
Motivational objective function, 76
Multi-attribute utility functions, 26
Multidisciplinary collaboration, 46
Multi-disciplinary engineering divisions, 140
Multidisciplinary optimization, 29, 185
Multidisciplinary two-stage multiobjective optimization method, 141
Multiobjective optimization, 130
Multiobjective optimization methods, 26, 153
Multiobjective optimization problem, 30, 43, 123, 124, 145, 153, 157, 186
Multiple point searching procedures, 130
Multi-step decision-making, 153
Muscular forces, 71
Mutation, 129
Mutation operation, 129, 166

N
Natural environments, 7, 20, 59, 190
Natural frequency, 150
Natural resources, 22, 55
NC (Numerical Control), 15
NC programs, 97
Negative impacts, 189
Negative synergy effects, 181
Networked database, 45
Networked information systems, 112
Networked information technology, 111
Networked systems, 50
Networking technologies, 47
Non-inferior solution set, 27
Nonlinear optimization problem, 27, 119
Nonlinear planning problems, 27
Nonlinear programming problems, 118
Non-monotonomous relationship, 123
Normal distribution, 18
Notational expressions, 165
Objective function, 26, 118
Objective function space, 27, 31
One-way sequential decision-making processes, 39
Operational accuracy, 49, 146
Operational efficiency, 49
Optimal allocation, 74
Optimization methods, 26
Optimization problem, 26, 71, 148
Optimization techniques, 117
Optimum allocation, 75
Optimum solution frontier, 187
Outward appearance, 61

P
Pair comparison, 172
Pair comparison importance, 173
Pair comparison matrix, 173
Pair comparison method, 173, 182
Parameter design method, 93
Pareto, 31
Pareto optimum design solutions, 154
Pareto optimum solution line, 31, 100
Pareto optimum solution set, 31, 124, 154, 157, 161
Pareto optimum solutions, 66, 101, 125, 154
Part classification methods, 96
Part transportation operations, 128
Partial optimization, 29
Penalty function method, 119, 120
Penalty term, 120
Personality, 179, 190
Phenotypes, 129
Physical abilities, 58
Physical effort, 71
Physiological energy, 71
Plant maintenance, 45
Platform, 102
Popularity, 66
Positive synergy effects, 181
Potential customers, 59
Powder metallurgy, 101
Preferences, 23
Primary company, 52
Principal component analysis, 64
Priority relationships, 134, 148
Priority rules, 149
Probability analysis, 93
Problem-solving approaches, 85
Process capability, 17
Process planning, 98
Processing accuracy, 10
Processing order, 135
Processing time, 11
Product cost, 10
Product Data Management (PDM), 90
Product delivery times, 11
Product design, 4
Product design criteria, 23
Product design optimization, 185, 186
Product design requirements, 186
Product development, 4
Product development competition, 22
Product diversification, 103
Product Ideas, 85
Product lead time, 104
Product lifecycles, 12, 21
Product manufacturing, 4
Product manufacturing cost, 10, 30, 93, 146, 148
Product manufacturing innovation, 57
Product manufacturing paradigm, 5, 7, 47
Product performance, 10, 11, 30, 97, 130
Product quality, 10, 108
Product supply curve, 12
Product usability, 69
Product’s lifecycle, 41
Production mistakes, 11
production paradigm, 55
Production scheduling, 104
Production time, 104
Production to order, 13, 96
Production to stock, 13
Productivity, 96
Profit, 186
Program (Project) Evaluation and Review Technique (PERT), 106
Project, 74
Prototype parts, 82
Pull manufacturing, 14
Pull manufacturing methods, 14
Pull press, 146
Push manufacturing methods, 14

Q
Quadratic optimization problems, 119
Qualitative evaluations, 75
Quality engineering, 18, 92
Quality function deployment (QFD), 108
Quality loss factors, 92
Quantitative attributes, 59
Quantitative expressions, 75
Quantitatively evaluating subjective, 58
Questionnaires, 107

R
Rapid prototyping, 82
Receptance frequency response, 150
Recycle, 21
Recycling of products, 20
Reduce, 21
Reference data, 181
Refinement process, 85
Regret level, 180
Regret minimax criterion, 180
Relative displacement, 149
Reliability, 19, 20
Reliability evaluations, 19
Response action, 86
Response parameter, 120
Response surface method, 118
Reuse, 21
Reward, 188
Robust design optimization method, 93
Robust designs, 93

S
Safety, 19
Safety evaluations, 19
Sale of the product, 4
Satellite, 141
Satisfaction function, 67, 182
Satisfaction levels, 11, 21, 23, 58, 67, 107, 130, 188
<table>
<thead>
<tr>
<th>Index</th>
<th>199</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling problems, 106</td>
<td></td>
</tr>
<tr>
<td>Scheduling technology, 104, 127</td>
<td></td>
</tr>
<tr>
<td>Semantic differential (SD) method, 63</td>
<td></td>
</tr>
<tr>
<td>Sensibility, 58</td>
<td></td>
</tr>
<tr>
<td>Sequential Linear Programming (SLP) method, 119</td>
<td></td>
</tr>
<tr>
<td>Sequential Quadratic Programming (SQP), 119</td>
<td></td>
</tr>
<tr>
<td>Sequential Unconstrained Minimization Technique (SUMT), 120</td>
<td></td>
</tr>
<tr>
<td>Session, 86</td>
<td></td>
</tr>
<tr>
<td>Session fork, 87</td>
<td></td>
</tr>
<tr>
<td>Session method, 88</td>
<td></td>
</tr>
<tr>
<td>Shapes of the joints, 152</td>
<td></td>
</tr>
<tr>
<td>Side-constraints, 27</td>
<td></td>
</tr>
<tr>
<td>Simplex method, 118</td>
<td></td>
</tr>
<tr>
<td>Simplification, 131, 132, 133, 134, 146, 148, 162</td>
<td></td>
</tr>
<tr>
<td>Simplification of characteristics, 146</td>
<td></td>
</tr>
<tr>
<td>Simplified characteristics, 152</td>
<td></td>
</tr>
<tr>
<td>Simplified model, 132, 157</td>
<td></td>
</tr>
<tr>
<td>Simplified shapes, 132</td>
<td></td>
</tr>
<tr>
<td>Simultaneous engineering, 40</td>
<td></td>
</tr>
<tr>
<td>Single point searching procedures, 130</td>
<td></td>
</tr>
<tr>
<td>Single-person standing-style production, 17</td>
<td></td>
</tr>
<tr>
<td>Six sigma campaign, 18</td>
<td></td>
</tr>
<tr>
<td>Skill abilities, 75</td>
<td></td>
</tr>
<tr>
<td>SN ratios, 92</td>
<td></td>
</tr>
<tr>
<td>Socially useful benefits, 55</td>
<td></td>
</tr>
<tr>
<td>Software agents, 113</td>
<td></td>
</tr>
<tr>
<td>Solid models (3-D models), 81</td>
<td></td>
</tr>
<tr>
<td>Specific rules, 149</td>
<td></td>
</tr>
<tr>
<td>Spring stiffnesses, 148</td>
<td></td>
</tr>
<tr>
<td>Stability of the satellite, 143</td>
<td></td>
</tr>
<tr>
<td>Standard deviation, 18</td>
<td></td>
</tr>
<tr>
<td>Standards of living, 1</td>
<td></td>
</tr>
<tr>
<td>State variables, 27</td>
<td></td>
</tr>
<tr>
<td>Static displacements, 147</td>
<td></td>
</tr>
<tr>
<td>Static rigidity, 121, 147</td>
<td></td>
</tr>
<tr>
<td>Strategic Information System (SIS), 111</td>
<td></td>
</tr>
<tr>
<td>Stress distributions, 149</td>
<td></td>
</tr>
<tr>
<td>Structural analysis, 83</td>
<td></td>
</tr>
<tr>
<td>Structural design division, 142</td>
<td></td>
</tr>
<tr>
<td>Structural joint rigidity, 152</td>
<td></td>
</tr>
<tr>
<td>Structural joint rigidity optimization, 157</td>
<td></td>
</tr>
<tr>
<td>Structural member rigidity, 152, 157</td>
<td></td>
</tr>
<tr>
<td>Structural member rigidity optimization, 157</td>
<td></td>
</tr>
<tr>
<td>Structural member weight, 153</td>
<td></td>
</tr>
<tr>
<td>Structural members, 132, 147, 152</td>
<td></td>
</tr>
<tr>
<td>Structural weight, 121, 157</td>
<td></td>
</tr>
<tr>
<td>Sub-Optimization Problem (SOP), 153</td>
<td></td>
</tr>
<tr>
<td>Substructures, 163</td>
<td></td>
</tr>
<tr>
<td>Sub-system design variables, 139</td>
<td></td>
</tr>
<tr>
<td>Super finishing, 100, 157</td>
<td></td>
</tr>
<tr>
<td>Super polishing, 100</td>
<td></td>
</tr>
<tr>
<td>Supply chain management (SCM), 14, 91</td>
<td></td>
</tr>
<tr>
<td>Supply curve, 11</td>
<td></td>
</tr>
<tr>
<td>Supporting agent systems, 113</td>
<td></td>
</tr>
<tr>
<td>Surface characteristics, 186, 187</td>
<td></td>
</tr>
<tr>
<td>Surface level, 186</td>
<td></td>
</tr>
<tr>
<td>Surface level characteristics, 186, 187</td>
<td></td>
</tr>
<tr>
<td>Surface roughness, 10, 157</td>
<td></td>
</tr>
<tr>
<td>Surface stress distributions, 150</td>
<td></td>
</tr>
<tr>
<td>Synergy effects, 85</td>
<td></td>
</tr>
<tr>
<td>System design optimization strategies, 145</td>
<td></td>
</tr>
<tr>
<td>System division, 141</td>
<td></td>
</tr>
<tr>
<td>System division optimization, 141</td>
<td></td>
</tr>
<tr>
<td>System level design variables, 139</td>
<td></td>
</tr>
<tr>
<td>System optimization procedures, 162</td>
<td></td>
</tr>
</tbody>
</table>

T

Taguchi method, 92
Taylor paradigm, 5
Terminate, 127
Theory of constraints (TOC), 91
Three-Dimensional CAD Technology, 80
Tolerance, 17
Top hierarchical level, 154
Total manufacturing cost, 148, 157
Total processing time (makespan), 104
Toyota manufacturing method, 14
Traction method, 83
Tree structure, 87
Trial experiments, 19
Trial manufacturing, 82
Trigger action, 86, 87
TRIZ(Theory of Innovative Problem Solving), 90
Two stage optimization, 138
Two-level optimizations, 140
Type I quantification theory, 68

U

Ubiquitous, 113
Unbalanced collaborations, 53
Uncertain business conditions, 177
Uncertain environmental conditions, 180
Uncertain factors, 172, 177
Unreliability, 19
Unsold inventory, 12
Upper level optimization, 154
Upper level substructures, 165
Utility, 26, 177
Utility analysis, 23
Utility function, 182
Utopia point, 124

V
Value analysis; VA, 32
Value criterion, 32
Value engineering, 32
Variant approach, 102
Variations, 17, 92
Virtual corporations, 47

Virtual enterprises, 50
Virtual reality (VR), 79, 111

W
Weighted sum method, 124
Weighting coefficient, 124, 176, 177, 180
Weighting method, 124
Welded structure, 43
Welding, 100
Welding cost, 43, 44
Word pair, 63
Worker discomfort, 70