References

131. J. Kramer and J. Magee, Exposing the Skeleton in the Coordination Closet, in Proc. of the 2nd Int. Conf. on Coordination Models and Languages (COORDINATION 1997), Springer, LNCS 1282:18–31, Berlin (Germany), 1997.

Index

<table>
<thead>
<tr>
<th>A</th>
<th>absolute time, 42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abstract time, 41</td>
</tr>
<tr>
<td></td>
<td>abstraction, 2</td>
</tr>
<tr>
<td></td>
<td>acceptance graph, 31</td>
</tr>
<tr>
<td></td>
<td>acceptance set, 26</td>
</tr>
<tr>
<td></td>
<td>action, 5</td>
</tr>
<tr>
<td></td>
<td>action prefix operator ((a, _), 8)</td>
</tr>
<tr>
<td></td>
<td>AET behavioral conformity, 157</td>
</tr>
<tr>
<td></td>
<td>alternative composition operator ((_+_), 8)</td>
</tr>
<tr>
<td></td>
<td>and-interaction, 132</td>
</tr>
<tr>
<td></td>
<td>antisymmetric relation, 13</td>
</tr>
<tr>
<td></td>
<td>architectural attachment, 130</td>
</tr>
<tr>
<td></td>
<td>architectural behavior section, 129</td>
</tr>
<tr>
<td></td>
<td>architectural compatibility, 173</td>
</tr>
<tr>
<td></td>
<td>architectural element instance (AEI), 129</td>
</tr>
<tr>
<td></td>
<td>architectural element type (AET), 129</td>
</tr>
<tr>
<td></td>
<td>architectural interaction, 130</td>
</tr>
<tr>
<td></td>
<td>architectural interoperability, 180, 183</td>
</tr>
<tr>
<td></td>
<td>architectural invocation, 153</td>
</tr>
<tr>
<td></td>
<td>architectural mismatch, 169</td>
</tr>
<tr>
<td></td>
<td>architectural semi-compatibility, 195</td>
</tr>
<tr>
<td></td>
<td>architectural semi-interoperability, 195</td>
</tr>
<tr>
<td></td>
<td>architectural style, 152</td>
</tr>
<tr>
<td></td>
<td>architectural topology section, 129</td>
</tr>
<tr>
<td></td>
<td>architectural type (AT), 153</td>
</tr>
<tr>
<td></td>
<td>arrival process, 218</td>
</tr>
<tr>
<td></td>
<td>asymmetric synchronization, 77</td>
</tr>
<tr>
<td></td>
<td>asynchronous communication, 5</td>
</tr>
<tr>
<td></td>
<td>asynchronous interaction, 131</td>
</tr>
<tr>
<td></td>
<td>availability, 239</td>
</tr>
<tr>
<td></td>
<td>behavioral operator, 5</td>
</tr>
<tr>
<td></td>
<td>bisimilarity, 15</td>
</tr>
<tr>
<td></td>
<td>bisimulation, 14</td>
</tr>
<tr>
<td></td>
<td>bisimulation approach, 6</td>
</tr>
<tr>
<td></td>
<td>bisimulation equivalence ((\sim_B), 15)</td>
</tr>
<tr>
<td></td>
<td>bisimulation up to (\sim_B), 16</td>
</tr>
<tr>
<td></td>
<td>border, 173</td>
</tr>
<tr>
<td></td>
<td>bottleneck, 205</td>
</tr>
<tr>
<td></td>
<td>bound variable, 9</td>
</tr>
<tr>
<td></td>
<td>bounded capacity assumption, 77</td>
</tr>
<tr>
<td></td>
<td>branching bisimulation equiv, ((\approx_{B, B}), 21)</td>
</tr>
<tr>
<td></td>
<td>branching-time equivalence, 35</td>
</tr>
<tr>
<td></td>
<td>buffer, 219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>BCMP theorem, 216</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>behavioral conformity, 157</td>
</tr>
<tr>
<td></td>
<td>behavioral equivalence, 5</td>
</tr>
<tr>
<td></td>
<td>behavioral modification section, 136</td>
</tr>
<tr>
<td></td>
<td>canonical may-test, 25</td>
</tr>
<tr>
<td></td>
<td>canonical must-test, 25</td>
</tr>
<tr>
<td></td>
<td>canonical reactive test, 107</td>
</tr>
<tr>
<td></td>
<td>canonical test, 26</td>
</tr>
<tr>
<td></td>
<td>clock distribution equation, 48</td>
</tr>
<tr>
<td></td>
<td>closed process term, 9</td>
</tr>
<tr>
<td></td>
<td>closed queueing network, 215</td>
</tr>
<tr>
<td></td>
<td>communicating concurrent system, 3</td>
</tr>
<tr>
<td></td>
<td>complete axiomatization, 14</td>
</tr>
<tr>
<td></td>
<td>completed-trace equivalence ((\approx_{Tr,c}), 37)</td>
</tr>
<tr>
<td></td>
<td>completed-trace set, 37</td>
</tr>
<tr>
<td></td>
<td>compositionality, 2</td>
</tr>
<tr>
<td></td>
<td>computation, 23</td>
</tr>
<tr>
<td></td>
<td>concrete trace, 99</td>
</tr>
<tr>
<td></td>
<td>congruence, 14</td>
</tr>
<tr>
<td></td>
<td>continuous-time Markov chain (CTMC), 79</td>
</tr>
<tr>
<td></td>
<td>covert channel, 245</td>
</tr>
<tr>
<td></td>
<td>cycle, 180</td>
</tr>
<tr>
<td></td>
<td>cycle covering algorithm, 189</td>
</tr>
<tr>
<td></td>
<td>cyclic union, 189</td>
</tr>
</tbody>
</table>
D
- defining equation, 9
- dependability, 239
- derivative process term, 10
- diamond operator, 18
- discrete-time Markov chain (DTMC), 79
- divergence, 24
- dot notation, 134
- durational action, 42
- durational bisimilarity, 56
- durational bisimulation, 55
- durational bisimulation equiv. (∼DB), 56
- durationless process calculus (DPC), 46
- dynamic operator, 11

E
- eagerness, 42
- enabled action, 26
- endo-coverability, 198
- endogenous variation, 160
- enriched flow graph, 134
- equivalence class, 14
- equivalence relation, 13
- event structure model, 4
- exact aggregation, 120
- exit probability, 86
- exit rate, 85
- exo-coverability, 196
- exogenous variation, 158
- expansion law, 17
- exponential distribution, 79
- exponentially tim. act. pr. op. (<a, λ>,.), 81
- exponentially timed action, 80
- extended trace, 105
- external choice, 5

F
- failure equivalence (≈F), 37
- failure-pair set, 37
- failure-trace equivalence (≈FT), 38
- failure-trace set, 37
- finite-state labeled transition system, 12
- finitely-branching labeled trans. system, 12
- first come first served (FCFS), 213
- fork process, 220
- free variable, 9
- frontier, 189

G
- generative preselection policy, 93
- geometrical distribution, 79
- global clock, 42
- guarded process term, 9

H
- Hennessy-Milner logic (HML), 18
- hiding operator (/H), 8
- hyperexponential distribution, 216
- hypoexponential distribution, 216

I
- immediate action, 93
- inactive process (0), 8
- infinite server (IS), 213
- information flow, 245
- information leakage, 245
- input action, 5
- input asynchronous queue (IAQ), 141
- input interaction, 130
- integrated time, 76
- interacting semantics, 144
- interacting semantics without buffers, 172
- interaction, 130
- interleaving model, 4
- internal action, 130
- internal choice, 5
- invisible action, 5
- isolated semantics, 142

J
- join process, 221

K
- kernel, 14

L
- labeled multitransition system, 82
- labeled transition system, 10
- last come first served (LCFS), 213
- last come first served w.p.r. (LCFS-PR), 213
- laziness, 42
- lazy durational bisimilarity, 60
- lazy durational bisimulation eq. (∼DB,l), 60
- lazy timed bisimilarity, 60
- lazy timed bisimulation equiv. (∼TB,l), 60
- linear relation, 13
- linear-time equivalence, 35
- local clock, 42
- local interaction, 130
- local noninterference, 249

M
- Markov chain, 78
- Markovian bisimilarity, 86
- Markovian bisimulation, 86
- Markovian bisimulation equiv. (∼MB), 86
- Markovian bisimulation up to ∼MB, 88
- Markovian completed-trace eq. (∼MTr,c), 123
Markovian distrib.-testing eq. ($\sim_{MT,d}$), 105
Markovian distrib.-trace eq. ($\sim_{MTr,d}$), 116
Markovian extended-trace eq. ($\sim_{MTr,e}$), 106
Markovian failure equivalence (\sim_{MF}), 123
Markovian failure-trace equiv. (\sim_{MTrF}), 124
Markovian process calculus (MPC), 80
Markovian ready equivalence (\sim_{MR}), 123
Markovian ready simulation, 122
Markovian ready-simulation eq. (\sim_{MRS}), 122
Markovian ready-simulation pr. (\preceq_{MRS}), 122
Markovian ready-trace equiv. (\sim_{MRTr}), 124
Markovian simulation, 122
Markovian simulation equivalence (\sim_{MS}), 122
Markovian simulation preorder (\preceq_{MS}), 122
Markovian trace equivalence (\sim_{MTr}), 115
maximal parallelism, 46
maximal progress, 42
maximal progress durat. bis. eq. ($\sim_{DB,mp}$), 65
maximal progress durational bisimilarity, 65
maximal progress timed bis. eq. ($\sim_{TB,mp}$), 64
maximal progress timed bisimilarity, 64
may-testing equivalence ($\approx_{T,\text{may}}$), 24
may-testing preorder ($\preceq_{T,\text{may}}$), 24
mean queue length, 205
mean response time, 205
memoryless property, 80
mixed queueing network, 215
multiclass queueing network, 215
multiclass queueing system, 212
multilevel security, 242
multiplicity variation, 163
multiway communication, 5
must-testing congruence ($\approx_{T,\text{must}}$), 28
must-testing equivalence ($\approx_{T,\text{must}}$), 24
must-testing preorder ($\preceq_{T,\text{must}}$), 24
output interaction, 130
overall exit rate, 85

P
PADL graphical notation, 135
PADL textual notation, 134
PADL translation semantics, 138
parallel composition operator ($\|$), 8
partial order, 14
partially closed interacting semantics, 172
partially semi-closed interacting sem., 194
partition, 14
passive action, 80
passive action prefix op. ($\langle a, *_w \rangle$), 81
performability, 239
performance-closed process term, 84
Petri net model, 4
phase-type distribution, 216
physical time, 41
preemptive priority (PP), 213
preorder, 13
process, 5
process calculus (PC), 8
process constant, 9
process term, 9
process term with local clocks, 47
process term with local clocks and gl. cl., 60
process variable, 9
processor sharing (PS), 213
product-form queueing network, 215

Q
queueing discipline, 213
queueing network, 211
queueing system, 212

R
race policy, 80
rate, 76
reactive preselection policy, 80
reactive test, 102
ready equivalence (\approx_R), 37
ready simulation, 36
ready-pair set, 37
ready-simulation equivalence (\sim_{RS}), 36
ready-simulation preorder (\preceq_{RS}), 36
ready-trace equivalence (\approx_{RTr}), 38
ready-trace set, 38
real-time system, 41
recursion, 9
reflexive relation, 13
relabeling operator ($\|_{\varphi}$), 9
relative time, 42
reliability, 239

N
noninterference, 245
nonpreemptive priority (NP), 213

O
one-phase functioning principle, 42
open process term, 9
open queueing network, 215
operation, 14
operator associativity, 9
operator precedence, 9
or-dependence, 132
or-interaction, 132
or-rewrite, 139
orthogonal time, 76
output action, 5
output asynchronous queue (OAQ), 141
restriction operator ($\setminus L$), 8
cround robin (RR), 213
routing process, 222

S
safety, 239
security, 239
semi-frontier, 196
semi-synchronous interaction, 131
separate Markovian bisimilarity, 89
separate Markovian bisimul. eq. ($\sim_{MB,s}$), 89
separate Markovian bisimulation, 89
sequential system, 4
service in random order (SIRO), 213
shared-resource system, 75
simulation, 36
simulation equivalence (\sim_S), 36
simulation preorder (\leq_S), 36
single-class queueing network, 215
single-class queueing system, 212
software architecture, 126
sound axiomatization, 14
stability condition, 214
stable process term, 21
star, 173
state space explosion, 4
static operator, 11
stochastic process, 78
strongly convergent process term, 35
success action, 23
success state, 102
symmetric relation, 13
symmetric synchronization, 77
synchronization tree model, 4
synchronous communication, 5
synchronous interaction, 131
syntactical substitution, 12

T
test, 23
testing approach, 6
testing congruence (\approx_T), 28
testing equivalence (\approx_T), 24
throughput, 205
time continuity, 45
time domain, 42
time prefix operator ($(n)\ldots$), 43
timed action, 46
timed action prefix operator ($<a,n>\ldots$), 47
timed bisimilarity, 51
timed bisimulation, 51
timed bisimulation equivalence (\sim_{TB}), 51
timed inactive process ($\overline{0}$), 44
timed process calculus (TPC), 43
timestep, 58
topological conformity, 159
topological equivalence, 196
topological frontier, 158
total exit rate, 85
total order, 14
totally closed interacting semantics, 173
totally semi-closed interacting sem., 195
trace, 32
trace approach, 6
trace equivalence (\approx_{Tr}), 32
trace model, 4
trace set, 32
transitive relation, 13
truly concurrent model, 4
two-phase functioning principle, 42
two-way communication, 5

U
uni-interaction, 132
utilization, 205

V
visible action, 5

W
weak bisimilarity, 20
weak bisimulation, 20
weak bisimulation congruence ($\approx_{\overline{B}}$), 21
weak bisimulation equivalence (\approx_{B}), 20
weak exit rate, 95
weak Markovian bisimilarity, 96
weak Markovian bisimulation, 96
weak Markovian bisimulation eq. (\approx_{MB}), 96
well timedness, 48